
Automating Test Case Design within the
Classification Tree Editor

Ute Zeppetzauer

Berner and Mattner Systemtechnik GmbH

Munich, Germany

Email: ute.zeppetzauer@berner-mattner.com

Peter M. Kruse

Berner and Mattner Systemtechnik GmbH

Berlin, Germany

Email: peter.kruse@berner-mattner.com

Abstract—This paper describes how the proven test design
technique of the classification tree method is extended within the
classification tree editor in order to contribute to current test
design matters. The classification tree editor not only provides
the tooling to use the method but also to apply new and helpful
features in the test design process. This includes the automatic
generation of test cases and test sequences according to desired
test depth and focus, automated boundary value analysis, various
tool couplings to integrate in each individual test process and
supporting features like test evaluation or test coverage analysis
amongst others.

Keywords-classification tree method; classification tree editor;
combinatorial interaction testing;

I. INTRODUCTION

THE classification tree method [1] as well as the editor [2]

have been developed at Daimler’s research department

for software technology in the 90ties. In the last 20 years

both, method and tool became proven in practice around the

world.

The classification tree method as a black box test design

technique was introduced by Matthias Grochtmann and Klaus

Grimm in 1993 [1]. The basic idea of the classification tree

method is to separate the input data characteristics of the

system under test into different classes that directly reflect

the relevant test scenarios. The descriptive method covers the

categories of test case design needed in industry, such as

equivalence class tests, boundary value analysis [3], interface

testing, as well as combinatorial [4] and statistical testing [5].

In the last 6 years where Berner and Mattner took over

the further development of the classification tree method and

the editor, it got extended by academic research results and

industrial input. This includes additional statistical testing

methods [5], a professional requirements tracing [6], a syn-

chronization to test management, test evaluation, coverage

analysis or support for website testing [7]. The classification

tree editor supports thus the tester in the test design phase.

It offers multiple functions to structure the test problem, to

systematically generate test scenarios and to do all this within

the scope of the testers environment.

The outline of this paper is as follows: Section II introduces

the classification tree method, while Section III shows how it

will prove to serve testers needs for a more automated way in

designing test cases within the classification tree editor. Sec-

tion IV the integration into the test process with requirements

and test management tools are introduced. Section V details

Excel import and combinatorial test coverage analysis, test

evaluation is given in Section VI. Related work can be found

in Section VII, while conclusion is drawn in Section VIII.

II. TEST CASE DESIGN USING THE CLASSIFICATION TREE

METHOD

A. How to create a classification tree

The basic idea of the classification tree method is to

separate the input data characteristics of the system under

test into different classes that directly reflect the relevant test

scenarios (classifications) [1]. The main source of information

is the specification of the system under test or a functional

understanding of the system should no specification exist. Two

significant steps must be performed to create a classification

tree:

• The identification of relevant factors involves the deter-

mination and structuring of the relevant test scenarios and

their interrelations to other parts of the system under test.

• The test specifications combine the relevant factors

needed in order to achieve the desired test coverage.

The first phase begins with the identification of the clas-

sifications that are relevant for testing based on a functional

description and understanding of the system under test. For

each classification, there may be several input data that are all

to be considered during testing, the classes of a classification.

Each classification should have a limited number of clearly

defined input scenarios for the system under test. The input

data characteristics are used to define the input ranges required

for the relevant test scenarios. This is a classification in

the mathematical sense: The set of all possible inputs is

disjointly and completely classified into subsets - the classes.

The separation based on the input data characteristics is done

independently for each test scenario, and can therefore be done

easily.

This approach applies the concept of equivalence class

testing [3]: Testing with a data item that is representative of

an equivalence class makes tests with all other elements of

the same class redundant and therefore unnecessary because

Proceedings of the 2014 Federated Conference on

Computer Science and Information Systems pp. 1585–1590

DOI: 10.15439/2014F263

ACSIS, Vol. 2

978-83-60810-58-3/$25.00 c© 2014, IEEE 1585

Fig. 1. Test Object Database Management System

there should be no difference in how they are handled during

execution of the system under test.

Example. Figure 1 shows a classification tree for a database

management system. Three aspects of interest (Access Method,

Operation and Privileges) have been identified for the system

under test. The classifications are partitioned into classes

which represent the partitioning of the concrete input values.

In our example the refinement aspect JavaScript is identified

for the class Browser and it is divided further into two classes

Yes and No.

B. Dependency Rules

Often, there are dependencies or constraints [8] between

some classes of the classification tree. To overcome this design

gap, the CTE offers to describe the relationships between

the elements of the classification tree by defining dependency

rules. The classification tree editor provides two mechanisms

for defining dependency rules:

1) Logical dependency rules between the classes of a

classification tree using propositional logic. The result

is that test cases that would not fulfill the previously

defined rules are not generated and vice versa [9].

2) Numerical dependencies between the classifications us-

ing logical and numerical operators. They serve to ex-

press mathematical dependencies between the elements

of the classification tree [10].

C. Boundary Value Analysis

The boundary value analysis [3] is a helpful tool to run an

analysis automatically with user specified input. There are two

ways of applying the boundary value analysis within the CTE.

The first is for an initial analysis, the second is to analyze and

expand a classification tree with more possible parameters and

intervals see Fig. 2.

For the initial analysis, the CTE supports to create param-

eters and intervals. For each interval it is possible to set the

boundary borders so that CTE will create the corresponding

boundary values. The classification tree is created from the

specified values.

For the analysis or expansion of the tree, the CTE loads

the existing data into its own data model. Then it is possible

to add new parameters and intervals. The CTE then generates

the boundary values and adds additional elements to the tree.

Fig. 2. Parameter and interval settings in CTE

III. TEST CASE GENERATION FACILITIES WITHIN THE

CTE

In practice, not every test generation mechanism is applica-

ble to every test problem. Thus, there are numerous facilities

available within the classification tree editor (CTE) in order to

serve testers in many ways. The following test case generation

mechanisms are implemented in the CTE.

• combinatorial test case generation

• prioritized test case generation

• test sequence generation

A. Combinatorial Test Case Generation

For combinatorial testing, the question is on how to achieve

adequate test coverage without having to test too much.

Complex software testing problems easily reach a maximum

number of test cases of several billions. This is not feasible

to handle. So a wise, structured and reproducible selection of

test cases according to the current test problem saves effort,

time and helps to actually better understand the testing focus.

For this, combinatorial testing with all of its aspects is ideal.

It brings variation to a test suite with a clear definition of the

test intensity.

1586 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

The CTE offers combinatorial test case generation facilities

that support the structured variation [5], [9]. This includes

pairwise combination, threewise combination, minimal test

coverage and individual combinatorial rules.
The minimal combination A+B ensures that each class of

classification A and each class of classification B is considered

in at least one test case.
The pairwise combination (A1, . . . , An) ensures that each

class of the classifications A1 to An is combined pairwise with

every other class in at least one test case.
The threewise combination (A1, . . . , An) ensures that every

possible combination of three classes of the different classifi-

cations A1 to An is generated in at least one test case.
Higher strength interaction coverage can be achieved by

practical testing approaches [11]. The key to unlocking better

performance for higher strengths of interaction, seems to rely

upon the use of constraints, which reduce the number of

possibilities to be considered. In CTE, constraints are defined

in terms of dependency rules.
Individual combination rules may be designed upon the

needs of each test problem. All standard operators are available

for that.
Logical expressions are used to formulate dependency rules.

The CTE XL allows to specify any kind of logical dependency

rules, containing {AND, OR, NOT, ⇒, ⇔, XOR, NOR, NAND

}. Parentheses are used to formulate more complex expres-

sions [9].

B. Prioritized Test Case Generation

In addition to the above mentioned classical combinatorial

test case generation, the CTE offers the possibility to add

weights to classes for a prioritized test case generation [5].
Weights on classes can be used to create test cases in an

order corresponding to their relevance. For example, those tests

that have revealed most of the failures in previous runs can be

executed more frequently.
Within CTE, weights are distributed to classes in order to

generate prioritized test cases according to occurrence, error

or risk probability. The result is a test suite of tests covering

the pairwise combination criterion and being sorted according

to their relevance most relevant test cases at the top of the

test suite, least relevant at the bottom [12]. By using the

optimize menu, the tester can adjust the test suite individually

by selecting the weighted coverage see Fig. 3.

C. Test Sequence Generation

Many software-based systems are state-based. Thus, test

data used in test steps of one test sequence must provide

a logical sequence to run the desired state transitions. The

manual modeling of test sequences important for testing is a

challenging task for the tester. Within the CTE this can be

done automatically [13].
The tester defines simple state machines [14], modeling the

behavior of the system see Fig. 4. Test cases are then derived

from that.
A possible application for Hardware-in-the-loop testing has

been discussed recently [15].

Fig. 3. Optimizing test suites according to weighted coverage in CTE

Fig. 4. Allowed arcs for the example classification speed in CTE

IV. REQUIREMENTS TRACING AND TEST MANAGEMENT

A. Requirements Tracing within CTE

In the development process, test design is not the first

action to take. Before even thinking about testing, the function

must be specified. For this, there are several requirements

management tools on the market which serve to define and

monitor specifications.

For test design, a connection to those requirements might

be a huge advantage with regard to traceability. Also, when

linking requirements to test cases, gaps can be detected.

The CTE offers the tester to link tree elements and test

cases to requirements from MS Access or IBM Rational

DOORS [6]. The result is a requirements matrix that directly

shows where there is still work to do (Fig. 5). Linked and not

yet used requirements can be visualized.

UTE ZEPPETZAUER, PETER M. KRUSE: AUTOMATING TEST CASE DESIGN WITHIN THE CLASSIFICATION TREE EDITOR 1587

Fig. 5. Requirements matrix view in CTE showing linked CTE objects

Often, requirements change in the process. For this, syn-

chronizing the changed database shows the tester in CTE

where to modify the classification tree in order to be conform

to the specification [6].

This connection is currently one way to get information

from DOORS to use in CTE. In several practical projects,

a bidirectional connection has been established, where the

results from CTE were exported to the corresponding DOORS

module.

B. Test Management in CTE

Parallel to all activities in the test process, test management

is essential. For this, CTE synchronizes with HP ALM to

commit or submit test cases from and to the test management

tool. All information relevant to the tester will be downloaded

from the server and also uploaded with updated data. This is

supported by a comprehensive mapping mechanism in CTE

(Fig. 6). The classification tree will be saved to the central

folder on the server in order to make it available for other

users for systematic testing.

Fig. 6. CTE view of the HP ALM synchronization status after adding new
values

Currently, the synchronization is made with the test plan

module. For future work, it is planned to extend that con-

nection to the requirements information in order to have a

consistent and traceable process, and to extend it to read the

information from the test lab which shows information to

evaluate the performed tests.

V. EXCEL IMPORT AND COVERAGE ANALYSIS

A. Excel Import

The most common tool for test design is Excel. There are

many different ways in practice to use it within the testing

process. With this background, an Excel import to continue

with a systematic testing approach in essential.

All Excel sheets no matter if the column or the rows

represent the test cases are imported into CTE, as well as the

already defined test cases. So the classification tree is built,

the test cases are imported and further combinatorial testing

can be performed.

B. Coverage Analysis

In practice, the need to give a value for coverage increases.

The tester needs to know how good the defined test cases are.

Within the CTE, the coverage analysis gives a basic overview

of the covered tuples see Fig. 7.

Fig. 7. Test coverage of a set of existing test cases to the coverage rule
pairwise combination

If we refer to the Excel import above, it is hard to tell

how good or bad the manually defined test cases that have

been imported are. With the coverage analysis function, these

imported test cases can be compared to specific generation

criteria like the pairwise rule, or the minimal coverage rule.

According to the result, test suites can then be complemented

in order to reach the desired coverage criteria.

VI. TEST EVALUATION

Throughout the test process, test evaluation is the final step

to determine the relevance of the test results. Within CTE,

test results for test cases can be either imported or added and

then evaluated. The CTE can track test results in terms of

Passed, Failed, Error, Not Executed. By means of a root cause

analysis, the error rate of single classes can be detected and

thus gives important information on possible defects of the

system under test.

1588 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

Fig. 8. Test evaluation report in CTE showing the considered test items and
their failure rate

In the example given in Fig. 8, six test cases were considered

for evaluation: Two passed while four failed. For all failed test

cases, detailed results are given in the right part of the Figure,

e.g. whenever OPEN was used in a test case, it failed two of

four times. The last two entries Light Switch/ON and Light

Switch/OFF are most interesting here: Whenever Light Switch

was ON, the test case failed while with Light Switch ON there

were no problems at all.

VII. RELATED WORK

There is a broad body of work on combinatorial (interaction)

testing [4], [16]–[25].
Elbaum et al. provide good overviews of existing priori-

tization approaches [26]. There has been some work on test

case prioritization that considered limited resources [27], [28].

There are some known algorithm supporting prioritized test

case generation. The first is an algorithm published in [29],

which is an extension to [30]. For efficiency reasons, this

algorithm does not consider constraints. The other approach

supports constraints and is based on Binary Decision Diagram

(BDD) [31]. CTE XL Professional also uses the latter [5], [12].

Search based solutions for test case generations have been

presented for both, conventional [8], [32] and prioritized [33]

test case generation.
A body of work on the application of the classification tree

method and CTE can be found in recent work [34]–[37].
An introduction to root cause analysis can be found in [38],

while there are several case studies available, e.g. [39]. The

idea of combining the field of (combinatorial) testing with

(root) cause analysis is not new, e.g. Cleve and Zeller try

to find failure causes through automated testing [40]. The

reduction of test suites down to failure-causing combinations is

the background of [41], [42], so this approach might not fit too

well for regression testing, where new errors can occur. The

adaptation of combinatorial testing has also been discussed

more recently in [43]. Beside widely positive works, Ramler

et al. see limitations with the integration of cause analysis to

combinatorial testing, although there is customer demand [44].

VIII. CONCLUSION

Regardless of the system under test, level of integration, test

phase and domain, the classification tree editor is universally

applicable [34]–[37]. This method has found a worldwide

acceptance over the last two decades and has been used by

commercial data processing, aviation and aerospace industries,

and many others, for example, for examining the Hubble Space

Telescope [45].

The systematic approach, starting from functional require-

ments, with understandable, reliable (intermediate) results,

supported by an efficient, automatic test case generation,

ensures that there are no gaps in the testing process and the

resulting specifications.

Future work is twofold, first to ease the creation of clas-

sification trees, e.g. by importing logs [46] and second the

transformation of test specification from the CTE to executable

test cases.

ACKNOWLEDGMENT

This work is partly supported by EU grant ICT-257574

(FITTEST).

REFERENCES

[1] M. Grochtmann and K. Grimm, “Classification trees for partition
testing,” Softw. Test., Verif. Reliab., vol. 3, no. 2, pp. 63–82, 1993.
[Online]. Available: http://dx.doi.org/10.1002/stvr.4370030203

[2] M. Grochtmann and J. Wegener, “Test case design using classification
trees and the classification-tree editor CTE,” in Proceedings of

the 8th International Software Quality Week, San Francisco, USA,
May 1995. [Online]. Available: http://www.systematic-testing.com/
documents/qualityweek1995 1.pdf

[3] G. J. Myers, The Art of Software Testing. John Wiley & Sons, 1979.
[4] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM

Comput. Surv., vol. 43, pp. 11:1–11:29, February 2011. [Online].
Available: http://dx.doi.org/10.1145/1883612.1883618

[5] P. M. Kruse and M. Luniak, “Automated test case generation using
classification trees,” Software Quality Professional, vol. 13(1), pp. 4–
12, 2010.

[6] J. Wegener and U. Herold, “Requirements and Test Case Tracing,” in
Embedded Real Time Software and Systems 2012 (ERTS2), 2012.

[7] P. M. Kruse, J. Nasarek, and N. Condori Fernandez, “Systematic
Testing of Web Applications with the Classification Tree Method,” in
XVII Iberoamerican Conference on Software Engineering (CIbSE 2014),
2014.

[8] M. B. Cohen, M. B. Dwyer, and J. Shi, “Interaction testing of
highly-configurable systems in the presence of constraints,” in ISSTA

’07: Proceedings of the 2007 international symposium on Software

testing and analysis. New York, NY, USA: ACM, 2007, pp. 129–139.
[Online]. Available: http://dx.doi.org/10.1145/1273463.1273482

[9] E. Lehmann and J. Wegener, “Test case design by means of
the CTE XL,” Proceedings of the 8th European International

Conference on Software Testing, Analysis and Review (EuroSTAR

2000), Kopenhagen, Denmark, December, 2000. [Online]. Available:
http://www.systematic-testing.com/documents/eurostar2000.pdf

[10] P. M. Kruse, J. Bauer, and J. Wegener, “Numerical constraints for
combinatorial interaction testing,” in Software Testing, Verification

and Validation (ICST), 2012 IEEE Fifth International Conference on.
IEEE, 2012, pp. 758–763. [Online]. Available: http://dx.doi.org/10.
1109/ICST.2012.170

[11] J. Petke, S. Yoo, M. B. Cohen, and M. Harman, “Efficiency and early
fault detection with lower and higher strength combinatorial interaction
testing,” in Proceedings of the 2013 9th Joint Meeting on Foundations

of Software Engineering. ACM, 2013, pp. 26–36. [Online]. Available:
http://dx.doi.org/10.1145/2491411.2491436

[12] P. M. Kruse and I. Schieferdecker, “Comparison of Approaches to
Prioritized Test Generation for Combinatorial Interaction Testing,” in
Federated Conference on Computer Science and Information Systems

(FedCSIS) 2012, Wroclaw, Poland, 2012.

UTE ZEPPETZAUER, PETER M. KRUSE: AUTOMATING TEST CASE DESIGN WITHIN THE CLASSIFICATION TREE EDITOR 1589

[13] P. M. Kruse and J. Wegener, “Test sequence generation from
classification trees,” in Proceedings of ICST 2012 Workshops

(ICSTW 2012), Montreal, Canada, 2012. [Online]. Available: http:
//dx.doi.org/10.1109/ICST.2012.139

[14] D. Harel, “Statecharts: a visual formalism for complex systems,” Science

of Computer Programming, vol. 8, no. 3, pp. 231–274, 1987.
[15] P. M. Kruse and J. Reiner, “Systematic design and automated execution

of embedded system tests,” in Embedded Real Time Software and

Systems (ERTS2) 2014, 2014.
[16] D. R. Kuhn, D. R. Wallace, and A. M. Gallo, “Software fault

interactions and implications for software testing,” IEEE Transactions

on Software Engineering, vol. 30, pp. 418–421, 2004. [Online].
Available: http://dx.doi.org/10.1109/TSE.2004.24

[17] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton, “The AETG
System: An Approach to Testing Based on Combinatorial Design,” IEEE

Transactions on Software Engineering, vol. 23, pp. 437–444, 1997.
[18] Y. Lei, K. Tai, F. Inc, and N. Raleigh, “In-parameter-order: a test

generation strategy for pairwise testing,” in Third IEEE International

High-Assurance Systems Engineering Symposium, 1998. Proceedings,
1998, pp. 254–261. [Online]. Available: http://dx.doi.org/10.1109/
HASE.1998.731623

[19] S. Maity and A. Nayak, “Improved test generation algorithms for
pair-wise testing,” in ISSRE. IEEE Computer Society, 2005, pp.
235–244. [Online]. Available: http://dx.doi.org/10.1109/ISSRE.2005.23

[20] M. B. Cohen, J. Snyder, and G. Rothermel, “Testing across
configurations: implications for combinatorial testing,” SIGSOFT Softw.

Eng. Notes, vol. 31, pp. 1–9, November 2006. [Online]. Available:
http://dx.doi.org/10.1145/1218776.1218785

[21] M. Grindal, J. Offutt, and S. F. Andler, “Combination testing strategies:
a survey,” Softw. Test., Verif. Reliab., vol. 15, no. 3, pp. 167–199, 2005.

[22] J. Czerwonka, “Pairwise testing in real world, practical extensions to
test case generators,” in Proceedings of 24th Pacific Northwest Software

Quality Conference. Citeseer, 2006, pp. 419–430.
[23] R. C. Bryce and C. J. Colbourn, “The density algorithm for

pairwise interaction testing: Research articles,” Softw. Test. Verif.

Reliab., vol. 17, no. 3, pp. 159–182, 2007. [Online]. Available:
http://dx.doi.org/10.1002/stvr.v17:3

[24] W. Grieskamp, X. Qu, X. Wei, N. Kicillof, and M. B. Cohen,
“Interaction coverage meets path coverage by smt constraint solving,”
in Proceedings of the 21st IFIP WG 6.1 International Conference on

Testing of Software and Communication Systems and 9th International

FATES Workshop, ser. TESTCOM ’09/FATES ’09, 2009, pp. 97–112.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-05031-2 7

[25] A. Calvagna and A. Gargantini, “A formal logic approach to constrained
combinatorial testing,” Journal of Automated Reasoning, April 2010.
[Online]. Available: http://dx.doi.org/10.1007/s10817-010-9171-4

[26] S. Elbaum, A. Malishevsky, and G. Rothermel, “Test case prioritization:
A family of empirical studies,” IEEE Transactions on Software

Engineering, vol. 28, no. 2, pp. 159–182, 2002. [Online]. Available:
http://dx.doi.org/10.1109/32.988497

[27] H. Do, S. Mirarab, L. Tahvildari, and G. Rothermel, “The effects
of time constraints on test case prioritization: A series of controlled
experiments,” IEEE Transactions on Software Engineering, vol. 36,
pp. 593–617, 2010. [Online]. Available: http://dx.doi.org/10.1109/TSE.
2010.58

[28] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. S. Roos,
“Timeaware test suite prioritization,” in Proceedings of the 2006

international symposium on Software testing and analysis, ser. ISSTA
’06. New York, NY, USA: ACM, 2006, pp. 1–12. [Online]. Available:
http://dx.doi.org/10.1145/1146238.1146240

[29] R. C. Bryce and C. J. Colbourn, “Prioritized interaction testing
for pair-wise coverage with seeding and constraints,” Information &

Software Technology, vol. 48, no. 10, pp. 960–970, 2006. [Online].
Available: http://dx.doi.org/10.1016/j.infsof.2006.03.004

[30] C. J. Colbourn and M. B. Cohen, “A deterministic density algorithm for
pairwise interaction coverage,” in Proc. of the IASTED Intl. Conference

on Software Engineering, 2004, pp. 242–252.

[31] I. Segall, R. Tzoref-Brill, and E. Farchi, “Using binary decision
diagrams for combinatorial test design,” in Proc. of the 2011

International Symposium on Software Testing and Analysis. New
York, NY, USA: ACM, 2011. [Online]. Available: http://dx.doi.org/10.
1145/2001420.2001451

[32] B. J. Garvin, M. B. Cohen, and M. B. Dwyer, “An improved
meta-heuristic search for constrained interaction testing,” Search Based
Software Engineering, International Symposium on, vol. 0, pp. 13–22,
2009. [Online]. Available: http://dx.doi.org/10.1109/SSBSE.2009.25

[33] J. Ferrer, P. M. Kruse, J. F. Chicano, and E. Alba, “Evolutionary
algorithm for prioritized pairwise test data generation,” in Proceedings

of Genetic and Evolutionary Computation Conference (GECCO) 2012,
Philadelphia, USA, 2012. [Online]. Available: http://dx.doi.org/10.1145/
2330163.2330331

[34] E. Puoskari, T. E. J. Vos, N. Condori-Fernandez, and P. M. Kruse,
“Evaluating applicability of combinatorial testing in an industrial
environment: a case study,” in Proceedings of the 2013 International

Workshop on Joining AcadeMiA and Industry Contributions to testing

Automation. ACM, 2013, vol. 6, pp. 7–12. [Online]. Available:
http://dx.doi.org/10.1145/2489280.2489287

[35] P. M. Kruse, N. Condori-Fernández, T. E. Vos, A. Bagnato, and
E. Brosse, “Combinatorial testing tool learnability in an industrial
environment,” in 7th ACM / IEEE International Symposium on

Empirical Software Engineering and Measurement (ESEM), 2013.
[Online]. Available: http://dx.doi.org/10.1109/ESEM.2013.49

[36] P. M. Kruse, O. Shehory, D. Citron, N. Condori Fernandez, T. E. J.
Vos, and B. Mendelson, “Assessing the applicability of a combinatorial
testing tool within an industrial environment,” in 11th Workshop on

Experimental Software Engineering (ESELAW 2014), 2014.
[37] N. Condori-Fernández, T. Vos, P. M. Kruse, E. Brosse, and A. Bag-

nato, “Analyzing the applicability of a combinatorial testing tool in
an industrial environment,” Technical report UU-CS-2014-008, Utrecht
University, Tech. Rep., 2014.

[38] J. J. Rooney and L. N. V. Heuvel, “Root cause analysis for beginners,”
Quality progress, vol. 37, no. 7, pp. 45–56, 2004.

[39] M. Leszak, D. E. Perry, and D. Stoll, “A case study in root cause
defect analysis,” in Proceedings of the 22nd international conference on

Software engineering. ACM, 2000, pp. 428–437. [Online]. Available:
http://dx.doi.org/10.1145/337180.337232

[40] H. Cleve and A. Zeller, “Finding failure causes through automated
testing,” in International workshop on automated debugging, 2000, pp.
254–259.

[41] C. Nie and H. Leung, “The minimal failure-causing schema of
combinatorial testing,” ACM Transactions on Software Engineering and

Methodology (TOSEM), vol. 20, no. 4, p. 15, 2011. [Online]. Available:
http://dx.doi.org/10.1145/2000799.2000801

[42] L. S. G. Ghandehari, Y. Lei, T. Xie, R. Kuhn, and R. Kacker,
“Identifying failure-inducing combinations in a combinatorial test set,”
in Software Testing, Verification and Validation (ICST), 2012 IEEE

Fifth International Conference on. IEEE, 2012, pp. 370–379. [Online].
Available: http://dx.doi.org/10.1109/ICST.2012.117

[43] C. Nie, H. Leung, and K.-Y. Cai, “Adaptive combinatorial testing,”
in Quality Software (QSIC), 2013 13th International Conference on.
IEEE, 2013, pp. 284–287. [Online]. Available: http://dx.doi.org/10.
1109/QSIC.2013.22

[44] R. Ramler, T. Kopetzky, and W. Platz, “Combinatorial test design
in the tosca testsuite: lessons learned and practical implications,” in
Software Testing, Verification and Validation (ICST), 2012 IEEE Fifth

International Conference on. IEEE, 2012, pp. 569–572. [Online].
Available: http://dx.doi.org/10.1109/ICST.2012.142

[45] N. Tull, “Applications of specification-based testing in flight
software development for hubble space telescope mission operations,”
2005. [Online]. Available: http://terpconnect.umd.edu/∼austin/ense623.
d/projects05.d/NzingaTull-Final-Report.pdf

[46] P. M. Kruse, I. W. B. Prasetya, J. Hage, and A. Elyasov, “Logging
to facilitate combinatorial system testing,” in Future Internet Testing.
Springer International Publishing, 2014, pp. 48–58. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-07785-7 3

1590 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

