
Experience with Real-Life Students’ Projects
Jaroslav Král

Masaryk University in Brno,
Botanická 68a, 602 00 Brno, Czech Republic

Email: kral@fi.muni.cz
and

Charles University in Prague
Malostranské nám. 25, 118 00 Praha 1, Czech Republic

Email: kral@sisal.mff.cuni.cz

Michal Žemlička
Charles University in Prague

Malostranské nám. 25, 118 00 Praha 1, Czech Republic
Email: zemlicka@sisal.mff.cuni.cz

and
University of Finance and Administration

Estonska 500, 101 00 Praha 10, Czech Republic
Email: michal.zemlicka@post.cz

Abstract—Student software projects are often focused on train-
ing coding skills and on model-driven software system design. The
projects rarely develop skills needed for the proper formulation
of system visions and requirements specifications. To solve this
issue the projects must deal with real-life software projects issues.
The projects should solve main commercial aspects of real-life
– they must include looking for project topics in practice and
there should be possible to communicate and collaborate with
future project users. Successful projects should be rewarded
(optimally paid) by the users like other commercial products. We
discuss here the quite successful experience with a "prototype"
implementation of the concept.

I. INTRODUCTION

T
HE SOFTWARE development is a risky process. The
proportions of failed and challenged projects is about 1/4

and 1/2 respectively [1], [2], [3]. It is known that it is due to
poor quality of project visions (aims) and project requirements
specification. Late stages of software development processes
are seldom the source of the issues.

The development issues are besides the management failures
caused by underestimation of the complexity of the vision and
specification stages.

A detailed analysis of the problem indicates that the de-
velopment team members are in fact not aware enough of
the software engineering aspects of the projects, i.e. that the
development of software systems is a technical (engineering)
problem. It holds, surprisingly enough, not only for users
(project sponsors and project stakeholders inclusive) but also
for IT experts taking part in the projects. They all must
be aware that a seemingly simple requirement need not be
implemented and used due the technical aspect easily.

Our experience from academia as well as form industry
shows the reasons for failures and challenges in software
projects are often caused by IT experts unable to effectively
and properly take part in project vision and requirements
specification.

Young people are often excellent in coding. It especially
holds for young people active in theoretical disciplines. They
know very well that their coding skill is difficult to overcome.
This fact is overemphasized. Soft software development skills
are difficult to develop. It holds especially for the people

trained in hard skills needed for academic or scientific ca-
reer. They are excellent coders but usually not excellent in
design and especially in requirements specification. They are
often proud on their intellectual abilities and scorn the users
being unable to write and test programs. They underestimate
or disregard the importance and the complexity of real-life
problems. They are unable to take part in such agile software
development processes when they must take users as partners.
They even do not admit that they should take part in reqire-
ments specification. They are unable to tune specifications in
cooperation with users. We will discuss our experience with
student projects aimed to solve the above issues at IT side.
The projects were a part of postgradual studies.

The issues can be solved if IT students take part in team
projects covering very early stages of software development –
marketing, vision formulation, and requirement specification.
The students should cooperate with prospective users of the
developed systems. It implies that the students project can fail.
We know that real-life projects fail frequently.

We will discuss here the structure of student projects we
have used to solve the issue and present experience with them.

The paper is structured as follows: First, we discuss the
problems discussed above in details. Then we describe two
variants of the projects intended to train analytical skills.
Finally, we summarize the experiences gained in the projects.

II. THE SOFT FACTS ON PROJECT FAILURES AND

CHALLENGES

The proportion of failed projects is remarkably stable, the
proportion of failed projects remains very high for decades –
see the surveys Why Projects Fail [4] or the Chaos Report [3].
The reasons are not solely at project stakeholder and project
management side.

Our experience indicates that the issue is a bit more
difficult and complex. People involved in software system
development, maintenance, and use are not aware enough
that software systems are complex technical entities requiring
engineering attitudes. All developers, IT experts inclusive, are
not ready to apply software engineering knowledge, attitudes
and processes. IT experts are then not able to convince users

Proceedings of the 2014 Federated Conference on
Computer Science and Information Systems pp. 827–833

DOI: 10.15439/2014F257
ACSIS, Vol. 2

978-83-60810-58-3/$25.00 c© 2014, IEEE 827

and managers that the application of software engineering is
necessary and that requirements specification is no straightfor-
ward matter.

We must conclude that the project failures are in this sense
due to IT experts more frequently than it is presented in project
failure analyses. It is quite difficult to change this attitude as
developers, especially coders, dislike developing and applying
needed skills. Model-driven architecture and related attitudes
are helpful partly only.

Our experience with the students’ projects indicates that
our students like and are able to propose an elegant solving of
technical problems. They are often not interested in seemingly
boring problems of real life. They, for example, are able to
design a very complex SQL statement but they are not aware
that a small modification of it could be substantially more
usable in real-life projects.

We also experienced that people tending to be managers
underestimate the fact that a more detailed technical knowl-
edge could be very useful for them too. It concerns especially
the cases when managers make decisions having important
technical consequences.

III. EDUCATION AND ANALYTICAL SKILLS

We can conclude that the education and mastering of soft
knowledge and skills necessary for analytical tasks in software
development is of growing importance but it does not meet
needs. IT students and even some of their teachers do not
understand the importance of the issue. They often consider
analytical documents to be something like gossips whereas the
only valuable thing is a big piece of (good) code. This attitude
is supported by the fact that young people are often very good
coders.

The poor understanding of the importance of the early stages
of software development is the crucial reason of lower quality
of analysis oriented student knowledge. The issue is further
strengthened by the fact that the needed development skills
are not trained enough. It leads to the lack of good project
management and to poor results of agile methods of software
development.

We discuss here possible ways of solving this issue. The
training of necessary social skills is a key issue here. The
training can be realized only if the requirements specification
and, if possible, the vision and market analysis are trained in
students’ team projects. The goals of the projects should be the
development of small information systems or the development
of their autonomous parts.

The projects should be designed so that they meet the needs
of real-world people and in collaboration with them, i.e. they
should be small commercial projects. The development pro-
cess should have as much common as possible with standard
development of information systems in small software firms –
market analysis, business, and technical risks inclusive.

We present below the main principles of the implemen-
tation of the above requirements and the experiences with
the projects at two Czech universities. We further discuss
issues of our attitude to be still solved. The most important

problem of the projects is the trend to the fragmentation
and extreme specialization of scientific knowledge and of
education processes, and a growing gap between hard a soft
knowledge of our alumni. They are not trained to be good
project managers as recomended, e.g., by Ebert [5].

IV. INFORMATION SYSTEMS AND PROFESSIONAL

KNOWLEDGE

The basic goal of the postgradual study of IT experts is the
education of professsionals being able to propose, develop,
maintain, and execute software, usually information systems.
The development of such systems are enhanced variants of
classical waterfall model [6] consisting of:

1) Analysis done in cooperation of the system developers
with future system users: by formulation of visions
(answering the question "why?" and outline of the basic
requirements) and by requirements specification,

2) design,
3) coding,
4) testing:

• unit testing,
• integration testing,
• function testing,
• system testing;

5) integration,
6) deployment.

The scheme can be enhanced and modified in various ways,
see iterative development (agile development, scrum [7], XP
[8]) and incremental development (various SOA methodolo-
gies [9], [10], [11] inclusive). The variants of development
can be viewed as repeated and integrated waterfalls.

Knowledge and skills needed in the initial stages of software
development are often missing. It is known [3], [12] that the
user involvement and management issues are crucial for the
success of information systems development. The faults in
these stages of the development can cause more than 80%
costs spent to remove development errors in not failed projects.
Almost half of software projects significantly overrun expenses
and terms.

The overall losses caused by the errors are significantly
higher. For example conceptual errors are the main reason
of most project failures. According to [3], [13] it happens
to about 1/4 of projects. These misconceptions usually stay
behind poor maintainability of software systems and behind
their early or permanent obsolescence [14].

There are yet other snags: The conceptual errors can hid-
denly lead to a user discomfort or can even reduce their
long-term wellness feeling and even their health. It reduces
productivity and worsens social climate in firms. It destroys
firm culture and threatens its future.

Coding and testing are usually without substantial issues.
The education of the skills needed for coding and testing is
therefore successful.

It is the reason for looking for new methodologies and
development paradigms like the concept of SOA ecosystem by

828 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

OASIS. The stages 1, 2, and partially 5–7 require according
[15], [1], [3] and the experience of software developers:

• collaboration of developers with users,
• support by management,
• requirements specifications specific abilities of the in-

volved team,
• etc.

It requires a collection of soft skills and, what is more
important, the skills must be trained.

The students should take part in the early development
stages of projects designed so that they are "approximations"
of real-world projects usually for small to medium enterprises
(SME). The knowledge (often even sole information) collected
in books need not be sufficient. The needed knowledge should
be broad open and flexible to be usable for the specification
of user needs.

Some services in SOA can be developed (may be as
prototypes) as students projects. It is also possible to use
sprint subprojects of SCRUM or XP methodology. It is a
crucial proposition as real world projects must be able to bring
some real world effects. They should incorporate the vision
and even some marketing. It is a very hard task in academia
environment. We must cope with the fact that such projects can
face real-world risks. The existence of the risks contradicts the
concepts and organizational principles of the IT education. It,
together with the trends in the academic research, leads to the
overspecialization and fragmentation of student knowledge. It
further tends to grow contempt of social and generally soft
knowledge at the students’ side. The study plans must cope
with the fact that some of our projects may fail.

V. BASIC REQUIREMENTS ON THE REAL-WORLD-LIKE

PROJECTS

The analysis of the problems of our alumni is strongly
restricted by data privacy protection. The data collection re-
quires explicit approval of the students with the data collection
and use. Even in the cases when alumni are successfully
contacted, that their approval will not cause selective/choice
effects. Based on the facts and our experience with students
projects there can be made the following conclusions:

The students overestimate the importance coding skills.
They are partially right as they are in such skills peerless.
One perfect coder (people from the top 5% quantile) can
replace some 20–30 average coders ([16], [17]). It leads to
some conceit and underestimation of soft and social skills, to
unacceptable team attitudes and to some negative aspects of
hacking – see the Corncob Antipattern [18].

It is more important that such individuals strengthen the
feeling of exclusivity and underestimate the necessity of good
relations with users and ability to understand their knowledge
and needs. It is not easy to communicate with them what is
strengthened by the fact that they underestimate knowledge
outside IT. Persuasion that it is neither good nor simple is
usually a hopeless task. The only way is to create situation
showing explicitly that they are not right.

Let us note that social and organizational skills are getting
obsolete significantly slower than the knowledge and skills
necessary for coding where within 5 years about one half of
them get obsolete. Partial solution of this issue is possible if
project aims are properly selected. We have tried two main
variants of the projects:

1) Projects having features typical for SME/SMB projects.
They train especially the skills of vision setting and
requirement specification.

2) Projects solving partial tasks in software development in
and for large enterprises. Such projects improve skills
necessary for cooperation in such environments and
enable understanding the environment and its processes.

VI. INVOLVEMENT OF STUDENTS IN COMMERCIAL

PROJECTS OF LARGE SOFTWARE VENDORS

Large vendors, e.g. IBM, have started a close collaboration
with some Czech universities. The collaboration is imple-
mented as the engagement of selected students in development
teams of the vendors. The students often take part in the
development of information system of the commercial partners
as assistant analysts.

The students successively take up relevant roles in analysis
and negotiation with a vendor client. He/she is induced to
use vendor policies, processes, and tools. The students often
take also part in design, especially in model building. In
the cases when the students prove themselves useful they
can be rewarded and have quite often opportunity to become
gradually the employees of the firm.

The firms hire in some sense the students. It follows that it is
applicable for some students only. The results and experiences
with the concept are surprisingly good. The students are often
warmly accepted by the enterprise team members. They are
pleased to collaborate with the students.

The development of excellence centers supported e.g. by
Europe grants enables further enhancement and a broader use
of this concept. It simplifies the involvement of start-up firms
and open new possibilities for master and dissertation projects.

The main advantage of these forms of studies is the training
of analytical and design skills in the real world environment
(ecosystem). The main disadvantage is that the students do
not come in contact with the formulation of visions (aims)
and marketing.

VII. SMALL TO MEDIUM BUSINESS ORIENTED PROJECTS

Small-to-medium enterprises (SME) are a frequent domain
where our alumni get good jobs. Most of our alumni get job in
SME. SME need people having skills enabling to take part in
all phases of software life cycle starting with market analysis,
looking for a client, vision statement, negotiation, business
agreements, and requirements specification.

These skills must be trained. We have trained the necessary
skills in projects designed and implemented in the following
way:

JAROSLAV KRÁL, MICHAL ŽEMLIČKA: EXPERIENCE WITH REAL-LIFE STUDENTS’ PROJECTS 829

1) The projects are implemented as team seminary works
being an optional part of a postgradual study. There are
usually about 20 seminary participants.

2) The participants are required to propose themes of pos-
sible projects. The themes should have the potential to
be commercially successful. The student must therefore,
using their contacts market analysis formulate project
proposal containing project name, the specification of
possible user(s), and a (abstract of) vision. It must
be based on the analysis of a real-word organization
(partner).

3) The proposals are presented and defended.
4) The most promising proposals are chosen and the par-

ticipants form teams having three to seven members.
5) Each team choose tools (e.g. an information system)

supporting its work. An open source/free project support
systems are preferred. The team members present their
professional profiles, CVs and experiences.

6) The project name and abbreviated name is fixed. A
project logo is welcome. The visions are refined and
included into project home page. Achieved results are
presented and defended using data projectors. The pre-
sentation should include the testable project effects.

7) The teams develop requirements specifications and sys-
tem models. The involvement of the partner experts or
intended end users is welcome.

a) The teams can use open source software or free
systems.

b) The integration of the system into the partner ERP
is highly appreciated.

c) The team must do market analysis, especially the
detection and study od the properties of similar
systems.

8) There are at least two progress reports for each project.
They have the form of reviews in the software engineer-
ing sense.

9) The final project defense at the end of seminary consists
of:

a) Presentation of the proposed system capabilities in
the form understandable for users.

b) Review of the technical properties a concise de-
scription of development processes, prototypes,
and models.

c) Interesting experiences.

The projects cover the software development stages at least
up to design. There should be a well-founded hope that the
project development could be continued and implemented on
commerce basis (payment inclusive).

VIII. SCHEDULE OF THE SEMINARY

A. Initial Meeting

• The teacher specifies the aims (vision) of the seminar.
He/she shows that the main challenge of software project,
especially of the project at SME, is the poor formulation
of aims/visions and requirement specification of software

project. The challenges are strengthened by the fact that
the aims and requirements specifications are seemingly
easy to understand and therefore easy. It is not the case
but to understand the problem the students must take
part in real-life projects needed collaboration with people
from practice (future system users).

• A seminary support system specified (offered) rules of
seminary students communication are specified in coop-
eration with the lecturer and the student.

• The overall schedule is specified see the points below.

B. Looking for Project Topics and Possible Business Partners

• Looking for Project Topics and Possible Business Part-
ners

• Parallel activities:

– Students present themselves, their experience,
knowledge, and skills. Aims:

– training the skills applicable during job seeking and
for taking part in seminary project

C. Presentations and Competitive Choice of Project Proposals

• Choice of project leaders. The leaders are usually the
students bringing the successful project proposals. They
usually serve as project contact people. Involvement of
the teacher in the choice is possible but not preferred.

• The leaders choice team members.
• The roles in the teams are tentatively defined.

D. Aims and Main Specifications

The aims and main specifications should be formulated
in cooperation with business people – tentative users of the
system.

E. Organizational Data

• Project identification;
• Project topic;
• Team structure and team roles – minimal team size is 3,

maximal 7 members;
• Project supporting system (open source);
• The chosen development tools;
• Semiformal risk analysis.

F. Initial Outputs of the System Development

• the system full and short names;
• the specification of business partner;
• tentative vision.

G. First Presentation of the Project

First presentation of the projects (after a month) is in the
form of a review:

• Presentation of project homepage.
• Main outputs.
• Control of the contents and documents in project support

system, especially the team meeting reports, reports from
negotiation with partners, and other project reports.

830 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

H. Closing Customer-Oriented Presentation

• presentation of project home page;
• presentation of goals/visions and final capabilities;
• possible use of prototypes.

I. Closing Technical Presentation

• Project schedule;
• Derived technical models (diagrams);
• Experience, positive and negative aspects.

J. Final Session

• Evaluation of the projects and students activities;
• Informal evaluation of individual students;
• Common personal + and −.

The structure should be accommodated to the expertise of
the students. Sometimes happens that there are students being
professional software development team or software company
leaders. In such cases the other students can take significant
advantage of it.

IX. ISSUES COMMON FOR ALL TEAM STUDENT PROJECTS

Some students’ projects can be done individually but in a
team it is possible to collect some additional experience.

A. The Team

The students should build the teams independently. The
students should fulfill their other study duties in parallel to
the project. The team therefore faces the risk that some team
members could be busy with other study duties or that their
study can be for other reasons terminated. It can lead to one
of the following situations:

• The students can close the ranks and start to help each
other also in other (not project related) duties to keep the
team at full strength.

• The students start to protect themselves by decomposing
the project into relatively autonomous parts (or even by
choosing projects that are naturally divided in this way)
implementable by individuals. It allows them to show that
they fulfilled their partial duties. Sometimes the finished
components could provide at least basic functionality of
the desired system.

We succeeded in some projects to set up the policy that
every team member got assigned some development labor
(preferably several tasks) in both primary and secondary role in
pair programming. The role of a buddy (secondary developer
in the pair) means that the person is informed what the primary
developer does and why it does and that it could be asked to
consult some issues or even to help. Such teams were quite
reliable even when a team member was for some (even longer)
time out of service (due other school duties or an illness).

A creation of such pairs requires some minimal tolerance
and mental compatibility of the involved people. It is moreover
advantageous, is a person has different shadows for his/her
different tasks or if it plays a shadow of someone else than
he/she is shadowed. If someone get into troubles, the shadow

could take his/her work over and can delegate some of the
shadow’s work to his/her own shadows. The load for individual
people than could grow by a part only what gives better chance
that the person will be able to finish the work without induced
troubles.

It has also approved itself if the project has been designed
to change its extent (it is, there was a kernel that must
be finished and multiple extensions that were optional –
developed when nothing bad happened). Such projects could
be finished successfully, reliably, and without fatal rushing.

Creation of a good team and tuning the extent of the project
is a nontrivial task. It shows that it could take even several
weaks yet before the project officially starts.

Side Effects

Working on a project may bring further benefits for the
students:

• a deeper familiarization with the topic handled by the
project;

• mastering tools for team work;
• act and negotiate with people (it is necessary to get on

with other team members as potential team break could
usually harm all its members);

• often also the discovery that a teacher can be true even if
the student is thinking that he/she know it better (and then
it shows that the hint given by the teacher and rejected
by the student(s) could save a lot of work and avoid a lot
of troubles).

B. Experience with the Projects

We practiced "real-life" student projects for eleven years
at two Czech universities in two different cities (Prague and
Brno). There were 4–6 projects a year at each university.
There were interesting trends. The students in Prague tended
to prefer coding. It caused the falling interest of the students
in taking part in the projects. There are no active projects of
this type in Prague now. There are less visible reasons for it.
For example, a limited number of small enterprises developing
information systems in Prague and a strong preference of
theoretical computer science. Last but not least, it is possible
to finish the study in other study branches with less effort and
risk.

The trend in Brno has been towards a broad use of free or
open software systems (project management tools, modeling
tools, documentation tools) used to support the vision, require-
ments specification, and the team organization. It substantially
enhanced the quality of the project processes. There were
no project failures provided that their initial defences were
successful. The reason was that the project vision must be
successfully defended at the beginning of the project. An un-
successful defense implied an immediate project cancellation.
It was rather an exception.

The best projects in Brno were further positively influenced
by the following aspects:

• There are many medium-sized firms in Brno employing
the students.

JAROSLAV KRÁL, MICHAL ŽEMLIČKA: EXPERIENCE WITH REAL-LIFE STUDENTS’ PROJECTS 831

• Some students have their own firms.
• There is a well-working collaboration of big firms (e.g.

IBM) with Brno universities.
• SOA and Scrum methodologies can provide enough

small-to-medium real-life projects.
• Some projects (usually 1–2 a year) were not only ac-

cepted and partly paid by the software firms but they were
enhanced, commercially finished, and used for several
years.

C. Students Projects and Curricula

The students’ projects introduce many issues. They are of
organizational, financial, and juridical nature. Let us mention
some of them:

• Inclusion of project supervision into teachers load (good
project supervision takes significantly more time than
what corresponds to assigned/scheduled hours).

• Taking time complexity of the project into curricula
design (to avoid time coexistence of critical parts of the
project with other crucial study duties).

• Maintenance of successful projects. Good projects should
be continued after the project evaluation. The issue here
is that the evaluation is long term and laborious and
the students that developed the application or system
have also other study duties. It can also happen that
they leave the university. Such projects could be used
to train maintenance. There is a risk that an improper
maintenance could break the well-working system.

• Turning the project into its commercial phase (in the case
of its success) – requires having a procedure making from
study result a commercial project (it includes transfer of
the rights between the university and the company that
will care about the project further). Some universities
have this procedure stable and simple, for other univer-
sities it is a very hard (if not impossible) task.

• Not every teacher/lecturer is able to properly supervise
students projects. It is necessary to find them and to
prepare them. It requires some skills and experience that
not every professor must have.

X. CONCLUSIONS

Majority of our student projects were quite successful.
Their participants were as a rule able to find viable topics,
contact people from firms, form student teams, find and apply
team work supporting software, develop needed diagrams, and
present the results. Some projects led to successful commercial
products. It was probably partly due to the fact, that almost all
the students were part-time employees of software firms. As
a valuable byproduct the students discussed their experiences
from the firms where they were employed.

The main contribution of the seminaries is a better under-
standing of the importance of a proper combination of soft and
hard knowledge by all students, not only by the ones taking
part at the seminaries. The information is spred spontaneously
via social networks It is appreciated ex post by our alumni
being in practice for several years.

Our seminary model has been successfully applied at Fac-
ulty of Informatics, Masaryk University Brno and partly at
Faculty Mathematics and Physics, Charles University Prague.

We can conclude that the seminaries described above were
successful. The weak point is that their concept is difficult
to be applied massively. An implicit precondition of project
success is that some of the seminary participants are quite
excellent programmers and that some of the students have
moreover a broader knowledge and social skills. It follows
that they were good in technical abilities and STEM (science,
technology, engineering, and mathematics) knowledge. It is a
challenge as the STEM education becomes less popular and
often not properly taught. It moreover can negatively influence
soft knowledge needed in the project as it must take into
account some aspects of STEM knowledge. The deteriation
of STEM education is a threat for the quality of coding
and for the education of coders. They moreover tend not to
work together with users and to use user-oriented knowledge
domain.

XI. FUTURE RESEARCH

The present curricula induce the fragmentation of education
processes. It is then very difficult to organize long lasting stu-
dent projects as well as scientific projects. There is a stronger
challenge. Current principles of evaluation of universities and
their professors based on impact factors prefer very strong
specialization of research, narrow knowledge areas, and short
term projects. It handicaps multidomain knowledge and skills
needed in system analysis and requirements specification.

It is opened how to combine the training of technical skills
needed for SME with the training of the skills for large
software vendors. It main issue is the difference in enterprise
culture, resources, and needs. It follows tthat many aspects of
our projects must still be tuned. The idea is, however, crucial
as otherwise there were be lack of good project managers
having economic, social, as well as technical knowledge and
skills. There is a danger that otherwise our alumni will become
laborers (line workers) at Scrum-based duplicate production.

We intend to develop methods for development of quite
complex systems using multiple student projects. We believe
that it is possible if a specific SOA architecture [11], [19]
is used. We intent to use open source and free software
and combine it with commercial commodity software offered
by large software vendors (e.g. Microsoft Excel, Microsoft
PowerPoint, or OpenOffice Calc). We will attempt to apply
the experience of small Czech software firms here.

REFERENCES

[1] Standish Group, “The chaos report,” 1994, [Online:] http://www.
ics-support.com/download/StandishGroup_CHAOSReport.pdf; accessed
2014-02-28.

[2] ——, “Chaos: A recipe for success,” 1999, [Online:]
https://www4.informatik.tu-muenchen.de/lehre/vorlesungen/vse/
WS2004/1999_Standish_Chaos.pdf; accessed 2014-02-28.

[3] ——, “Chaos manifesto 2013: Thing big, act small,” 2013, [On-
line:] http://versionone.com/assets/img/files/ChaosManifesto2013.pdf;
accessed 2014-02-28. [Online]. Available: http://versionone.com/assets/
img/files/ChaosManifesto2013.pdf

832 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

[4] Calleam Consulting, “Why projects fail,” 2014, [Online:] http:
//calleam.com/WTPF/?page_id=1445; accessed 2014-02-28. [Online].
Available: http://calleam.com/WTPF/?page_id=1445

[5] C. Ebert, “Software product management,” Software, IEEE, vol. 31,
no. 3, pp. 21–24, May 2014, DOI: 10.1109/MS.2014.72.

[6] W. W. Royce, “Managing the development of large software systems,”
in IEEE WESCON Proceedings. Institute of Electrical and Electronics
Engineers, Aug. 1970, pp. 328–338.

[7] M. Cohn, Succeeding With Agile: Software Development Using Scrum.
Addison-Wesley Professional, 2009.

[8] K. Beck, Extreme Programming Explained: Embrace Change. Boston:
Addison Wesley, 1999.

[9] C. M. MacKenzie, K. Laskey, F. McCabe, P. F. Brown, and
R. Metz, “Reference model for service-oriented architecture 1.0,
OASIS standard, 12 October 2006,” 2006. [Online]. Available:
http://docs.oasis-open.org/soa-rm/v1.0/

[10] T. Erl, Service-Oriented Architecture: Concepts, Technology, and De-

sign. Prentice Hall PTR, 2005.
[11] J. Král and M. Žemlička, “Implementation of business processes in

service-oriented systems,” in 2005 IEEE International Conference on

Services Computing (SCC 2005), vol. 2. IEEE Computer Society, 2005,
pp. 115–122, DOI: 10.1109/SCC.2005.58.

[12] J. Martin, An Information Systems Manifesto. Englewood Cliffs, New
Jersey: Prentice-Hall, Inc., 1984.

[13] M. Levinson, “Recession causes rising IT project failure rates,” CIO

Magazine, Jun. 2009. [Online]. Available: http://www.cio.com/article/
495306/Recession_Causes_Rising_IT_Project_Failure_Rates_

[14] P. Armour, “The reorg cycle,” Communications of the ACM, vol. 46, pp.
19–22, Feb. 2003, DOI: 10.1145/606272.606288.

[15] I. Sommerville, Software Engineering, 9th ed. Pearson Education, Apr.
2010.

[16] G. M. Weinberg, The Psychology of Computer Programming. New
York: Van Nostrand, 1971.

[17] B. W. Boehm, “Software engineering economics,” 1981.
[18] W. J. Brown, R. C. Malveau, H. W. S. McCormick, III, and T. J. Mow-

bray, AntiPatterns: Refactoring Software, Architectures, and Projects in

Crisis. New York: John Wiley & Sons, 1998.
[19] Open Group, “Open Group standard SOA reference architecture,”

Nov. 2011. [Online]. Available: https://www2.opengroup.org/ogsys/jsp/
publications/PublicationDetails.jsp?publicationid=12490

JAROSLAV KRÁL, MICHAL ŽEMLIČKA: EXPERIENCE WITH REAL-LIFE STUDENTS’ PROJECTS 833

