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Abstract—Resource allocation is a task frequently encountered
in energy management systems such as the coordination of power
generators in a virtual power plant (unit commitment). Standard
solutions require fixed parametrised optimisation models that the
participants have to stick to without leaving room for tailored
behaviour or individual preferences. We present a modelling
methodology that allows organisations to specify optimisation
goals independently of concrete participants and participants
to craft more detailed models and state individual preferences.
While considerable efforts have been spent on devising efficient
control algorithms and detailed physical models in power man-
agement systems, practical aspects of unifying several heteroge-
neous models for optimisation have been widely ignored – a gap
we aim to close. As a by-product, we give a formulation of warm
and cold start-up times for power plants that improves existing
power plant models. The concepts are detailed with the load-
distribution problem faced in virtual power plants and evaluated
on several random instances where we observe that a significant
number of soft constraints of individual actors can be satisfied
if considered.

I. CONSTRAINT OPTIMISATION

PROBLEMS IN POWER SYSTEMS

R
ESOURCE allocation and scheduling are difficult prob-
lems that occur frequently in energy systems, be it the

coordination of power generation [1], demand-side manage-
ment, or building control software. In a producer-based view,
supply needs to meet the demand as accurately as possible
in order to guarantee stability and avoid costs incurred by
corrective measures. Similarly, consumers may try to find
cost-minimising schedules for processes required throughout
a day with respect to time-dependent energy prices. Current
initiatives1 are based on the assumption that groups of pro-
sumers (i.e., energy producers and/or consumers) can form and
team up to achieve better prices or production rates for their
participants. We also adopt the notion of agents, indicating
that the prosumers are in principle autonomous entities, even
if they surrender the decision about their power output to the
group.

A straightforward solution (see, e.g., [2], [3], [4], [5]) to this
resource allocation problem is to model the decision making
process (e.g., distributing the load in a virtual power plant
(VPP) or scheduling energy-consuming domestic processes in
a consumer coalition) as a mathematical optimisation problem
such as a mixed integer program (MIP), a linear program

1cf. https://www.energiekosten-stop.at/ for consumer alliances or http:
//www.swm.de/geschaeftskunden/effizienz-umwelt/virtuelles-kraftwerk.html
for virtual power plants

(LP) or as a constraint satisfaction and optimisation problem
(CSOP) as done by industrial distributed energy management
tools such as Siemens DEMS [6] or PLEXOS Integrated
Energy Model [7]. DEMS is used, e.g., by the municipal utility
of the city of Munich for controlling a VPP [8]. In essence,
the problem is specified in terms of (decision) variables,
their associated domains, and constraints that regulate which
assignments are valid. The task accomplished by the respective
solvers is then to assign values to all variables such that
no constraint is violated and an optimisation objective is
minimised (or maximised).

Typically, such tools (DEMS in particular) offer a predefined
range of agent types such as energy generators, storages, or
controllable loads. Users may then specify the topology of
their energy system to calculate optimized power schedules.
A concrete power generator is thus essentially represented
by one tuple in a data repository containing the parameters
defining its behaviour. Consequently, the provided models
constitute a static one-for-all solution that needs to encompass
all supported characteristics of power generators, including,
e.g., time-dependent properties such as inertia.

Clearly, power generators show varying characteristics such
as change rates, cool or warm start-up times or power bound-
aries depending on, e.g., the power plant type or manufacturer.
Parametrised models as described above cannot support this
variety. At some point the model has to be fixed for all par-
ticipants and individual variables necessary to model a certain
constraint cannot be added. To overcome this limitation, we
suggest to synthesise an optimisation problem from several in-

dividual models. Such synthesised models allow for individual
preferences (typically in the form of knowledge acquired by
power plant operators such as economically optimal produc-
tion ranges or limited ramp-up or -down of a generator) and
separate modelling of the organisational optimisation problem
and physical models of individual participants – properties that
are attractive for organisations as more clients can be served
as well as for individual participants as they can influence the
assigned plans. This methodology is not only nice to have in
multi-agent systems, where optimisation problems result from
a combination of several sub-problems – it is necessary.

Our contribution leads to a methodology that offers:
1) support for heterogeneous prosumers requiring specific

sets of variables;
2) isolated modelling of physical components;
3) clean separation of the organisational aspects such as
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objectives or fairness constraints from physical models;
4) incorporation of individual preferences into the optimi-

sation routine of a coalition to increase and incentivise
the participation.

We exemplify model synthesis with the problem of creating
schedules in a virtual power plant and show how to integrate
custom behaviour in the form of cold and warm start-up
times that are specific to certain power plant types as well as
individual economical preferences. While we demonstrate the
modelling and synthesis approach for a single organisation,
these concepts can be incorporated to solve hierarchical re-
source allocation problems as described in [9], which focused
on the abstraction of constraint models.

The paper is structured as follows: Sect. II introduces a
formalism to express preferences with the help of constraint
relationships while Sect. III shows the general approach to
power plant scheduling within a virtual power plant. Both
approaches are used in Sect. IV to synthesise individual mod-
els within a group of power plants. Sect. V then instantiates
the general framework for use with IBM ILOG CPLEX. Our
experimental results and the findings drawn from them are
discussed in Sect. VI. We conclude the paper with a discussion
of future research directions.

II. CONSTRAINT PROGRAMMING WITH CONSTRAINT

RELATIONSHIPS

As we suggest a modelling methodology for constraint
satisfaction and optimization problems (CSOPs, see, e.g., [10])
to solve resource allocation problems, we briefly revisit the
core model elements as well as the definition of constraint
relationships [11] that we use to denote individual preferences
of single agents. A CSOP ζ = 〈X ,D, C, f〉 consists of a set of
decision variables X that take values from the domain D where
consistent assignments θ ∈ (X → D) are regulated by the set
of constraints C. We write θ |= c if the constraint c is satisfied
by an assignment θ. The objective function f : (X → D)→ R

measures the quality of a solution and effectively imposes an
ordering over the assignments where we seek the best one.

However, not all constraints need to be hard requirements
and some may also be violated if no assignment simultane-
ously satisfies all constraints [12]. We call these constraints
soft and denote them by Cs as opposed to hard constraints
Ch with Ch ∪ Cs = C, Ch ∩ Cs = ∅. A set of constraint

relationships for the soft constraints Cs of a CSOP ζ is given
by a binary asymmetric relation R ⊆ Cs×Cs whose transitive
closure R+ is a partial order relation. We write c′ ≺R c or
c ≻R c′ iff (c, c′) ∈ R to define c to be more important than c′,
analogously forR+. If c′ ≺R c we call c′ a direct predecessor,
if c′ ≺R+ c a transitive predecessor of c. Moreover, we refer to
the constraint relationship graph as the directed graph spanned
by 〈Cs,R〉. Figure 1 shows a toy example of a CSOP with
constraint relationships.

The binary relation over soft constraints needs to be lifted
to sets of soft constraints that are violated by an assignment.
Such a violation set is denoted by capitalizing the letter used
for the assignment; i.e., for some assignment t ∈ (X → D)

c12/3

c21/1 c3 1/1

X : {x, y, z}, D: {0, 1, 2}, C : {c1, c2, c3}

with:

– c1 : x+ 1 = y

– c2 : z = y + 2
– c3 : x+ y ≤ 3

Fig. 1. Not all three constraints can be satisfied simultaneously, e.g. c2 forces
z to be 2 and y to be 0, conflicting with c1, We can choose between solutions
satisfying {c1, c3} or {c2, c3}. Weights are given in the form “SPD / TPD”.

its violation set is T = {c ∈ Cs | t 6|= c}. We propose
different dominance properties p ∈ {SPD,TPD} where SPD
(single-predecessor-dominance) indicates that one constraint
may only dominate a single predecessor and TPD (transitive-
predecessor-dominance) defines that a single constraint is more
important than all of its predecessors (corresponding to the
relative importance among constraints) – we refer to [11] for
more details. We write T −→p

R U to denote that the violation
set T worsens to U with dominance level p and use the
following rules:

T −→p
R T ⊎ {c} (W1)

T1 −→
p
R U1 T2 −→

p
R U2

T1 ⊎ T2 −→
p
R U1 ⊎ U2

(W2)

T ⊎ {c} −→SPD
R T ⊎ {c′} if c ≺R c′ (SPD)

T ⊎ {c1, . . . , ck} −→
TPD
R T ⊎ {c′} (TPD)

if ∀c ∈ {c1, . . . , ck} : c ≺R+ c′

Finally, we define a partial order over solutions, denoted
by t >

p
R u and to be read as “t is better than u”, using

T (−→p
R)

+ U (meaning repeated sequential application of
the rules) for the selected p ∈ {SPD,TPD}. To use them in a
CSOP, we calculate weights for the constraints that respect the
partial order >p

R where we summarise the weights of violated
constraints as the penalty of a solution:

wSPD
R (c) = 1 +max{wSPD

R (c′) | c′ ∈ C : c ≻R c′}

wTPD
R (c) = 1 +

∑

c′∈Cs:c≻Rc′

(2 · wTPD
R (c′)− 1)

Consequently, we define an objective based on p : (X →
D)→ N as:

minimize
θ

p(θ) =
∑

c∈Cs,θ 6|=c

w(c) (1)

III. SCHEDULING POWER PLANTS WITHIN A VIRTUAL

POWER PLANT

Our approach to synthesise individual models is exemplified
with the problem of finding schedules for power plants in a
virtual power plant that we described in [9] and [13]. This
problem is also known as economic load dispatch (ELD) [14]
or unit commitment (UC) [15]. In essence, the task is to
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int lastSimStep = 10;
range TIMERANGE = 0..lastSimStep;
{string} PowerPlants = ...;

tuple PowerPlantData {
float minimal; float maximal; float fixedRamp;

};

PowerPlantData plants [PowerPlants] = ...;
float demand[TIMERANGE] = ...;

dvar float + production [PowerPlants][TIMERANGE];
dexpr float totalProduction [ t in TIMERANGE] =

(sum( p in PowerPlants ) ( production [p][ t ]));

minimize
sum ( t in TIMERANGE )

abs(demand[t] − totalProduction [ t ]);

subject to {
forall (p in PowerPlants, t in 0 .. ( lastSimStep − 1)) {

production [p][ t ] >= plants [p ]. minimal;
production [p][ t ] <= plants [p ]. maximal;
abs( production [p][ t ] − production[p][ t+1])

<= plants [p ]. fixedRamp;
}

}

Listing 1. A minimalistic, parametrised model of a load distribution problem

distribute a given load (for a certain time window) to a set
of power generators in such a way that their capacities as
well as inertia between consecutive time steps are respected.
We present this basic scheduling problem as a CSOP (which
we will refine to accommodate additional model aspects):

minimize
Pa

t

∑

t∈W

|Pt −Dt| , Pt =
∑

a∈A

P a
t (2)

subject to ∀a ∈ A, ∀t ∈ W : P a
min ≤ P a

t ≤ P a
max,

vamin

(
P a
t−1

)
≤ P a

t ≤ vamax

(
P a
t−1

)

where P a
t are the decision variables representing the produc-

tion of plant a ∈ A at time step t ∈ W , the scheduling
window. The demand is given as the vector D and basic
properties about the constraints of each power plant include
minimal and maximal production values, Pmin and Pmax and
functions denoting minimal and maximal production given the
current output vamin, v

a
max : R → R to incorporate inertia and

model the ramping behaviour of power plants [16]. To make
this example more concrete, we assume that a power plant is
described by its production boundaries as well as a fixed ramp
up rate between two consecutive time steps (taking the role of
vmin and vmax) depending on the nameplate capacity as, e.g.,
given in [17]. We can then formulate the optimisation problem
from Eq. 2 in IBM’s optimisation programming language
(OPL) as in Listing 1. OPL is used by IBM ILOG CPLEX [18]
which in turn can be employed by both DEMS and PLEXOS.

The listing shows the shortcomings of a parametrised

model: All power plants are described by the same set of

TABLE I
DIFFERENT COLD AND HOT START-UP TIMES FOR POWER PLANT TYPES. A

COLD START OCCURS IF A PLANT IS DOWN FOR MORE THAN 48H, A HOT

START IF IT IS DOWN FOR LESS THAN 8H. TAKEN FROM: [17], [21]

Plant type Cold start-up (h) Hot start-up (h)

Black coal 4 – 5 2
Brown coal 6 – 8 2 – 4
Gas turbine 0.5 0.25
Photothermal 4 – 5 2

parameters and constraints are defined uniformly for all power
plants and time steps. Hence, the possible variety is severely
limited.

In order to achieve feasible schedules, a number of different
types in constraints are usually employed in power plant
models. While the models presented within the scope of
this work are far from complete and much more detailed
models exist (see, e.g., [14], [15], [16]) these types are
common and therefore representative. In addition, the more
complex and heterogeneous models found in the literature only
emphasise the need for a methodology to incorporate these
diverse descriptions of physical and economic limitations with
organisational aspects. The types of constraints considered
here are:

Minimal up/down times: a generator is required to run (or
be switched off) for a certain number of steps before
being switched off (or turned on) [15].

Ramp up/down rates: usually, a fixed amount of produc-
tion change between two consecutive time steps is as-
sumed [19], especially in thermal power plants in which
physical boundaries for heating and cooling the system
have to be captured (as used in Listing 1). Alternatively,
the possible change can be specified as a relative quantity
denoting the percentage of the current output that a power
plant can adapt.

Cold/warm start-up times: a power plant may need a cer-
tain number of time steps to ramp up from 0 to its min-
imal production level as modelled by [16]. However, for
some plants, this start-up duration depends on the down-
time as “cold starts” differ from “warm starts” (see Table I
for sample values). We show how to formalise these start-
up times in a MIP-framework using the transition system
in Fig. 2. We consider the actual duration of a start-up
as opposed to the costs which can be approximated with
exponential functions [20].

Please bear in mind that not all power plants feature the
same constraints. Consider, e.g., a power plant where the ramp
up/down rates are high enough to regulate from minimal to
maximal production in just one time step (say 15 minutes).
Then, the model may not contain such a constraint [19]. If we
want to consider this constraint in a parametrised model, all

power plants would have to include model elements (e.g., ramp
up rates). The problem becomes even more obvious when we
consider minimal off times. As we demonstrate in Sect. IV-A,
we need additional decision variables for the current off time
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off

su

on

[sig = 1] / cd← ic

[cd > 0] / cd← cd− 1

[cd = 0]

[sig = −1]

Fig. 2. Transition system to model adaptive start-up times depending on
down time. The signal (sig) takes values from {−1, 0, 1} where 1 shows
a start-up, 0 is the default, and −1 triggers a shut-down. A countdown is
initialised with ic as a result of a function of the down time and has the plant
stay in the state su (start-up) for ic steps. A plant can only contribute in the
state on. Expressions in brackets contain guards and other annotations at the
transitions denote actions manipulating local variables.

to adequately model these constraints. A parametrised model
would again introduce these variables for all power plants
including those that do not show minimal off times. For them,
dummy values allowing to ignore certain constraints (e.g., a
fixed ramp up rate of Pmax) would be required.

From an engineering perspective, it thus makes sense to
model these aspects separately. Variants of these constraints
can also be specified as preferences, if, e.g., a ramp up of
15 % is technically possible but it is more desirable to limit
ramp up to 10 % to save expenses and material. We will use
these exemplary constraints to create individual, heterogeneous
power plant models to be used in synthesised models.

IV. SYNTHESIS OF COALITION MODELS

In light of the presented problems we can distinguish two
aspects that are intermingled in Eq. 2:
Individual Agent Models (IAM) describe the properties of

one agent representing a physical entity in terms of con-
straints for the available production. Constraints can be
formulated depending on the internal state (being on/off,
production levels etc.) independent of other agents. This
model needs to be provided by the agent designer, e.g.,
the power plant manufacturer, possibly with customi-
sations by its operator. An IAM defines the feasible
production or consumption range of an agent but also
regulates possible transitions between different time steps.
Moreover, preferences (such as those avoiding high ramp-
up rates) can be specified with constraint relationships to
further constrain feasible schedules.

Organisational Templates (OT) represent the specific goals
of an organisation or a coalition formed by the organ-
isation. We consider organisations to be entities that
exist independently of their specific agents and are there-
fore modelled separately [22]. The template captures the
optimisation criterion and provides so-called interface

variables that each IAM needs to incorporate. Additional
(soft) constraints can impose policies of the organisation
such as “prefer agents of type X” or “distribute resources
in a fair manner”.

Model synthesis is concerned with creating a CSOP from a
set of agent models including their individual preferences and

Organisation

Template (OT)
Individual Agent Models (IAM)

+

=

Synthesised Model (SM)

+ Constraint Relationships

 Global 

constraints Interface 

variables Objective 

functions

 Physical properties for valid 

production Local variables

 Tie individual preferences to 

organisation objectives Preferences over constraints

Fig. 3. Overview of the synthesis process

an organisational template as Fig. 3 shows. Aside from the
generally required parameters of the individual agent models
introduced in Listing 1 such as possible contributions, the
power plant models exhibit varying characteristics regard-
ing feasible schedules given by the constraints presented in
Sect. III. Recall that to formalise these properties, we might
need additional decision variables such as number of time
steps a power plant has been switched off to capture the
down time. As only some power plants may need these
for modelling their start-up behaviour, we call them local

variables. IAMs constitute a possible refinement of option

models in the context of Energy Agents, a unifying framework
for agent-based energy systems [23].

In our VPP example, the interface decision variables are
the scheduled production values of all power plants over all
time steps. Similarly, P a

min and P a
max need to be specified

by each power plant a to calculate load percentages. Thus,
the interface variables model the homogeneous parts of all
considered agents as opposed to the heterogeneity introduced
by custom behaviour in local variables: To accommodate
minimal up/down times, we need variables ⊤t and ⊥t that
represent for how many time steps a power plant has been
up or down, respectively, at time step t. For convenience, we
further define νt ↔ Pt > 0. A minimal up time of ⊤min is
expressed by the following constraint:

∀t ∈ W : νt ∧ ¬νt+1 → ⊤t ≥ ⊤
min (3)

For start-up times that depend on down times we need a count-
down variable that regulates the time steps the power plant
has to be in the start-up state shown in Fig. 2. We will further
discuss how to formulate this constraint but first describe the
general steps required for model synthesis.

A. Components of Model Synthesis

We first formally illustrate the ingredient models of our
synthesis approach and give an implemented example using
OPL in Sect. V. For doing so, we assume an organisation
λ that controls a set of agents, Aλ, along with their IAMs
that consist of the interface variables X λ and local variables
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X̂ a for each agent a. In our example, modelling down-
time limitations, X λ = {Pmax} ∪ {Pt | t ∈ W} and
X̂ a = {P ∗

min, P
∗
max} ∪ {⊤t,⊥t, νt | t ∈ W} would be a

suitable choice. We need Pmax to specify load factors later on
and can technically distinguish Pmax from Pt since the former
are indeed constants and not decision variables as their value is
fixed for a power generator. However, for ease of presentation
we assume Pmax to be just a decision variable with a domain
consisting of only one value and treat all variables alike. The
same holds for P ∗

min and P ∗
max that locally specify preferred

ranges of operation. Then, the valid scope for all constraints
within a single IAM of an agent a is X λ ∪X̂ a = X a. The set
of individual constraints Ca consists of both hard and soft
constraints, Cah and Cas where Ra represents the constraint
relationships defined over Cas . We illustrate how to tie the
auxiliary local variables in X̂ a to the interface variables with
the vector denoting whether a plant is running:

∀t ∈ W : νt ↔ P 0
t > 0

This expression helps in defining additional constraints and
can be implemented by a decision expression in OPL directly.
An individual preference for a certain production subrange
[P ∗

minP
∗
max] is specified by the soft constraint:

∀t ∈ W : P ∗
min ≤ P a

t ≤ P ∗
max

To summarize, IAMs are specified as constraint satisfaction
problems and represented as 〈X a,Da, Ca,Ra〉 with suitable
choices of domains.

Next, consider the organisational template (OT). It provides
at least the interface variables for all its subordinate agents
– i.e., in contrast to a single IAM which specifies in terms
of variables x ∈ X λ, the OT consists of a set of interface
variables XAλ

= {xa | x ∈ X λ, a ∈ Aλ} for every agent a.
These variables have to be provided in every IAM so the OT
can use them for defining the organisational goal. Note that
this would certainly not be true for local variables. It is not
possible to specify, e.g., ⊤a

t indexed by a as it does not have to
be defined in every model – contrary to a parametrised scheme.
For unit commitment, the objective is taken from Eq. 2:

f = minimise
Pa

t

∑

t∈W

∣∣Pλ
t −Dt

∣∣ , Pλ
t =

∑

a∈A

P a
t

where Dt are constants representing the demand at time
steps t and Pλ

t can either be seen as an additional decision
variable in OT restricted by the constraint to be the sum of
all agent productions or directly as a decision expression that
is fully determined by the value of its associated decision
variables (P a

t ). A soft fairness constraint for a VPP could
be that no power plant should produce less than 40 % of its
nominal capacity, Pmax, if possible. We call this organisational
constraint oc1:

oc1 : ∀a ∈ Aλ, t ∈ W : P a
t ≥ 0.4 · P a

max (4)

Similarly, we could impose a soft upper bound (oc2) for the
load factor to prefer schedules that do not rely on few power
generators providing all energy. All together, an organisation

template is given by 〈XAλ

,Dλ, Cλ,Rλ, f〉 – the interface
variables instantiated for each agent and their domains, a
set of organisational hard and soft constraints with optional
constraint relationships and an optimisation function f .

B. Steps of Model Synthesis

Synthesis takes a set of IAMs 〈X a, Ca〉 for agents a ∈ Aλ

and an organisation template to create the synthesised model
(SM) for λ, a CSOP ζ = 〈X ,D, C,R, f〉, the construction of
which we discuss step-by-step.

Step 1: First we make sure that local variables do not
clash when combining several agents by renaming them to a
unique identifier. A substitution operator {x1 7→ x2} replaces
all occurrences of the variable x1 by the variable x2 in a
constraint or optimisation function. We then write xa for a
variable x ∈ X a. Note that this intentionally connects the
interface variables X λ used in an IAM with the counterpart
in the OT, XAλ

. The set of variables of ζ is then defined as
X = XAλ ⋃

a∈Aλ{xa | x ∈ X̂ a} (furthermore, constraints
keep their original domains to form D).

The constraints C then consist of all hard and soft constraints
of the organisational template and the constraints in all IAMs
after substituting variables by their labelled counterparts.
Hence:

C = Cλ ∪
⋃

a∈Aλ

{c{x 7→ xa, ∀x ∈ X a}|c ∈ Ca}

Constraint relationships for the synthesised model can be
formed under the assumption that organisational constraints
have a higher priority than individual preferences.

Step 2: As Fig. 4 shows, we then impose artificial edges
that specify that all constraints in the OT are more important
than all soft constraints of IAMs that do not have constraints
that are deemed more important. However, this is a design
decision as it might not be desirable for all problems to
strictly prioritise organisational constraints. It should be noted
further, that constraint relationships of different IAMs all have
a disjoint scope – the respective X a sets – and that the
constraint relationships are subject to the variable renaming
as well.

R = Rλ∪
⋃

a∈Aλ

Ra∪{(x, y) | x ∈ Cλs , y ∈ C
a
s , 6 ∃z : z ≻Ra y}

Step 3: Finally, as the optimisation function is defined
in terms of the instantiated interface variables, XAλ

, we
can keep f as the objective of ζ. This yields two possibly
conflicting objectives regarding the satisfaction of individual
and organisational soft constraints versus meeting the original
objective f . We could then use an existing multi-objective
optimisation technique such as utopia search [24] but propose
an alternative three- stage optimisation to strongly favour the
organisational objective f while still optimising p if possible.

C. Multi-objective Optimisation with

Constraint Relationships

During synthesis, constraint relationships are responsible for
combining soft constraint priorities as well as establishing a
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connection to organisational constraints. Fig. 4 shows how
agents have different preferences on soft constraints that
only affect their individual performance, e.g., economically

optimal states that prescribe that production should better be
in this range whereas other values are technically feasible.
Optimizing the SM ζ = 〈X ,D, C,R, f〉 with respect to the
original objective and soft constraint satisfaction (as defined
by the penalty function p in Eq. 1) can be achieved as follows
(w. l. o. g. we restrict ourselves to minimization problems):

1) Let f̂ be the optimal result of ζ (with the original
objective f ).

2) Find an upper/lower bound f∗ for the objective such
that f∗ = δf × f̂ for some x, where δf ≥ 1.0 for
a minimisation problem. Note that for a non-negative
minimisation objective, δf × f̂ = 0 so the bound
collapses to a single point, 0 such that any valid solution
has to be optimal if at least one is.

3) Impose a constraint to restrict f(θ), θ ∈ (X → D).
Let ζ ′ be the problem that minimises the violation of
penalties with respect to the bound f∗: ζ ′ = 〈X ,D, C ∪
{c′ : (f(θ) ≤ f∗},R, p〉.

4) Solve ζ ′ and let p̂ be the minimal sum of penalties of
violated constraints.

5) Impose a restriction on the sum of penalties to be less
than or equal to p̂ × δp and solve for the original
objective: ζ ′′ = 〈X ,D, C ∪ {c′′ : (p(θ) ≤ p̂},R, f〉.
This step is necessary as otherwise a solver might just
lie within the tolerance of f∗ even if better solutions in
terms of f (having the same penalty sum) exist.

Appropriate choices for δf and δp have to be found spe-
cific to a problem but so do weights of a single combined
objective function commonly employed in a global criterion
method [24]. This approach can certainly be costly if the opti-
misation problems themselves are hard and time-consuming
to solve – but if the coalitions are sufficiently small and
organised (as, e.g., in a hierarchical system [9]) the benefits
of finding solutions that are attractive to the individual par-
ticipants outweigh the expensive optimisation runs. Moreover,
the solutions found in previous steps can be used as starting
points in subsequent runs to speed up the optimisation and
other multi-objective optimisation approaches such as utopia
search require several optimisation runs as well.

V. IMPLEMENTING SYNTHESIS IN CPLEX

We exemplify the synthesis process with an example of a
VPP consisting of three power plants with heterogeneous con-
straints modelling the requirements presented in Sect. III. For
each power generator, we formulate the individual constraints
and explain the usage of local and interface variables. The
problem is comparable to the parametrised model presented
in Listing 1. The models are directly presented in the Opti-
misation Programming Language (OPL) used in CPLEX [18]
to provide a prototype even though our concepts do not rely
on any specific CPLEX features such that the models could
equivalently have been presented in a pseudo-code for CSOPs.

Extensions to OPL regarding soft constraints are therefore im-
plemented using the keyword SOFT-CONSTRAINTS in com-
ments. We do not describe entire models (which are provided
online2) but rather highlight the most important aspects.

A. Organisational Template

We start with the organisational template as it contains the
core optimisation problem to be tackled. The first section
indicates the identifier of the set consisting of the agents’
identifiers (plants in our case) as well as generally needed
constants such as the time series and load curve.

{string} plants = ...;
range TIMERANGE = 0..5;
float loadCurve[TIMERANGE] =

[200.0, 250.0, 230.0, 247.0, 349.0, 551.0];

The set of plants needs to be filled with the identifiers
of actual power plant models. TIMERANGE and loadCurve

are furthermore examples of interface variables that individual
agents may use to define their local variables and constraints.
Additional decision variables and expressions common to
all agents are described in the next section. Production for
different time steps are the decision variables in this example
and we require each agent to provide its maximal output
(nameplate capacity) such that we are able to define the load
factor of each plant. Note that these decision variables are
indexed by the set of child agents (XAλ

). Decision expressions
primarily are syntactic tools to facilitate the formulation of
optimization functions and constraints. They have to be fully
determined by the value of the decision variables but offer to
aggregate a set of decision variables using the sum, min, or
max constructs. The presented expressions serve to provide a
formulation of the constraint presented in Eq. 4.

float P_max[plants] = ...;
dvar float + production [ plants ][TIMERANGE];
dexpr float totalProduction [ t in TIMERANGE] =

sum (p in plants ) production [p][ t ];
dexpr float loadFactor [p in plants ][ t in TIMERANGE] =

production [p][ t ] / P_max[p];
dexpr float minLoadFact[t in TIMERANGE] =

min(p in plants ) loadFactor [p][ t ];
dexpr float maxLoadFact[t in TIMERANGE] =

max(p in plants ) loadFactor [p][ t ];

Violation takes the sum of the absolute values of the deviation
between the aggregated production and the load curve. It is
the quantity that we aim to minimize.

dexpr float violation = sum(t in TIMERANGE)
abs( totalProduction [ t]−loadCurve[t ]);

minimize violation ;

We can explicitly request that all productions are below the
nameplate capacity as a hard constraint. Furthermore, this
organisational template provides for two soft constraints re-
garding distributions of load — denoted by oc1 and oc2. They
indicate that the load factor of the individual agents should not

2Please refer to footnote 4
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vary too much if possible thereby avoiding a highly skewed
resource allocation. In particular, power plant operators might
expect to have their generator contribute at least to a certain
extent to generate revenue. Indifference between oc1 and oc2

is expressed by not modelling a relationship.

subject to {
forall ( t in TIMERANGE) {

oc1: minLoadFact[t] >= 0.4;
oc2: maxLoadFact[t] <= 0.6;
forall (p in plants ) {

production [p][ t ] <= P_max[p];
}

}
};

/∗ SOFT−CONSTRAINTS
oc1
oc2 ∗/

Compared to Listing 1, we only require a subset of the homo-
geneous aspects (the maximal power). However no restriction
in terms of rates of change and other, inertia-based constraints
are imposed as they are part of the individual agent models.

B. Individual Agent Models

We describe three types of power plant models consisting
of the constraints presented in Sect. III. These are imple-
mented independently from the organisational template but
also contain definitions for the interface variables to be tested
in advance. The first type, A, does not implement a warm and
cold start-up and does not foresee minimal up and down times.
Thus, it corresponds to a power plant that can be started up
fast enough for the considered time step durations [19]:

float P_min = 50.0; float P_max = 100.0;

float rateOfChange = 0.15;
dvar float production [TIMERANGE];
dexpr int running[ t in TIMERANGE] = !(production[t] == 0);

subject to {
forall ( t in 0.. TIMERANGE) {

running[ t ] => production[ t ] >= P_min;
rate_of_change : (running[ t ] == 1) && (running[t+1] == 1)
=> abs(production [ t ] − production[ t+1])

<= production[ t ] ∗ rateOfChange;
c1: (running[ t ] == 1) && (running[t+1] == 1)
=> abs(production [ t ] − production[ t+1])

<= production[ t ] ∗ 0.07;
c2: (running[ t ] == 1) && (running[t+1] == 1)
=> abs(production [ t ] − production[ t+1])

<= production[ t ] ∗ 0.10;
}

};
/∗ SOFT−CONSTRAINTS
c1 >> c2 ∗/

During synthesis, the system automatically distinguishes be-
tween P_max being an interface variable and P_min being
a local variable. Some power generators such as hydro power
plants could be throttled down to no production at all, whereas
others can enforce a minimal operation production as modelled

in this example. The decision expression running helps syn-
tactically to distinguish between these states. Note that here,
production is not indexed over any agent set, so an individual
agent model only has access to its own decision variables. We
furthermore have two constraints reflecting a preference for
small rates of change which aim for operational stability.

The second type, B, is used to express minimal uptimes [15].
We need additional decision variables to capture the number
of time steps a plant is running consecutively at a particular
time step. Based on these, we can decide whether a transition
from on to off is feasible. And for the sake of the argument,
assume that no relative rate of change but rather a fixed
rate of change at every production level is given (we omit
variables already discussed). We also assume three ranges of
different economical preference that can be expressed with soft
constraints:

int minUpTime = 2;
float fixedChange = 20;

dvar int+ consRunning[TIMERANGE];
[...]
forall ( t in TIMERANGE) {

c1: production [ t ] >= 22 && production[t] <= 25;
c2: production [ t ] >= 20 && production[t] <= 30;
c3: production [ t ] >= 18 && production[t] <= 33;

fixed_change : (running[ t ] == 1 && running[t+1] == 1) =>
abs( production [ t ] − production[ t+1]) <= fixedChange;

cons_run: (running[ t+1] == 1 &&
consRunning[t+1] == (1 + consRunning[t ])) ||

(running[ t+1] == 0 &&
consRunning[t+1] == 0);

min_up_time: (running[ t ] == 1 && running[t+1] == 0) =>
(consRunning[t] − minUpTime) >= 0;

}
/∗ SOFT−CONSTRAINTS
c1 >> c2
c2 >> c3 ∗/

Note that it becomes apparent that a parametrised model would
now be severely limited. To support minimal up times within
a MIP framework, we need those variables (or implement
custom constraints and propagators for a constraint solver) but
would have to offer these variables for all plants.

Finally, our third type, C, incorporates hot and cold start-up
times based on the down time (with down time being defined
analogously to up time in the previous model). In essence, we
provide a MIP formulation for the transition system presented
in Fig. 2 implementing start-up times that respect the data
shown in Table I. We use a stepwise function that returns 2
time steps duration for down times of less than 3 and 4 time
steps for longer down times. A decision variable signal stores
when to initiate a start-up process and we need to enforce that
those signals are only sent when a plant is in the appropriate
state (e.g., sending a start-up signal only when in the idle

state). Additionally, we also have three soft constraints (c1,
c2, c3) regarding economical ranges and rates of change.

int IDLE = 0;
int STARTING = 1;
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int STOPPING = 2;
int UP = 3;
stepFunction startUp = stepwise{ 2−>3; 4 };

dvar int+ countdown[TIMERANGE];
dvar int+ powerPlantState [TIMERANGE] in 0..3;
dvar int+ consStopping[TIMERANGE];
dvar int+ consRunning[TIMERANGE];
dvar int+ state [TIMERANGE] in 0..3;
dvar int signal [TIMERANGE] in −1 .. 1;
[...]
forall ( t in TIMERANGE) {
c1: production [ t ] >= 300.0 && production[t] <= 350.0;
c2: production [ t ] >= 280.0 && production[t] <= 370.0;
c3: abs( production [ t ] − production[ t+1]) <= 20;

signal_states : signal [ t ] == 1 => state [ t ] == IDLE &&
signal [ t ] == −1 => state[t ] == UP;

state [ t ] == IDLE =>
( state [ t+1] == IDLE ||
( state [ t+1] == STARTING &&

signal [ t ] == 1 &&
(countdown[t+1] == startUp(consStopping[ t ]))));

( state [ t ] == STARTING && countdown[t] >= 1) =>
( state [ t+1] == STARTING &&

countdown[t+1] == countdown[t] − 1);
( state [ t ] == STARTING && countdown[t] == 0) =>

state [ t+1] == UP;
state [ t ] == UP => (state[ t+1] == UP ||

( state [ t+1] == IDLE && signal[t] == −1));

}
/∗ SOFT−CONSTRAINTS
c1 >> c2
c1 >> c3 ∗/

This model is significantly more detailed than the previous
ones and indicates how future realistic models could be
integrated to achieve more accurate schedules.

C. Synthesised Model

Combining these three individual agent models with the
organisational template results in one CPLEX model where
constraints, local variables and interface variables are replaced
as described earlier. In contrast to the formal definition (where
x would just be replaced by xa), we can however distinguish
interface from local variables in the synthesised model. This
is due to the fact that it can come in handy to have interface
variables indexed by plant identifiers (e.g., for defining the
expression totalProduction). As we cannot assume local
variables to be available for every individual agent, we add the
plant identifier to the variable name, such rateOfChange

would become rateOfChange_a for a plant a. The in-
dividual constraint relationship graphs are combined with
the organisational template yielding a synthesised graph as
depicted in Fig. 4. We give some snippets that show parts of
the synthesised model.

{string} plants = {"b" , "c" , "a"};
float P_max[plants] = [35.0, 400.0, 100.0];
dexpr float totalProduction [ t in TIMERANGE] =

sum ( p in plants ) production [p][ t ];
[...]

oc116 oc216

c1
a2

c2
a 1

c1
b 4

c2
b 2

c3
b 1

c1
c 3

c2
c 1

c3
c 1

Fig. 4. Synthesised Constraint Relationship Graph with weights presented
for TPD

float rateOfChange_a = 0.15;
float fixedChange_b = 5;
dvar int+ consStopping_b[TIMERANGE];
[...]

subject to {
forall ( t in TIMERANGE) {
c1_b: production [ "b" ][ t ] >= 22 && production["b"][t ] <= 25;

}
[...]

};
/∗ SOFT−CONSTRAINTS
oc1
oc2
oc1 >> c1_b;
oc1 >> c1_a;
oc2 >> c1_a; ∗/

The last step to acquire a solvable model is then to transform
the constraint relationships into weights and add decision
variables and expressions to incorporate these weights as
penalties to come to a scalar objective function. Essentially,
all soft constraints are collected and used to index a vector
of penalties and a reformulation is performed for each soft
constraint c ∈ Cs:

c′ : (c ∧ pc = 0) ∨ (¬c ∧ pc = w(c))

which leads to the following changes in OPL:

{string} softConstraints = {"c1_b", "c1_c" ,[...]};
dvar int+ penalties [ softConstraints ][TIMERANGE];
dexpr float penaltySum = sum(t in TIMERANGE,

c in softConstraints ) penalties [c ][ t ];
[...]

c1_b: ( production ["b" ][ t ] >= 22 && production["b"][t ] <= 25
&& penalties["c1_b"][t ] == 0) ||

(!( production ["b" ][ t ] >= 22 && production["b"][t ] <= 25)
&& penalties["c1_b"][t ] == 4);

We then have penaltySum as the expression to minimize
the violation of soft constraints.

VI. EVALUATION

Evaluating our approach at this stage is not straightforward
as to the authors’ knowledge, no public benchmark library
containing unit commitment models is available. In addition,
the described synthesis is primarily a methodology to incor-
porate heterogeneous models, not a concrete algorithm, thus
performance issues are not yet in the focus of development. To
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still get a quantitative (and as objective as possible) evaluation
about how well individual preferences can be considered, we
performed synthetic randomised experiments based on the
constraints presented in the paper and power plant data3.

The source code of both the experiments and the example
discussed in Sect. V are available online4 to facilitate replica-
tion of our experiments.

A. Experimental Design

We first generate a pool of 400 power plant models based
on the types presented in Sect. V taking into account existing
data of gas turbines and biomass power plants to capture plant-
specific properties. We then perform a number of optimisation
runs by picking a set out of these power plants randomly,
synthesising them into one model and running the three-
stage-optimisation with the synthesised model. The following
parameters characterise one experiment:

n the number of power plants
δv the delta applied to the first optimum in the three-

stage-optimisation as a tolerance
δp the delta applied to the penalty in the third step
d the dominance level SPD or TPD
r the number of runs that are conducted

Several measurements are taken to evaluate properties of
the synthesis and averaged over the r runs:

v1 – v3 the violation (discrepancy between demand and pro-
duction) for the three optimisation steps

p1 – p3 the same holds for the aggregated penalties
−→v , −→q measures the relative improvement or worsening of v1

to v3 and p1 to p3 to show how the objectives change
when considering penalties: −→v = v1

v3
, −→p = p1

p3

#pred is the average number of predecessors per violated con-
straint as a measure for how more important constraints
are treated

#vc sums up the total number of violated soft constraints
relative to the number of all soft constraints (with

−→
#vc

denoting the relative improvement from the first optimi-
sation step to the third)

Note that #pred and #vc are evaluated for the final result
returned by the three-stage-optimisation. Some runs failed to
provide a correct solution within a threshold of 3 minutes. We
excluded those results from the evaluation as our focus is not
yet on performance and robustness issues.

B. Experimental Results

We examine questions of interest and present the results of
the experiment runs.

a) Solution quality: How does taking into account in-

dividual preferences affect the solution quality? We want to
obtain an impression about how the choice of the parameters
δv and δp affect the solution quality. For all choices of param-
eters, we found that allowing a small tolerance regarding the
mismatch of demand and production allowed for comparable,

3see http://www.energymap.info/ and http://www.lew-verteilnetz.de/
4https://github.com/Alexander-Schiendorfer/synthesisenergycoalitions

TABLE II
COMPARISON OF DIFFERENT DELTAS REGARDING THE SOLUTION

QUALITY. MEASUREMENTS REPRESENT AVERAGES OVER 50 RUNS FOR 9
TIME STEPS WITH n = 5, d = SPD AND STANDARD DEVIATIONS.

(δv/δp) 1.1/1.2 1.2/1.2 1.2/1.1 1.3/1.2

−→v 1.0039 1.0161 1.056 1.022
(0.0076) (0.0286) (0.044) (0.034)

−→p 0.599 0.546 0.534 0.527
(0.116) (0.142) (0.142) (0.148)

−→
#vc 0.555 0.502 0.486 0.487

(0.132) (0.152) (0.181) (0.163)

TABLE III
COMPARISON OF DIFFERENT DOMINANCE LEVELS. MEASUREMENTS

REPRESENT AVERAGES OVER 50 RUNS FOR 9 TIME STEPS WITH

δv = δp = 20% AND STANDARD DEVIATIONS.

(n/d) 5/SPD 5/TPD 10/SPD 10/TPD
−→v 1.022 1.0001 1.027 1.0

(0.027) (0.0009) (0.038) (0.0005)
−→p 0.595 0.7484 0.45 0.774

(0.169) (0.15) (0.085) (0.168)
#pred 2.905 2.541 3.23 2.76

(0.406) (0.2569) (0.41) (0.281)
#vc 0.34 0.468 0.283 0.462

(0.12) (0.138) (0.064) (0.123)

substantial improvements in the satisfaction of soft constraints
as Table II shows. If a violation tolerance of 10% was imposed,
the solver still managed to reduce the number of violated soft
constraints by half from the optimal solution to the final one
while staying within a range of 1 % optimality. As expected,
increasing the violation tolerance leads to better reductions in
terms of penalties and soft constraints.

b) Influence of dominance property: How does the se-

lected dominance property affect the number of violated

soft constraints? The dominance property influences how
much more important a single constraint is with respect to
its dominated constraints. In the case of single predecessor
dominance, a constraint is only more important than one
of its predecessors, not a whole set. Therefore the weights
lie more closely to each other and no strong “hierarchical”
difference is imposed. Choosing the property, however, is not
straightforward as this substantially influences the number of
soft constraints that are “dropped” by a solver in favour of
more important ones. We observe this behaviour in Table III:
The percentage of violated soft constraints is significantly
higher when using TPD than SPD for both 5 and 10 power
plants while the average number of predecessors per violated
constraint (measuring its importance) is lower when using
TPD. TPD semantics lead to an average dissatisfaction of
about 40% of all soft constraints, whereas SPD only dissatis-
fies 30% albeit returning slightly worse solutions (about 2%
higher demand violations when 20% higher were allowed).
It is thus a relevant question for preference elicitation and
requirements engineering to find out whether the system’s
constraints are more hierarchical or egalitarian. Constraint
hierarchies correspond to TPD semantics [9] and we argue
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that there are certainly circumstances where having more soft
constraints fulfilled is more desirable than just satisfying the
most important ones and no others.

VII. CONCLUSION AND OUTLOOK

Although there is a vast body of literature on efficient
models and algorithms for unit commitment problems (see,
e.g., [20], [14], [19], [15] for a modest selection), to the
best of our knowledge there is no approach that consolidates
these various types of models and addresses the domain’s
inherent heterogeneity. We proposed an approach that attempts
to leverage existing models and to simplify the engineer-
ing of optimisation problems with a well-defined modelling
methodology. In addition, we showed how start-up behaviour
of thermal power generators presented in [16] or [19] can
be extended to account for start-up times that depend on the
previous down time using transition systems. We showed a
MIP formulation for this adaptive start-up problem and used
heterogeneous models employing different start-up behaviour
as the case study for our approach. Moreover, the modelling
and synthesis strategy presented allows unit operators to
express individual preferences that could not be considered
before. Our first experiments indicate that this may increase
the willingness of single power generators to collaborate in
collective schemes where autonomy is sacrificed for potential
economic benefits as we could halve the number of violated
soft constraints. As the process is fully automated, we plan
to combine it with models of the resource-levelling problem
faced in the scheduling of (short-lived) coalitions of energy
consumers to achieve better prices.
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