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Abstract—It is sometimes assumed that the total amount
of a resource being consumed is the key consideration when
attempting to devise the most efficient management strategy. We
explore a case in which the rate and timing of resource utilization
are also susceptible to impact on performance and illustrate how
bringing random fluctuations under control can help maximize
efficiency in a simple client-server scenario. The role of self-
organization and distributed control methods in achieving this
goal is briefly discussed.
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I. INTRODUCTION

MUCH has been said about demand side management

[1], the so called smart grid [2] and about intelligent

infrastructure [3]. Intuitive results are often generalised and

the important little exceptions are sometimes overlooked. This

short paper aims to invite the reader to follow the authors on

a interesting, empirical result based investigation.

We simulate a server farm under a capping constraint, as it

is commonly discussed in the literature when e.g. considering

the use of renewable energies to power some infrastructure.

By comparing two scenarios and assuming a cost for the

deviations from the norm for both, we can compare the impact

either strategy has on the cost efficiency of the operation. This

led us to a result which we consider worth sharing.

II. BACKGROUND

Efficient resource management is fast becoming one of the

most critical features of almost any human activity. Whether

this is the case seems clear to us, why this is the case we would

rather leave to a philosophical debate. On a very abstract level,

this is arguably because we have been so successful as a

species that we have reached a limit above which the planet

is no longer capable to sustain our wasteful habits. There was

a time when we could afford to be oblivious of how much

water, food, energy etc. we were using, simply because our

impact was negligible, the environment was able to replenish

the stocks of whatever resource we needed as quickly as it

was consumed. But is no longer the case, and has not been

the case for some time.

A. The problem

For better or worse, we have entered an age in which we

will have to act more responsibly, to use only what is needed

when it is needed, under penalty of seeing our global society

descend into conflicts and service disruption as we are forced

to compete ever more aggressively for dwindling supplies. The

we here can be understood as the societal all of us, but also

as the managerial our company or even the personal and cost

aware I in every day live.

The most visible aspect of this requirement is that we

must seek to limit the total amount of a resource that is

consumed in the process of achieving a certain goal. There

are countless examples of this today, from designing more

fuel-efficient vehicles to engineering crops that require less

water or nutrients. There is however another, perhaps less

obvious angle to this quest for efficiency: notwithstanding how

much of a resource is consumed in total, when and at which

rate it is being used can also have a critical impact on its

availability (and cost). While this seems an obvious fact, it is

often overlooked, or lost in abstraction.

B. Example

A good example of such a resource is renewable power.

Imagine that a solar plant producing 1 MW for 10 hours a

day is used to power a community that consumes a total of

10 MWh over 24 hours. If some power is used at night or

if the load ever exceeds the available output from the solar

plant during the day, even if the aggregate supply as well as

consumption total for the day is still exactly identical (i.e. 10

MWh), some provision for this “mismatch” between supply

and demand will need to be made, in the form of an additional

power source or storage facility. On the contrary, if the demand

could be exactly mapped to the output of the solar plant

over time, then it could be met locally and efficiently (with

fewer losses). This is of course widely discussed in the recent

literature, and techniques to shape the load so as to better

approximate the available supply are collectively known as

“Demand-Side Management” or DSM [4].

There is a slightly different but related and very common

special case of this problem: what if the average demand for a

resource is constant and known but instantaneous consumption

fluctuates randomly and unpredictably? If a facility (or supply)

is dimensioned so as to accommodate the average requirement,

then it will necessarily be sometimes under-, sometimes over-

used. Moreover, depending on the characteristics (amplitude,

symmetry, . . .) of the fluctuations, the time spent in either state

(over-utilization and under-utilization), as well as the deviation

from the average, may vary greatly.
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C. The issue with statistics

In practice, it is often assumed that, because fluctuations

statistically cancel each other out over time, this is no cause

for concern and so not a relevant field of study. But this view

is contradicted by the realization that the rate and timing of

resource utilization can impact on efficiency (as illustrated

by the above example). Similarly, the commonly held view

that in a large enough population of consumers, deviations

from the global average will be negligible is also a simplistic

one. Indeed, there is no guarantee that the costs incurred

by such deviations grow linearly. If they don’t, then even

small deviations can have a significant impact and large ones,

although extremely rare, could have a disastrous effect.

D. Aim of this paper

In this paper, we experiment with a set of conceptual tools

designed to quantitatively measure the influence of random

fluctuations on performance in a simple client-server scenario.

Specifically, we compare the case in which no upper bound

is imposed on the number of active servers to that in which

there is such a constraint. In effect, we propose a cost/benefit

analysis of two strategies: cutting the upper-end tail of the

distribution (which creates execution delays) versus “stepping

on it” (which may incur extra costs).

III. MODEL AND SIMULATIONS

A. The model

We used Monte Carlo simulations to approximate the dy-

namics of a group of servers. On every time-step, all identical

servers have a fixed probability P to receive a new job, the

duration of which is comprised between 1 and (2 × avg 1)

time-steps (where avg is the average duration of a job). P is

chosen in such a way that, statistically, slightly less than 1 out

of 8 servers is expected to be busy at any time.

On every time-step, the number of servers in the “busy”

state is recorded. In the default scenario (no constraints), this

value is allowed to exceed the 1:8 ratio. In the other scenario,

no more than 1 out of 8 servers are allowed to be active

simultaneously. If random fluctuations in job arrivals / duration

would cause the system to exceed this limit, the execution

of a corresponding number of jobs (randomly selected) is

temporarily suspended (i.e. the servers processing them are

put on stand-by).

In the default scenario, performance degradation is mea-

sured by the number of server-time-steps falling above the 1:8

target and incurring extra costs. In the constrained scenario, it

is the cumulative delay (total number of time-steps) suffered

as a result of imposing a cap on the number of active servers

(QoS (quality of service) penalty).

B. Simulations

Data-centers were modelled to operate between 1000 and

4000 servers (by increments of 500) and were simulated for

512 time-steps. The average job duration was 8 time-steps

(i.e. flat distribution between 1 and 15). There were 1000

realizations for every size and for each scenario, totaling 14000

independent simulation runs.

A control simulation (simulating batches up to 1024 time

steps was run to confirm the results presented in the next

section. The results from this investigation confirmed that the

system was at, or very close to, its steady state at t=512.

IV. RESULTS

A. Frequency distribution

Fig. 1 shows the frequency distribution of simulation out-

come for 4 different server population sizes. As expected, for

the “constrained” scenario, there is a sharp peak corresponding

to the 1:8 ratio (125, 250, 375 and 500 servers respectively)

since the whole tail of the distribution has “collapsed” onto this

single value. Note that the remainder of the distribution closely

follows the Gaussian profile found for the default scenario,

apart from in the case of smaller populations, where capping

also seems to negatively affect the height of the normal peak.

Fig. 1. Frequency distribution of system state as a function of the number
of active servers, for 4 different population sizes and for the two possible
scenarios (“Default” vs. “Constrained”). 1000 runs per set of parameter values.

The values reported in Fig. 1 consider only the values for the

last 128 (out of 512) time-steps, when the system is at or very

close to steady state. The motivation is that the initial values

would be too much affected by the build up, but after 3/4th of

the steps we can assume that the overspill from previous steps

has normalised (especially since the individual duration can

not exceed 15 and we are not including the first 384 steps).

B. Aggregated QoS violation

Fig. 2 shows the evolution of the average delay (QoS

penalty) incurred over all processed jobs, for increasing sys-

tem size and for both scenarios. As expected, this value is

unaffected by system size in the default case, where a delay

only occurs when a job is submitted to a server before it has

completed the execution of its predecessor. By contrast, in the

constrained scenario, a QoS penalty is also incurred when the

overall workload exceeds the processing capacity of 1/8th of

the population.
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The main finding is that the average delay converges quickly

for both cases as system size increases. This is due to the

amount of time spent above the cut-off limit in the default

scenario being inversely proportional to the number of servers

involved; thus capping becomes proportionally less frequent in

the constrained scenario (illustrated by the decreasing height

of the sharp peak corresponding to 1:8 limit, see Fig. 1).

Fig. 2. Evolution of the average delay per job as a function of population
size (workload proportional to the number of servers). The larger the system,
the lower the QoS penalty resulting from enforcing the 1:8 cap.

C. Comparative QoS violations

Although to some extent these results are merely intuitive

and can be anticipated from known statistical properties [5],

they can also be interpreted in a different and more surprising

way. For instance, the fact that, in the default scenario, the

absolute number of server-time-steps falling inside the high-

end tail of the frequency distribution shown on Fig. 1 (i.e.

above the 1:8 limit) exhibits a maximum (see Fig. 3) clearly

suggests that the capping strategy would yield most benefits

within a finite range of system sizes.

D. Potential benefit analysis

Table I illustrates how the potential benefits of using the

capping strategy would vary as a function of system size, under

the arbitrary assumption that every server-time-step over the

1:8 target incurs an extra £0.01 cost (e.g. because of higher

server rental cost) and every time-step delay incurs a £0.01

penalty fee (e.g. as compensation for breaching the service-

level agreement).

TABLE I
POTENTIAL SAVINGS FROM APPLYING A CAPPING STRATEGY (ARBITRARY

PENALTY COSTS). NOTE THE PRESENCE OF A MAXIMUM FOR N = 3000.

Cost Breakdown
N Cost Differential QoS Penalty Net Savings

(default-constraint) (constraint-default)
1000 £33,792 £21,251 £12,541
2000 £41,238 £12,687 £28,552
3000 £43,052 £8,160 £34,892
4000 £39,187 £5,562 £33,625

Fig. 3. Total (absolute) number of server-time-steps falling above the 1:8
cut-off limit in the default scenario, as a function of population size.

V. CONCLUSIONS

These preliminary findings confirm that there are realistic

applications for which limiting the total amount of a resource

being consumed over a period of time is not enough. Prevent-

ing the instantaneous load from exceeding a predetermined

value can be beneficial and contribute to improving efficiency.

Moreover, relying on statistical effects, either over time or

over a large population, to ensure a smooth demand profile

may be a high-risk strategy as it is possible that even small or

rare deviations from the average incur a severe penalty.

In this context, it seems important to investigate control

methods that would permit to regulate the aggregated demand

from a population of resource consumers so as to prevent

them from exceeding a certain target. Because a central

mechanism for achieving such a goal may not be feasible

(due to scalability problems, limits on information availability

or even ownership boundaries), we argue that a form of

collective intelligence capable of supporting self-management

is required. The investigation of a candidate technology for

implementing such a distributed resource controller will be

the subject of future work.
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