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Abstract—Particle swarm optimization constitutes currently
one of the most important nature-inspired metaheuristics, used
successfully for both combinatorial and continuous problems. Its
popularity has stimulated the emergence of various variants of
swarm-inspired techniques, based in part on the concept of pair-
wise communication of numerous swarm members solving opti-
mization problem in hand. This paper overviews some examples
of such techniques, namely Fully Informed Particle Swarm Opti-
mization (FIPSO), Firefly Algorithm (FA) and Glowworm Swarm
Optimization (GSO). It underlines similarities and differences
among them and studies their practical features. Performance
of those algorithms is also evaluated over a set of benchmark
instances. Finally, some concluding remarks regarding the choice
of suitable problem-oriented optimization technique along with
areas of possible improvements are given as well.

I. INTRODUCTION

P
ARTICLE Swarm Optimization introduced by Kennedy,

Eberhart and Shi in 1995 [1] is at the moment one

of the most noteworthy nature-inspired metaheuristics used

for variety of tasks, both in science and engineering. It was

induced by the observation of flocking and schooling patterns

of birds and fish. An idea to represent each solution of the op-

timization problem at-hand as a member of the virtual swarm –

communicating with others and modifying its position under

the influence of best individuals – proved to be extremely

successful. The degree of this success can be represented by

the significant amount of contributions employing PSO in real-

world problems e.g. in data analysis [2], resource allocation

[3] etc. It can be also quantified through a number of related

algorithms, based on the idea of intelligent swarms. One of

recent examples of such include: Quantum-behaved Particle

Swarm Optimization [4] and Multi-Swarm PSO [5].

The general goal of continuous optimization is to find x∗

which satisfies:

f(x∗) = min
x∈S

f(x), (1)

where S ⊂ RN , and f(x) constitutes solution’s x cost

function value. Therefore actual task of the optimizer is to

find argument minimizing f .

Initial PSO algorithm’s behavior was built on the assump-

tion that each individual member of the swarm, i.e. solution of

the optimization problem (1), changes its velocity vector in the

consecutive algorithm’s iteration as a result of the influence

of two specific solutions: the best one found so far by the

swarm and the top solution identified by this individual. Fully

Informed Particle Swarm Optimization (FIPSO) presented first

by Mendes, Kennedy and Neves [6] constitute a modification

of this approach. In the most general variant of FIPSO velocity

update is constructed using weighted average position of all

swarm members. Creators of the algorithm considered how-

ever alternative communication topologies, e.g. ring or cluster,

as well as different schemes of assigning weights to prioritize

individuals’ inputs. Firefly Algorithm (FA) created by Xin

She Yang in 2008 is constructed on similar assumptions [7].

The position of swarm member xm within feasible solution

space S is determined by all other individuals’ fitness –

better solutions will attract those which are worse, in the

sense of selected cost function f value [8]. Glowworm Swarm

Optimization (GSO) developed by Krishnanand and Ghose [9]

exhibits similar behavior however swarm member is attracted

here by its better-performing neighbors found only within

given radius. Considering those similarities FA and GSO like

FIPSO can be perceived as most representative members of

broader family of techniques named here Fully Informed

Particle Swarm algorithms. It can be characterized by building

solution space exploration process on exchanging information

between swarm members regarding local fitness landscape and

modifying their position accordingly. For other examples of

such methods one can refer to [10], [11], [12].

The goal of this contribution is to provide synthetic com-

parative perspective on major Fully Informed Particle Swarm

algorithms, introduced above, both on conceptual and perfor-

mance-based grounds. It is organized as follows. First the

description of all techniques studied here in their basic vari-

ants is provided, along with similarities between them. It

also contains brief discussion of selected technical aspects,

examples of applications and possible modifications. Then
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the results of performed comparative experimental studies

are given, both in the context of optimization performance,

algorithms’ convergence and computational demands. Finally

general remarks concerning the choice of suitable problem-

oriented optimization techniques and planned further studies

are under consideration.

II. FULLY-INFORMED SWARM

ALGORITHMS

First let us introduce the notation which will be used in the

following subsections. To solve the optimization problem (1)

the swarm, consisting of M members will be used. It will be

represented by a set of N -dimensional vectors – equivalent to

individuals’ positions – within the iteration k denoted by:

x1(k), x2(k), ..., xM (k). (2)

Euclidean distance between two swarm members, indexed p
and q is denoted here by d(xp, xq). The best position found by

given swarm member m prior to iteration k is given by xm(k)∗

with cost function value f(xm(k)∗). At the same time:

x(k)∗ = arg min
m=1,...,M

f(xm(k)), (3)

corresponds to the best solution found by the algorithm in its k
iterations, with f(x(k)∗) representing its related cost function

value. Swarm optimization algorithms, based in particular on

PSO paradigm, employ frequently a concept of individual’s

m velocity, denoted here in iteration k as vm(k). It is used

to update particles’ positions and can be initialized randomly

within given bounds.

The following part of the paper will provide comprehensive

description of Fully Informed Particle Swarm algorithms,

referring to the notation given above.

A. Fully-Informed Particle Swarm Optimization (FIPSO)

Fully Informed Particle Swarm Optimization constitutes one

of heuristic algorithms derived from the basic PSO paradigm.

The idea of using information from a group of particle’s Km

neighbors, rather than just the best one – as in traditional

canonical PSO – was first proposed by Suganthan in 1999

[13]. It was also included in complete Fully Informed PSO

procedure suggested by Mendes, Kennedy and Neves. In

each iteration of the algorithm particle’s position xm(k) is

updated by moving it iteratively along vector vm(k) with the

coordinates n = 1, ..., N adjusted as follows:

vmn(k + 1) =

χ



vmn(k) +
1

Km

Km
∑

j=1

U(0, ϕ)(xNm(j)n(k)
∗ − xmn(k))



 ,

(4)

with χ known as a constriction factor, whereas U(0, p) corre-

sponds to the uniformly distributed random number in (0, p),
ϕ constitutes an acceleration coefficient, and finally, Nm(j) is

a function which returns the index of j-th nearest neighbor of

particle m. Complete FIPSO procedure was provided below

in the form of pseudocode (Algorithm 1).

Algorithm 1 Fully Informed Particle Swarm Optimization

algorithm

1: k ← 1 {initialization}

2: for m = 1 to M do

3: Generate_Solution(xm(k))
4: Initialize_Velocity(vm(0))
5: f(xm(0)∗) ← ∞
6: end for

7: {main loop}

8: repeat

9: {evaluate and update best solutions}

10: for m = 1 to M do

11: f(xm(k)) ← Evaluate_quality(xm(k))
12: if f(xm(k)) < f(xm(k − 1)∗) then

13: xm(k)∗ ← xm(k)
14: else

15: xm(k)∗ ← xm(k − 1)∗

16: end if

17: if f(xm(k)) < f(x(k)∗) then

18: x(k)∗ ← xm(k)
19: else

20: x(k)∗ ← x(k − 1)∗

21: end if

22: end for

23: for m = 1 to M do

24: for n = 1 to N do

25: cmn(k) ← 0

26: for all Km nearest neighbors (index p) of m do

27: cmn(k) ← cmn(k) + (U(0, ϕ)(xpn(k)
∗ −

xmn(k))
28: end for

29: vmn(k) ← χ ∗ [vmn(k − 1) + 1/Km ∗ cmn(k)]
30: xmn(k + 1) ← xmn(k) + vmn(k)
31: end for

32: end for

33: stop_condition ← Check_stop_condition()
34: k ← k + 1
35: until stop_condition = false

36: return f(x(k)∗), x(k)∗, k

One of the findings of initial study on FIPSO was that

increasing the size of the "informing" neighborhood seems

to deteriorate the performance of the swarm. FIPSO with a

fully connected topology, i.e., when each particle has all the

particles in the swarm as its neighbors, shows a particularly

bad performance in comparison with the one attained with

other topologies, e.g. ring or square. In addition to that FIPSO

convergence was thoroughly studied in [14]. Authors observe

there that for highly connected topologies, the particles ex-

plore a region close to the centroid of the swarm. It may

bring positive results for some specific functions however

the algorithm in that case is prone to becoming trapped in

local minima. The algorithm in the form introduced above

was successfully applied for engineering problems like power
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systems optimization [15]. It was also used as a starting point

for other similar approaches [16], [17] as well as a component

of hybrid algorithms [18]. Here we consider most general

FIPSO with fully-connected particles to study its performance

when referencing it to two other more recent approaches.

B. Firefly Algorithm (FA)

Firefly Algorithm developed by Xin-She Yang [7] is inspired

by mechanisms of firefly communication via luminescent

flashes. This swarm intelligence optimization technique is

based on the assumption that solution of an optimization

problem can be perceived as agent (firefly) which “glows”

proportionally to its quality in a considered problem setting.

Consequently each brighter firefly attracts its partners (regard-

less of their sex), which makes the search space being explored

more efficiently [8].

Each firefly has its distinctive attractiveness β which implies

how strong it attracts other members of the swarm. For

attractiveness in FA an exponential function of the distance

rj = d(xm, xj) to the chosen firefly j is used:

β = β0e
−γrj (5)

where β0 and γ are predetermined algorithm parameters:

maximum attractiveness value and absorption coefficient, re-

spectively. Every member of the swarm is also characterized

by its light intensity Im which can be directly expressed as a

inverse of a cost function f(xm).

To effectively explore considered search space S it is

assumed that each firefly m is changing its position iteratively

taking into account two factors: attractiveness of other swarm

members with higher light intensity i.e. Ij > Im, ∀j =
1, ...M, j 6= m – which is varying across distance – and a fixed

random step vector U(min,max). It should be noted as well

that if no brighter firefly can be found only such randomized

step is being used [8].

Algorithm 2 presents generic Firefly Algorithm which in-

cludes all aforementioned elements. For a recent overview of

FA modifications, variants and applications one can refer to

[19]. We employ here standard FA algorithm with uniform

random number generator and scaling factor related to search

space size S [8].

C. Glowworm Swarm Optimization (GSO)

Glowworm Swarm Optimization is another optimization

strategy which was stimulated by the observation of fireflies’

social behavior. In contrast to Firefly Algorithm agents in

GSO depend only on information available in their strict

neighborhood to make decisions [9]. What is more GSO uses

an adaptive neighborhood range in order to successfully deal

with multimodal functions landscapes. Both luciferin quantity

ιm(k), which predetermines the probability of individual’s

movement, and neighborhood radius rm(k) are updated on

per-iteration basis. It is realized using the following formulas:

ιm(k) = (1− ρ)ιm(k − 1) + γf(xm(k))−1, (6)

Algorithm 2 Firefly Algorithm

1: k ← 1 {initialization}

2: for m = 1 to M do

3: Generate_Solution(xm(k))
4: end for

5: f(x(0)∗) ← ∞
6: {main loop}

7: repeat

8: {evaluate and update best solution}

9: for m = 1 to M do

10: f(xm(k)) ← Evaluate_quality(xm(k))
11: if f(xm(k)) < f(x(k − 1)∗) then

12: x(k)∗ ← xm(k)
13: else

14: x(k)∗ ← x(k − 1)∗

15: end if

16: end for

17: for m = 1 to M do

18: for p = 1 to M do

19: if f(xm(k)) < f(xp(k)) then

20: rp ← Calculate_Distance(xm(k), xp(k))
21: β ← β0e

−γrp

22: for n = 1 to N do

23: xmn(k) ← (1 − β)xmn(k) + βxpn(k) +
Un(min,max)

24: end for

25: end if

26: end for

27: end for

28: {best moves randomly}

29: for m = 1 to M do

30: if Was_Moved(xm(k)) = false then

31: for n = 1 to N do

32: xmn(k) ← xmn(k) + Un(min,max)
33: end for

34: end if

35: end for

36: stop_condition ← Check_stop_condition()
37: k ← k + 1
38: until stop_condition = false

39: return f(x(k)∗), x(k)∗, k

rm(k + 1) =

min {rs,max {0, rm(k) + β(Nset − |Nm(k)|)}} , (7)

with ρ representing luciferin decay parameter, γ constituting

luciferin enhancement constant, rs - maximum sensor range,

Nset - parameter controlling number of neighbors and finally,

Nm(k) denoting a set of neighbors of xm(k) located within

radius rm(k):

Nm(k) =

{xj(k) : d(xm(k), xj(k)) < rm(k) : ιm(k) < ιj(k)}. (8)

Probability of glowworm movement towards one of other

individuals in the neighborhood Nm(k) is proportional to its
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luciferin quantity, related to the sum of luciferin values for all

neighbors found in Nm(k). It is denoted for all neighbors by

a vector pm(k). The Algorithm 3 presents plain description of

GSO procedure including most important technical details.

Algorithm 3 Glowworm Swarm Optimization algorithm

1: k ← 1 {initialization}

2: f(x(k)∗) ← ∞
3: for m = 1 to M do

4: Generate_Solution(xm(k))
5: f(xm(k)) ← Evaluate_quality(xm(k))
6: ιm(0) ← ι0
7: rm(0) ← r0
8: end for

9: {main loop}

10: repeat

11: {update luciferin quantity}

12: for m = 1 to M do

13: ιm(k) ← (1− ρ)ιm(k − 1) + γf(xm(k))−1

14: end for

15: {move glowworms}

16: for m = 1 to M do

17: Nm(k) ← Find_Neighborhood(xm(k))
18: {sum selection probalities for all p neighbors in

Nm(k)}
19: Psum ← sum(ιp(k)− ιm(k))
20: for all xj(k) in (Nm(k)) do

21: pmj(k) ← (ιj(k)− ιm(k))/Psum

22: end for

23: q ← Select_neighbor_index(pm(k))
24: {move towards selected}

25: xm(k + 1) ← xm(k) + s(xq(k)− xm(k))
26: /(‖xq(k)− xm(k)‖)
27: rm(k + 1) ← min {
28: rs,max {0, rm(k) + β(Nset − |Nm(k)|)}}
29: end for

30: for m = 1 to M do

31: if Was_Moved(xm(k) = false then

32: xm(k + 1) ← xm(k)
33: end if

34: f(xm(k)) ← Evaluate_quality(xm(k))
35: if f(xm(k)) < f(x(k)∗) then

36: x(k)∗ ← xm(k)
37: else

38: x(k)∗ ← x(k − 1)∗

39: end if

40: end for

41: stop_condition ← Check_stop_condition()
42: k ← k + 1
43: until stop_condition = false

44: return f(x(k)∗), x(k)∗, k

GSO like FA attracted much attention resulting in several

contributions improving the general scheme of the algorithm

[20], studying theoretical properties [21] or employing GSO

for real-life problems [22]. Here, for comparative studies we

utilize standard GSO developed by Krishnanand and Ghose.

D. Summary

Techniques covered in this Section are employing mutual

information exchange between all members of the swarm or its

selected groups (depending on precise variant and parameter

values). It is used for modifying swarm member position (GSO

and FA) or its velocity vector (FIPSO).

In case of FIPSO individual’s movement is influenced by a

set of best solutions obtained by other swarm members. For

GSO and FA latest position of other individuals can be used,

however it must be better than the one of solution currently

under consideration.

Algorithms studied here employ a randomization compo-

nent, either in the form of implicit randomized movement

(FA), by random selection of informing agent (GSO) or

determining strength of each neighbor’s influence (FIPSO). All

mechanisms tend to improve algorithms’ abilities to escape

local minima. In this aspect additional dynamics contained

within FIPSO technique could be extremely beneficial.

Every technique studied here possesses significant number

of parameters, with GSO being most parameter-rich and

FIPSO parameter-free one. All required parameters are listed

in Table I. For most of them some guidelines have been already

worked out in the related contributions - they are listed in the

table as well.

TABLE I
ALGORITHMS’ PARAMETERS AND THEIR SUGGESTED VALUES

Algorithm Parameter Suggested value/range Source

FIPSO M [20,50] [23]
χ 0.72984 [24]
ϕ 4.1 [24]

Km [3,5] [6]

FA M [20,50] [25]
α [0.1,0.2] [25]
β0 1 [8]
γ [1,30] [8], [25]

GSO M [10,500] [21]
ρ 0.4 [21]
γ 0.6 [21]
β 0.08 [21]

Nset 5 [21]
s 0.03 [21]
ι0 5 [21]
rs use pilot runs [21]
r0 r0 = rs [21]

As for computational complexity of algorithms studied here

it is in all cases significant. With regards to swarm size M and

iteration number K it can be expressed by notation O(KM2).
The actual relative time needed for execution of all algorithms

as other performance measures will be studied in the following

Section.

III. EXPERIMENTAL STUDIES

One of the main goals of conducted experiments was to

examine dynamics of swarm’s performance for all considered

techniques during the optimization process. Running times
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TABLE II
BENCHMARK FUNCTIONS USED FOR EXPERIMENTAL STUDIES

f Name Expression Feasible
bounds

N f∗

f1 Sphere f1(x) =
∑M

i=1
z2i + f∗

1
z = x− o

[−100, 100]N 10 -1400

f2 Different
Powers

f2 =

√

∑N

i=1
|zi|

2+4 i−1
N−1 + f∗

2
z = x− o

[−100, 100]N 10 -1000

f3 Rotated
Rastrigin

f3(x) =
∑N

i=1
(z2i − 10 cos(2πzi) + 10) + f∗

3

z = M1Λ10M2T
0.2
asy(Tosz(M1

5.12(x−o)
100

))

[−100, 100]N 10 -300

f4 Schwefel f4(x) = 418.9829N
∑N

i=1
g(zi) + f∗

4

z = Λ10(
1000(x−o)

100
) + 4.209687462275036e + 002

g(zi) = zi sin(|zi|1/2)

[−100, 100]N 10 -100

f5 Rotated
Katsuura

f5(x) = 10
N2

∏N

i=1
(1 + i

∑32

j=1

|2jzi−round(2jzi)|
2j

)
10

N1.2 −
10
N2 + f∗

5

z = M2Λ100(M1
5(x−o)

100
)

[−100, 100]N 10 200

——–
Symbols:

o = [o1, o2, ..., oN ] – shifted global optimum, randomly distributed in [−80, 80]N ,
M1,M2 – orthogonal (rotation) matrix generated from standard normally distributed entries
by Gram-Schmidt orthonormalization.

Λα – diagonal matrix in N dimensions with the ith diagonal element λii = α
i−1

2(N−1) for i = 1, 2, ...,N .

T
β
asy – if xi > 0, xi = x

1+β
i−1
N−1

√
xi

i for i = 1, 2, ...,N .
Tosz – for xi = sign(xi) exp(x̂i + 0.049(sin(c1x̂i) + sin(c2x̂i))) for i = 1, 2, ...,N .
where:
x̂i = log(|xi|) for xi 6= 0, otherwise x̂i = 0,
c1 = 10 if xi > 0, otherwise c1 = 5.5,
c2 = 7.9 if xi > 0, otherwise c2 = 3.1.

were also carefully studied as well as final cost function values,

which were additionally compared by means of statistical

tests. The following subsections are covering the details of

algorithms’ numerical evaluation.

A. Problems and Experimental Setting

For computational experiments set of benchmark problems

considered in CEC’13 competition was used [26]. Table II

lists those functions along with their mathematical expressions,

dimensionality and optimum values.

The experiments were conducted for fixed number of itera-

tions K = 10000 (1000 ∗N ), and 30 trials for each function.

Population size M = 40 was used for all algorithms. FIPSO

was configured with fully-connected topology and parameter

values as suggested in Table I. For FA we used α = 0.15 and

γ = 10 following the suggestions found in related literature.

Random step size was also scaled to the size of search space

S. GSO was configured with parameters given in Table I, with

modified step size s = 0.8. For rs we used half of maximum

distance in S (that is rs = 315) and for r0 the value of 90

was selected. Both settings were established during a set of

pilot runs to adopt neighborhood size properly to the domain

of given optimization task.

As a performance measure mean optimization error E(k)
was used (with E(k) = |f(x(k)∗) − f∗|) along with its

standard deviation σE(k). We have also studied mean execution

time t in seconds needed for one algorithm’s run.

B. Algorithms’ Search Process Dynamics

First set of experiments was aimed at establishing dynamics

of swarm performance in the function of execution time

(iterations). For all algorithms mean optimization errors in 30

trials during 10000 iterations were reported. The results of this

study for all investigated techniques are shown on Figures 1-5.
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Fig. 1. Mean error values obtained within 10000 iteration of optimization
process for f1 (Sphere) function
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Fig. 2. Mean error values obtained within 10000 iteration of optimization
process for f2 (Different Powers) function

0 2000 4000 6000 8000 10000
0

500

1000

1500

2000

2500

3000

k

E
(k
)

 

 

FIPSO

FA

GSO

Fig. 3. Mean error values obtained within 10000 iteration of optimization
process for f3 (Rotated Rastrigin) function
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Fig. 4. Mean error values obtained within 10000 iteration of optimization
process for f4 (Schwefel) function
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Fig. 5. Mean error values obtained within 10000 iteration of optimization
process for f5 (Rotated Katsuura) function

It can be seen that in the framework of GSO swarm mem-

bers tend to find local minima and to stop exploring problem’s

search space afterwards. This tendency will demonstrate itself

again in the next analysis. As for dynamics of FA it is also

prone for being trapped in local minima. Most intense progress

of error values’ minimization during first optimization phase

was observed for FIPSO, for all but one (f5) function.

C. Algorithms’ Performance

To compare performance of all considered algorithms we

examined final cost function values obtained through a set of

runs described above. In this quantitative comparison, both

means, standard deviations and best obtained cost values were

reported. Relation between algorithm’s performance indicators

was studied by means of pairwise T-tests. In most cases differ-

ences proved to be statistically meaningful at 0.95 significance

level. We ranked all algorithms according to conclusive results

of those tests.

Among studied algorithms FIPSO was found to be best-

performing one. What is more its execution for fully-connected

topology requires the least computational effort. Among two

other algorithms FA was found to perform better than GSO,

however here the difference – both in terms of final cost

function values and required execution time – proved to be

not very substantial. The most difficult problem for all the

algorithms to tackle was minimization of Schwefel function.

At the same time surprisingly Sphere function proved to be

problematic for FA and GSO algorithms.

IV. CONCLUSION

The paper examined practical features of a set of important

nature-inspired metaheuristics: Fully Informed Particle Swarm

Optimization, Firefly Algorithm and Glowwworm Swarm Op-

timization. They were for the first time considered within the

same methodological context, with their performance being

examined on a set of benchmark functions.
We found that when using the most basic variants of afore-

mentioned techniques Fully Informed Particle Swarm Opti-

mization proved to be most effective and least-computationally

expensive. At the same time Firefly Algorithm and Glowworm

Swarm Optimization were found to be similar, both in terms

of performance and computational resources’ requirements.

From our observations GSO is a very powerful technique for

discovering local minima especially when it employs large

swarm population. To use it as a tool of global optimization

however one should complement it by randomized local search

algorithm (e.g. Simulated Annealing [27]) or other procedure

which would allow swarm members to escape from cost

function valleys. In case of FA we see a suitable choice of

random step generation method (e.g. Lévy Flight [28]) as

a crucial element for successful applications in the field of

continuous optimization.
Finally it should be noted that performed experiments do

not include recent modifications of all analyzed optimization

strategies, described briefly in Section 2, and more specific

benchmarks. Their results however can be used as a baseline

for enriching this study by including those aspects. It is

planned within forthcoming follow-up contribution [29].
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