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reliability analysis suppose the structure function as one of 

initial data [8], [9]. This function defines the system 

performance level depending on its components states. But 

the definition of the system structure function with 

heterogeneous component is a complex problem [5], [8]. 

One of possible ways for the definition of such system 

structure function is monitoring the system behavior as the 

set of the system performance level changes depending on 

system component state change (Fig. 1).  

 

Fig.  1 System reliability interpretations for a MSS 

 

In paper [10] such MSS performance level change 

depending on the component state change has been defined 

as Direct Partial Logic Derivative (DPLD) from 

mathematical point of view. The definition of the DPLD has 

been proposed in [11] for logic functions. According to this 

definition, a DPLD with respect to variable xi allows 

investigation of the influence of the i-th variable value 

change on the change of the function value. The application 

of DPLDs in reliability analysis has been considered in 

papers [10], [12]. In this paper, we propose a new method 

for the construction of a MSS structure in form of the 

structure function by DPLDs. Application and approbation 

of the method is considered by the example of the typical 

healthcare system that has been defined in [2]. 

II. MATHEMATICAL BACKGROUND 

A. Structure Function 

The correlation between system performance level and 

states of system components is defined by the structure 

function. Consider a system that consists of n components 

and the i-th system component can be in one of mi states 

from 0 to mi -1. Assume m performance levels for the 

system. Then the structure function of the system is defined 

as [7], [8]: 
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where x = (x1�«��xn) is a vector of system components states 

(state vector) and state 0 represent the total failure of the 

system/component while state m -1 (mi -1) corresponds to 

perfect functioning of the system (the i-th component). 

For a BSS, m1 = « = mn = m = 2 in (1): 
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According to definition (2), the BSS structure function can 

be interpreted as a Boolean function [6]. 

Every component of a MSS/BSS is characterized by 

probabilities of its states: 

 ^ .̀1,,0},{Pr, ��  iisi mssxp �  (3) 

Equations (1) and (3), and (2) and (3) constitute the 

overall definition of a steady-state MSS and BSS. 

The typical property of many real systems is their 

coherency. A system is coherent if it meets the following 

assumptions [6]±[8]: 

a) the system structure function is monotone, i.e. the 

failure (degradation) of any system component cannot 

causes the repair (improvement) of system performance 

level; 

b) system components are s-independent, i.e. there is no 

correlation between states of different components. 

Below, we consider only the coherent system. 

B. Basic Reliability Characteristics of a System 

The basic reliability characteristics of a system are 

availability and unavailability. The availability is the 

probability of the system functioning in the fixed time [6]. 

The unavailability is defined as the probability that the 

system is failed [6]. Using (2) and (3), the availability of a 

steady-state BSS can be computed as follows [6]: 

 },1)(Pr{   xIA  (4) 

and its unavailability in the following way [6]: 

 .1}0)(Pr{ AU �   xI  (5) 

For a MSS, the availability is defined as probability that 

the system performance does not fall below given level and, 

therefore, it should be defined with respect to system 

performance level [8]: 

 ^ .̀,,1},)(Pr{)( mjjjA ��t xI  (6) 

The system unavailability can be defined in the same 

manner as for a BSS [8]: 

 ).1(1}0)(Pr{ AU �   xI  (7) 

If we know the mean time between two consecutive 

breakdowns of a system, i.e. the Mean Time Between 

Failures (MTBF), then there can be derived other reliability 

characteristics using system availability and unavailability ± 

the Mean Time To Failure (MTTF) and the Mean Time To 

Repair (MTTR). 

For a BSS, these characteristics can be calculated as the 

following products [6], [13]: 

 , MTBFAMTTF   (8) 

 . MTBFUMTTR   (9) 

Other application of the structure function in reliability 

estimation is importance analysis that can be used to identify 

the influence of system components on the system 

performance/availability. There has been proposed a lot of 
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measures that can be used for this task. These measures are 

known as importance measures [8], [10], [14] and some of 

the most commonly used are the Structural Importance (SI), 

%LUQEDXP¶V�,PSRUWDQFH��%,�, Criticality Importance (CI) and 

Fussell-Vesely Importance (FVI) (Table I). 

TABLE I. 

IMPORTANCE MEASURES 

Importance 

measures 
Meaning 

SI SI concentrates only on the topological structure of 

the system. It is defined as the relative number of 

situations in which a given component is critical for 

the system activity. 

BI BI of a given component is defined as the probability 

that the component is critical for the system work. 

CI CI of a given component is calculated as the 

probability that the system failure (degradation) has 

been caused by the component failure (deterioration) 

given that the system is failed (not perfect functional). 

FVI FVI of a given component is defined as the 

probability that the component contributes to the 

system failure (degradation) probability. 

C. Logical Differential Calculus 

Logical differential calculus is a special tool that has been 

developed to analyze dynamic properties of logic functions 

[11], [15]. In papers [10], [12], there was considered its 

using in reliability analysis of BSSs and MSSs, respectively. 

Direct Partial Logic Derivatives (DPLDs) are one of several 

instruments of logical differential calculus. They allow 

identifying situations in which the change of a logic variable 

value coincides with the change of analyzed logic function. 

In terms of reliability analysis, a DPLD allows finding 

correlation between component failure/repair and system 

failure/repair. 

For a BSS, we define a DPLD as follows [12]: 
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where I(ai, x) = I(x1�«�� xi-1, a, xi+1�«�� xn) for a � {s, s } 

and s, j � {0, 1}. 

There exist four DPLDs (10) with respect to the i-th 

variable and they have the following properties [10], [15]: 
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In the reliability analysis, DPLDs )01()01( owow ixI  

and )10()10( owow ixI  can be used to discover situations 

in which the failure of a given component coincides with the 

system failure and situations when the repair of the i-th 

component leads into the repair of the system, respectively. 

Other two DPLDs make it possible to find situations in 

which the system failure correlates with the component 

repair ( )10()01( owow ixI ) or when the system repair is 

caused by the component failure ( )01()10( owow ixI ). 

However, in this paper only coherent systems are taken into 

account and therefore there exist no situation in which the 

component failure can cause system repair or vice versa, and, 

therefore, these two DPLDs have only zero values for a 

coherent BSS, which means that they are irrelevant from the 

reliability point of view [12], [13]. 

For a MSS, a DPLD with respect to variable i is defined in 

[10] as follows: 
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where I(ai, x) = I(x1�«��xi-1, a, xi+1�«��xn) for a � {s, r}; s, 

r � ^��«� mi -1}, s � r and j, h � ^��«� m -1}, j � h. 

From the reliability point of view, the nonzero elements of 

DPLD (12) identifies situations in which the change of the 

state of the i-th component from value s to value r causes the 

change of the system performance level from j to h. Clearly, 

when j > h and s > r then DPLDs (12) can be used to find 

correlation between system degradation and component 

degradation, while for j < h and s < r, DPLDs (12) discover 

situations in which component improvement results system 

improvement. Specially, when j > h and s < r or j < h and 

s > r, DPLDs (12) discover coincidence between system 

degradation and component improvement or vice versa. 

According to property a) of a coherent system, the 

degradation of any system component cannot cause system 

improvement and, therefore, there exist no DPLD (12) that 

would have nonzero values for j < h and s > r [16]. Property 

a) of a coherent system can also be interpreted as a statement 

that the improvement of any system component cannot cause 

system degradation and this implies that all DPLDs (12) for 

which j > h and s < r have only zero values [16]. So, the 

result is that only DPLDs (12) for which j > h and s > r or 

j < h and s < r can contain nonzero values and therefore only 

these two types of DPLDs (12) are important from the 

reliability point of view. 

Another point is that we assume that a component of a 

MSS degrades gradually, i.e. step by step, which means that 

only the following DPLDs have to be investigated to find 

correlation between the system deterioration and component 

degradation [16]: 

 .and0,)1()( hjsssxhj i !!�owowI  (13) 

In paper [16], there has been proposed another type of a 

DPLD for a MSS that is named as DPLD union and that can 

be defined in the following way: 
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This DPLD allows identifying the total influence of the 

degradation of the i-th system component on the system 

performance level, because it reveals situations in which the 

analyzed degradation of the component causes the 

deterioration of the system below specified level j. 

However, in terms of maintenance, there exist more 

strategies on how to perform system improvement. Two 

basic approaches are minor improvement (by one state) and 

major improvement (by more than one state) [8]. A special 

type of major improvement is the fully improvement when 

the component is replaced by a totally new one. The 

consequences of the minor improvement can be modelled by 

the following DPLDs: 

 ,and1)1()( hjmsssxhj ii ����owowI  (15) 

and results of the fully improvement as follows: 

 .and1,)1()( hjmsmsxhj iii ����owowI  (16) 

In paper [16], the concept of DPLD union (14) was 

originally developed for the modelling of the system 

improvement caused by minor improvement of the i-th 

system component: 
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The union (17) of DPLDs has more informative value than 

DPLD (15), because it analyzes the total influence of the i-th 

component minor improvement on the system performance 

level j.    

D. Minimal Path Vectors and Minimal Cut Vectors 

Minimal Path Vectors (MPVs) and Minimal Cut Vectors 

(MCVs) are special types of state vectors. Firstly, consider 

two arbitrary state vectors x = (x1�«� xn) and y = (y1�«� yn). 

Then using notation x < y means that xi � yi for any 

i � ^��«� n} and there exists at least one i such that xi < yi. 

For a BSS, a MPV represents such situation in which 

failure of any working component results system failure and 

a MCV correlates with a situation when the repair of any 

failed component leads into the system repair. So, a state 

vector x is a MPV if I(x) = 1 and I(y) = 0 for any y < x. 

Similarly, a state vector x is a MCV if I(x) = 0 and I(y) = 1 

for any y > x. 

In the case of MSSs, MPVs and MCVs have to be defined 

with regard to system performance level [8]. A MPV for a 

given performance level j (for j = ��«� m -1) of a MSS 

defines such situation in which degradation of any not-failed 

component by one state causes degradation of system 

performance to value less than the specified performance 

level j, or more formally, a state vector x is a MPV for 

system performance level j if I(x) � j and I(y) < j for any 

y < x [8], [16]. In the contrast to a MPV, a MCV for a given 

performance level of a MSS represents such case when 

improvement of any not perfect working component by one 

state results system improvement at least to performance 

level j (for j = ��«� m -1), i.e. a state vector x is a MCV for 

system performance level j if I(x) < j and I(y) � j for any 

y > x [8], [16]. 

In papers [16], [17], the calculation of MCVs based on 

DPLDs has been proposed. For a BSS, there was shown that 

all MCVs can be computed as the special intersection of all 

modified (extended) DPLDs )10()10( owow iee xI , i.e. 

for all i � ^��«� n}. The extended DPLD can be derived 

from DPLD (10) as follows: 
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where symbol ³
´�GHQRWHV�VLWXDWLRQV�IRU�ZKLFK�'3/'������LV�

not defined, i.e. situation when the studied component is in 

state s . 

The intersection of two modified DPLDs defines situation 

in which the state change of at least one component causes 

the required change of the system state. This intersection is 

defined in Table II. 

TABLE II. 

THE INTERSECTION OF TWO MODIFIED DPLDS 
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MPVs of a BSS can be computed similarly, but we use the 

extended DPLDs )01()01( owow iee xI  instead of the 

previous one. Then value 1 in the intersection of all 

considered extended DPLDs identifies state vectors that are 

MPVs. 

The relation between MCVs and DPLDs, defined in paper 

[17], was generalized for MSSs in paper [16]. This 

generalization is based on the using of other types of DPLDs 

that has been named as the extended union of DPLDs and the 

merge of extended unions. Using union (17) of DPLDs, the 

merge of extended unions is defined as follows: 
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and it identifies all situations in which the change of system 

component state by one value causes the transition of the 

system performance from level less than j to level greater 

than or equal to j. Therefore, the intersection of merges (19) 
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for given system performance level j and for all components 

identifies all MCVs for system performance level j. The 

intersection of two merges (19) is defined same as the 

intersection of two extended DPLDs (Table II). 

MPVs for given system performance level j can be 

computed same as its MCVs, but, instead of merge (19), we 

use the merge of extended unions that is based on DPLDs 

(13) and (14) and we denote it as follows: 
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Value 1 in the intersection of all merges (20) for given 

system performance level j identifies all MPVs for the 

considered system performance level. 

III. REVELATION OF THE SYSTEM STRUCTURE FROM DIRECT 

PARTIAL LOGIC DERIVATIVES 

The structure function is very important in reliability 

analysis. However, there exist situations that the structure 

function of the system is unknown and only the 

consequences of the system components failure/degradation 

or repair/improvement on the system performance level are 

known. In these cases, the structure function of the system 

has to be discovered to find some reliability characteristics 

of the system. When we know the results of individual 

system components changes on the system work, then it 

means that individual DPLDs are known for the system. 

Therefore, in the next part, we assume that DPLDs are 

recognized for the analyzed system and we want to identify 

its structure function from them. 

A.  Discovering the Structure Function of a Binary-State 

System 

The structure function (2) of a BSS is formally identical 

with the definition of a Boolean function. Moreover, the 

structure function of a coherent BSS can be interpreted as a 

monotonic Boolean function. Therefore, some concepts of 

Boolean algebra can be used to find the structure function of 

a BSS. One of these concepts is the idea that every Boolean 

function can be expressed unambiguously in the form of 

minimal disjunctive (conjunctive) normal form. Moreover, 

for a monotonic Boolean function, there exists only one 

minimal disjunctive (conjunctive) normal form [18]. When 

we want to find minimal disjunctive (conjunctive) normal 

form of a monotonic Boolean function, then all prime 

implicants (implicates) of this function have to be found. 

An implicant of a monotonic Boolean function is a set of 

logic variables whose simultaneous true values imply that the 

monotonic Boolean function has true value. A prime 

implicant is an implicant from which no variable can be 

removed without losing its status as implicant [18]±[20]. In 

terms of reliability analysis, an implicant can be interpreted 

as a set of components whose simultaneous work ensures 

that the system will work. Also, in terms of reliability 

analysis, an implicant is known as a path set and prime 

implicant as a Minimal Path Set (MPS) [21]. 

An implicate of a monotonic Boolean function is a set of 

logic variables whose simultaneous false values imply that 

the considered function has false value [18]. In reliability 

analysis, the definition of implicate corresponds to cut set 

and the definition of prime implicate coincides with the 

definition of Minimal Cut Set (MCS). So, a cut set is a set of 

components whose simultaneous failure causes the failure of 

the system and it is minimal if no component can be removed 

from it without losing its status as a cut set [21]. 

According to the previous paragraphs, the revelation of 

MPSs or MCSs of the analyzed BSS implies discovering the 

system structure function. However, in this paper, we assume 

that the structure function is defined in terms of vectors and 

not in terms of set theory. Therefore, MPSs (MCSs) have to 

be transformed into the form of state vectors. This can be 

done by using the relation between prime implicants 

(implicates) and MPSs (MCSs). Every prime implicant 

(implicate) can be transformed in the vector form that is 

known as minimal true vector for prime implicant and 

maximal false vector for prime implicate, respectively [22]. 

In the terms of reliability engineering, a minimal true vector 

corresponds to MPV while maximal false vector agrees with 

a MCV. Therefore, based on paper [22], there exists one-to-

one correspondence between MPSs (MCSs) and MPVs 

(MCVs), i.e. a MPV (MCV) corresponds to a MPS (MCS) 

in terms of state vectors.  This implies that the structure 

function of any coherent BSS can be defined via MPVs or 

MCVs unambiguously. So, if DPLDs )01()01( owow ixI   

for all i � ^��«� n} are given, then we can formulate the 

next algorithm for finding the structure function of a BSS: 

1. Derive the extended DPLDs )01()01( owow iee xI  

from )01()01( owow ixI  for every component, i.e. 

for i � ^��«� n} according to (18). 

2. Compute the intersection of all extended DPLDs from 

the previous step based on the rules in Table II. 

3. Define MPVs that agree to value 1 in the intersection, 

calculated in the previous step. 

4. According to the definition of a MPV (section II.D), 

define the structure function of the system as follows: 

a. if an arbitrary state vector y meets the condition 

y � x at least for one MPV x, then I(y) = 1; 

b. if an arbitrary state vector y meets the condition 

y < x at least for one MPV x, then I(y) = 0. 

Another approach is based on MCVs. In this case, we 

assume DPLDs )10()10( owow ixI  for all i � ^��«� n} 

are known (by the way, according to (11), they are identical 

to )01()01( owow ixI ) and then we can reveal the 

structure function of the coherent BSS in the following way: 

1. Derive the extended DPLDs )10()10( owow iee xI  

from )10()10( owow ixI  for every component, i.e. 

for i � ^��«� n} according to (18). 
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2. According to Table II, compute the intersection of all 

extended DPLDs from the previous step. 

3. Define MCVs that agree to value 1 in the intersection, 

calculated in the previous step. 

4. According to the definition of a MCV (section II.D), 

define the structure function of the system as follows: 

a. if an arbitrary state vector y meets the condition 

y � x at least for one MCV x, then I(y) = 0; 

b. if an arbitrary state vector y meets the condition 

y > x at least for one MCV x, then I(y) = 1. 

B. Discovering the Structure Function of a Multi-State 

System 

For MSSs, the structure function (1) is a multiple-valued 

function. Specially, when m1 = « = mn = m in definition (1), 

then the structure function can be interpreted as a Multiple-

Valued Logic (MVL) function. In a case of MVL functions 

and also multiple-valued functions, there exist some normal 

forms that are equivalent to minimal disjunctive 

(conjunctive) normal form of Boolean functions. These 

forms are known as minimal Sum-of-Products (SoP) and 

minimal Products-of-Sum (PoS). By the way, a minimal 

disjunctive (conjunctive) normal form of a Boolean function 

is sometimes denoted as minimal SoP (PoS), however, in this 

paper, we used term minimal disjunctive (conjunctive) 

normal form when we deal with Boolean functions and 

minimal SoP (PoS) in a case of multiple-valued functions. 

There exist several approaches for definition of SoP (PoS) 

[23], but definitions based on vector approach are the best 

ones for our work. According to this approach, there exist 

two important types of vectors for monotone multiple-valued 

functions: lower vectors (or lower 9 (boundary) points) and 

upper vectors (or upper (boundary) points) [24]. 

Lower points for value j of a monotone multiple-valued 

function of m values are minimal vectors for which the 

function has value j, for j = 1�«� m -1. When all lower points 

for every value of a monotone multiple-valued function are 

known, then the function has value j for an arbitrary vector x 

if there exists at least one lower point for level j that is lower 

than or equal to x and at least one lower point for level j +1 

(given that j < m -1) that is greater than x. (A vector x is 

lower than a vector y if x < y (see section II.D) and greater 

than y if x > y.) 

Upper points for value j of a monotone multiple-valued 

function of m values are maximal vectors for which the 

function has value less than or equal to j, for j = 0�«� m -2. 

Therefore, if we know all upper points for every value of the 

considered function, then the function has value j for an 

arbitrary vector x if there exists at least one upper point for 

level j that is greater than or equal to x and at least one upper 

point for level j -1 (given that j > 0) that is lower than x. 

According to the previous paragraphs, every monotonic 

multiple-valued function can be defined by using all its 

upper points or all its lower points. A lower point for value j 

(for j = ��«� m -1) of a monotonic multiple-valued function 

I(x) is defined as vector x that meets the following 

conditions [15], [24], [25]: 

a) I(x) � j, 

b) I(y) < j for any y < x. 

This definition is same as the definition of a MPV of a 

coherent MSS (section II.D). This fact implies that the 

structure function of any coherent MSS can be defined via 

MPVs unambiguously. 

An upper point for value j (for j = ��«� m -2) of a 

monotonic multiple-valued function I(x) is defined as vector 

x that meets the following conditions [15], [24], [25]: 

a) I(x) � j, 

b) I(y) > j for any y > x. 

The definition of an upper point is not equal to the MCV 

definition of a coherent MSS (section II.D). This is caused 

by the fact that upper points are defined for values 

j = ��«� m -2, while MCVs are defined for j = ��«� m -1. 

Therefore, assume that we do substitution j +1 = l in the 

definition of the upper point. Due to the substitution, the 

upper point x for l = ��«� m -1 has the following properties: 

a) I(x) < l, 

b) I(y) � l for any y > x. 

These properties are same as the properties of a MCV for 

level l of a MSS defined by the considered monotonic 

multiple-valued function. This implies that an upper point for 

value j of a monotonic multiple-valued function corresponds 

to a MCV for value j +1 of the MSS defined by the 

considered function. Therefore, there exists one-to-one 

relation between upper points for level j and MCVs for level 

j +1 of a MSS. So, the knowledge of all MCVs allows 

defining the structure function of the considered MSS. 

According to the aforementioned text, we only need to 

find all MPVs (MCVs) of the analyzed MSS to reveal the 

system structure. So, if the consequences of degradation of 

any component on the system performance are known, i.e. 

DPLDs )1()( �owppw ssxj iI  for all i � ^��«� n}, 

s � ^��«� mi -1} and j � ^��«� m -1} are defined, then we 

can formulate the following algorithm for discovering the 

system structure function: 

1. Derive the merge of extended unions iee xj wppw )(I  

from )1()( �owppw ssxj iI  for fixed performance 

level j and for every system component, i.e. for 

i � ^��«� n} according to (20). 

2. According to Table II, compute the intersection of all 

merges (20) of extended unions from the previous step. 

3. Define MPVs for given system performance level j that 

agree to value 1 in the intersection, calculated in the 

previous step. 

4. Repeat steps 1. ± 3. for all relevant system performance 

levels, i.e. for j � ^��«� m -1}. 

5. According to the definition of a MPV of a MSS 

(section II.D), define the value of the system structure 

function for an arbitrary state vector y as follows: 
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x if the state vector y meets the condition y � x at 

least for one MPV x for system performance level 

m -1, then I(y) = m -1; 

x else if the state vector y meets the condition y � x 

at least for one MPV x for system performance 

level m -2, then I(y) = m -2; 

« 

x else if the state vector y meets the condition y � x 

at least for one MPV x for system performance 

level 1, then I(y) = 1; 

x else I(y) = 0. 

Similarly as in the case of BSSs, the previous algorithm 

can be reformulated in the terms of MCVs. In this situation, 

we assume that all DPLDs )1()( �ownnw ssxj iI  for 

i � ^��«� n}, s � ^��«� mi -2} and j � ^��«� m -1} are 

defined, i.e. the influence of minor improvement of any 

component on system performance level is known. In this 

case, the following algorithm can be formulated: 

1. Derive the merge of extended unions iee xj wnnw )(I  

from )1()( �ownnw ssxj iI  for fixed performance 

level j and for every component, i.e. for i � ^��«� n} 

according to (19). 

2. According to Table II, compute the intersection of all 

merges (19) of extended unions that were gained in the 

previous step. 

3. Define MCVs for given system performance level j that 

agree to value 1 in the intersection, calculated in the 

previous step. 

4. Repeat steps 1. ± 3. for all relevant system performance 

levels, i.e. for j � ^��«� m -1}. 

5. According to the definition of a MCV of a MSS 

(section II.D), define the value of the system structure 

function for an arbitrary state vector y as follows: 

x if there is a MCV x for system performance level 

1 that meets the condition y � x, then I(y) = 0; 

x else if there is a MCV x for system performance 

level 2 that meets the condition y � x, then 

I(y) = 1; 

« 

x else if there is a MCV x for system performance 

level m -1 that meets the condition y � x, then 

I(y) = m -2; 

x else I(y) = m -1. 

IV. RELIABILITY ANALYSIS OF A HEALTHCARE SYSTEM WITH 

UNKNOWN STRUCTURE 

Consider the human module of the health care system 

from book [2]. This module is formed by two persons ± a 

doctor and a nurse, and it defines the consequences of the 

wrong doctor and nurse behavior on a patient health. In the 

terms of reliability analysis, the nurse and doctor can be 

interpreted as two independents modules of the analyzed 

system. The nurse can perform three types of errors and 

doctor can also make three types of bad decisions. The 

wrong decisions are caused by facts that are defined in Table 

III. These decisions can be interpreted as independent 

components of the human module and their occurrence can 

caused the human module degradation that is defined as the 

deterioration of the patient health. 

TABLE III. 

COMPONENTS OF THE HUMAN MODULE OF THE HEALTH CARE SYSTEM 

System modules System components pi,0 pi,1 

Nurse Correct interpretation of 

GRFWRU¶V�LQVWUXFWLRQV��x1 
0.01 0.99 

Good work environment, x2 0.02 0.98 

Not-haste, x3 0.03 0.97 

Doctor Correct diagnosis, x4 0.04 0.96 

Good Surroundings, x5 0.06 0.94 

Not-haste, x6 0.05 0.95 

 

According to Table III, every component of the human 

module has two performance levels ± failed (an error has 

occurred) and functioning (a problem has not occurred). 

In Table IV, there are defined performance levels of the 

human module. 

TABLE IV. 

HUMAN MODULE PERFORMANCE LEVELS 

System performance 

levels 
Interpretation 

0 
Patient received an inadequate amount of 

wrong medication 

1 
Patient received an inadequate amount of 

correct medication 

2 
Patient received a safe amount of incorrect 

medication 

3 
Patient received an adequate amount of 

correct medication 

 

The results of failures of individual components of the 

human module on the patient health are defined by DPLDs 

)01()( owppw ixjI , for i � ^��«� 6} and j � {1, 2, 3}, in 

Table V. For example, the nonzero element (1,0,0,0,0,0) of 

DPLD )01()1( 1 owppw xI  means that the failure of the 

first component causes the total failure of the analyzed 

system in situation when all other components are failed. 

Now, we want to find the structure function of the human 

module. According to the previous section, we need to find 

all MPVs of the considered module. For this task, the first 

algorithm from section III.B can be used. 

In the first step, the merges iee xj wppw )(I  of extended 

unions have to be derived from DPLDs defined in Table V. 

For example, the merges )01()1( owppw iee xI  are 

calculated in Table IX (white columns). In the next step, 

their intersection has to be computed to identify MPVs for 

system performance level 1 (gray columns in Table IX). This 

procedure has to be repeated for other relevant performance 

levels of the system, i.e. for j = 2, 3. After that, all MPVs of 

the system are known (Table VI) and we can reveal the 

system structure function according to rules defined in the 

MIROSLAV KVASSAY, ELENA ZAITSEVA: CONSTRUCTION OF HEALTHCARE SYSTEM STRUCTURE FOR RELIABILITY ANALYSIS 197



 

 

 

 

last step of the used algorithm. The discovered structure 

function of the system is presented in Table VII. 

TABLE V. 

THE CONSEQUENCES OF COMPONENTS FAILURES ON THE PATIENT 

HEALTH DEFINED BY DPLDS 

Component 

(i) 

System 

performance 

level 

(j) 

Nonzero elements of DPLD 

)01()( owppw ixjI  

1 

1 (1,0,0,0,0,0) 

2 

(1,0,0,0,1,1) (1,0,0,1,0,1) (1,0,0,1,1,0) 

(1,0,0,1,1,1) (1,1,0,1,0,0) (1,1,1,0,0,0) 

(1,1,1,0,0,1) (1,1,1,0,1,0) (1,1,1,1,0,0) 

3 
(1,0,1,1,1,1) (1,1,0,1,1,1) (1,1,1,0,1,1) 

(1,1,1,1,0,1) (1,1,1,1,1,0) 

2 

1 (0,1,0,0,0,0) 

2 

(0,1,0,0,1,1) (0,1,0,1,1,0) (0,1,0,1,1,0) 

(0,1,0,1,1,1) (1,1,0,1,0,0) (1,1,1,0,0,0) 

(1,1,1,0,0,1) (1,1,1,0,1,0) (1,1,1,1,0,0) 

3 
(0,1,1,1,1,1) (1,1,0,1,1,1) (1,1,1,0,1,1) 

(1,1,1,1,0,1) (1,1,1,1,1,0) 

3 

1 (0,0,1,0,0,0) 

2 

(0,0,1,0,1,1) (0,0,1,1,0,1) (0,0,1,1,1,0) 

(0,0,1,1,1,1) (1,1,1,0,0,0) (1,1,1,0,0,1) 

(1,1,1,0,1,0) 

3 
(0,1,1,1,1,1) (1,0,1,1,1,1) (1,1,1,0,1,1) 

(1,1,1,1,0,1) (1,1,1,1,1,0) 

4 

1 (0,0,0,1,0,0) 

2 

(0,0,1,1,0,1) (0,0,1,1,1,0) (0,1,0,1,0,1) 

(0,1,0,1,1,0) (0,1,1,1,0,1) (0,1,1,1,1,0) 

(1,0,0,1,0,1) (1,0,0,1,1,0) (1,0,1,1,0,1) 

(1,0,1,1,1,0) (1,1,0,1,0,0) (1,1,0,1,0,1) 

(1,1,0,1,1,0) 

3 
(0,1,1,1,1,1) (1,0,1,1,1,1) (1,1,0,1,1,1) 

(1,1,1,1,0,1) (1,1,1,1,1,0) 

5 

1 (0,0,0,0,1,0) 

2 

(0,0,1,0,1,1) (0,0,1,1,1,0) (0,1,0,0,1,1) 

(0,1,0,1,1,0) (0,1,1,0,1,1) (0,1,1,1,1,0) 

(1,0,0,0,1,1) (1,0,0,1,1,0) (1,0,1,0,1,1) 

(1,0,1,1,1,0) (1,1,0,0,1,1)  

3 
(0,1,1,1,1,1) (1,0,1,1,1,1) (1,1,0,1,1,1) 

(1,1,1,0,1,1) (1,1,1,1,1,0) 

6 

1 (0,0,0,0,0,1) 

2 

(0,0,1,0,1,1) (0,0,1,1,0,1) (0,1,0,0,1,1) 

(0,1,0,1,0,1) (0,1,1,0,1,1) (0,1,1,1,0,1) 

(1,0,0,0,1,0) (1,0,0,1,0,1) (1,0,1,0,1,1) 

(1,0,1,1,0,0) (1,1,0,0,1,1) 

3 
(0,1,1,1,1,1) (1,0,1,1,1,1) (1,1,0,1,1,1) 

(1,1,1,0,1,1) (1,1,1,1,0,1) 

 

TABLE VI. 

THE MPVS OF THE CONSIDERED HUMAN MODULE 

System 

performance level 
MPVs 

1 
(0,0,0,0,0,1) (0,0,0,0,1,0) (0,0,0,1,0,0) 

(0,0,1,0,0,0) (0,1,0,0,0,0) (1,0,0,0,0,0) 

2 

(0,0,1,0,1,1) (0,0,1,1,0,1) (0,0,1,1,1,0) 

(0,1,0,0,1,1) (0,1,0,1,0,1) (0,1,0,1,1,0) 

(1,0,0,0,1,1) (1,0,0,1,0,1) (1,0,0,1,1,0) 

(1,1,0,1,0,0) (1,1,1,0,0,0) 

3 
(0,1,1,1,1,1) (1,0,1,1,1,1) (1,1,0,1,1,1) 

(1,1,1,0,1,1) (1,1,1,1,0,1) (1,1,1,1,1,0) 

 

Now, we can use the revealed structure function with 

combination of data from Table III for computation of 

system availability (6) and unavailability (7). The final 

values are in Table VIII. According to results in Table VIII, 

there is very little probability that the considered human 

module of a health care system will failed. 

TABLE VII. 

THE STRUCTURE FUNCTION OF THE CONSIDERED HUMAN MODULE 

 x1 x2 x3 

x4 x5 x6 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 

0 0 0 

0 0 1 

0 1 0 

0 1 1 

1 0 0 

1 0 1 

1 1 0 

1 1 1 

0 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

2 

1 

2 

2 

2 

1 

1 

1 

2 

1 

2 

2 

2 

1 

1 

1 

2 

1 

2 

2 

3 

1 

1 

1 

2 

1 

2 

2 

2 

1 

1 

1 

2 

1 

2 

2 

3 

1 

1 

1 

2 

2 

2 

2 

3 

2 

2 

2 

3 

2 

3 

3 

3 

 

TABLE VIII. 

AVAILABILITY AND UNAVAILABILITY OF THE CONSIDERED HUMAN 

MODULE 

System performance level 

(j) 
A(j) U 

0 - 7.2e-10 

1 9.9999e-1 - 

2 9.9966e-1 - 

3 9.8392e-1 - 

V.  CONCLUSION 

In this paper, a new method for the construction of the 

structure function based on the DPLDs is considered. This 

method can be used for the design of the system 

mathematical model in a case when the initial system has 

complex structure and correlation between components is not 

clear defined. The monitoring result of the initial system 

behavior is interpreted as the set of system performance 

changes depending on the changes of fixed system 

component states and these sets are collected for all system 

components. According to the definition of a DPLD, such 

sets are interpreted as DPLDs of the structure function. 

According to the proposed method based on DPLDs, the 

structure function (1) or (2) of MSS or BSS can be 

constructed. Then, numerous reliability indices and measures 

presented in section II.B can be calculated to investigate the 

initial system. 
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TABLE IX 

THE MERGE (20) OF EXTENDED DPLDS UNIONS FOR LEVEL 1 OF THE CONSIDERED HUMAN MODULE 

 x1 x2 x3 

x4 x5 x6 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 

0 0 0 

0 0 1 

0 1 0 

0 1 1 

1 0 0 

1 0 1 

1 1 0 

1 1 1 

* * * * * * 

* * * * * 1 

* * * * 1 * 

* * * * 0 0 

* * * 1 * * 

* * * 0 * 0 

* * * 0 0 * 

* * * 0 0 0 

* 

1 

1 

0 

1 

0 

0 

0 

* * 1 * * * 

* * 0 * * 0 

* * 0 * 0 * 

* * 0 * 0 0 

* * 0 0 * * 

* * 0 0 * 0 

* * 0 0 0 * 

* * 0 0 0 0 

1 

0 

0 

0 

0 

0 

0 

0 

* 1 * * * * 

* 0 * * * 0 

* 0 * * 0 * 

* 0 * * 0 0 

* 0 * 0 * * 

* 0 * 0 * 0 

* 0 * 0 0 * 

* 0 * 0 0 0 

1 

0 

0 

0 

0 

0 

0 

0 

* 0 0 * * * 

* 0 0 * * 0 

* 0 0 * 0 * 

* 0 0 * 0 0 

* 0 0 0 * * 

* 0 0 0 * 0 

* 0 0 0 0 * 

* 0 0 0 0 0 

0 

0 

0 

0 

0 

0 

0 

0 

1 * * * * * 

0 * * * * 0 

0 * * * 0 * 

0 * * * 0 0 

0 * * 0 * * 

0 * * 0 * 0 

0 * * 0 0 * 

0 * * 0 0 0 

1 

0 

0 

0 

0 

0 

0 

0 

0 * 0 * * * 

0 * 0 * * 0 

0 * 0 * 0 * 

0 * 0 * 0 0 

0 * 0 0 * * 

0 * 0 0 * 0 

0 * 0 0 0 * 

0 * 0 0 0 0 

0 

0 

0 

0 

0 

0 

0 

0 

0 0 * * * * 

0 0 * * * 0 

0 0 * * 0 * 

0 0 * * 0 0 

0 0 * 0 * * 

0 0 * 0 * 0 

0 0 * 0 0 * 

0 0 * 0 0 0 

0 

0 

0 

0 

0 

0 

0 

0 

0 0 0 * * * 

0 0 0 * * 0 

0 0 0 * 0 * 

0 0 0 * 0 0 

0 0 0 0 * * 

0 0 0 0 * 0 

0 0 0 0 0 * 

0 0 0 0 0 0 

0 

0 

0 

0 

0 

0 

0 

0 
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