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Abstract—We describe our submission to the AAIA’14 Data
Mining Competition, where the objective was to reach good
predictive performance on text mining classification problems
while using a small number of variables. Our submission was
ranked 6

th, less than 1% behind the winner. We also present
an empirical study on the trade-off between parsimony of the
representation and accuracy, and show how good performance
can be obtained quickly and efficiently.

I. INTRODUCTION

THE AAIA’14 Data Mining Competition1 is related to

a problem of text classification. A corpus of 50,000

texts coming from reports of the Polish State Fire Service is

provided, with a representation consisting of 11,852 variables

(mainly based on documents words). The objective is to

classify the texts into three binary classes by the mean of an

ensemble of ten Naive Bayes classifiers, using as few variables

as possible. In this paper, we present the method we used

at the AAIA’14 Data Mining Competition. It mainly exploits

the results of a Selective Naive Bayes classifier (summarized

in Section II), trained for each of the three challenge class

variables. The best subset selections of variables are collected

and grouped together to form our submission to the challenge

(see Section III).

Interestingly, the challenge evaluation criterion combines

the test performance and the number of selected variables in a

single formula. Whereas feature selection [1] aims at improv-

ing interpretability, test accuracy and deployment time, most

papers in the literature focus on test performance only. Still,

a small number of selected variables is often a requirement

in practical data mining studies. In Section III, the trade-off

between test performance and number of selected variables

is investigated, using the challenge dataset as a case study.

Finally, Section IV summarizes the paper.

II. SELECTIVE NAIVE BAYES CLASSIFIER

We summarize the Selective Naive Bayes (SNB) classifier

introduced in [2]. It extends the Naive Bayes classifier owing

to an optimal estimation of the class conditional probabilities,

a Bayesian variable selection and a Compression-based Model

Averaging.

1http://challenge.mimuw.edu.pl/mod/page/view.php?id=565

A. Optimal discretization

The Naive Bayes (NB) classifier has proved to be very

effective in many real data applications [3], [4]. It is based on

the assumption that the variables are independent within each

class, and solely relies on the estimation of univariate condi-

tional probabilities. The evaluation of these probabilities for

numerical variables has already been discussed in the literature

[5], [6]. Experiments demonstrate that even a simple equal

width discretization brings superior performance compared to

the assumption using a Gaussian distribution per class. In

the MODL approach [7], the discretization is turned into a

model selection problem and solved in a Bayesian way. First,

a space of discretization models is defined. The parameters of

a specific discretization are the number of intervals, the bounds

of the intervals and the class frequencies in each interval.

Then, a prior distribution is proposed on this model space. This

prior exploits the hierarchy of the parameters: the number of

intervals is first chosen, then the bounds of the intervals and

finally the class frequencies. The choice is uniform at each

stage of the hierarchy. Finally, the multinomial distributions of

the class values in each interval are assumed to be independent

from each other. A Bayesian approach is applied to select

the best discretization model, which is found by maximizing

the probability p(Model|Data) of the model given the data.

Owing to the definition of the model space and its prior

distribution, the Bayes formula is applicable to derive an

exact analytical criterion to evaluate the posterior probability

of a discretization model. Efficient search heuristics allow to

find the most probable discretization given the data sample.

Extensive comparative experiments report high performance.

The case of categorical variables is treated with the same

approach in [8], using a family of conditional density estima-

tors which partition the input values into groups of values.

B. Bayesian Approach for Variable Selection

The naive independence assumption can harm the perfor-

mance when violated. In order to better deal with highly

correlated variables, the Selective Naive Bayes approach [9]

exploits a wrapper approach [10] to select the subset of vari-

ables which optimizes the classification accuracy. Although

the Selective Naive Bayes approach performs quite well on

datasets with a reasonable number of variables, it does not

scale on very large datasets with hundreds of thousands of

instances and thousands of variables, such as in marketing

applications or text mining. The problem comes both from the
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search algorithm, whose complexity is quadratic in the number

of variables, and from the selection process which is prone to

overfitting. In [2], the overfitting problem is tackled by relying

on a Bayesian approach, where the best model is found by

maximizing the probability of the model given the data. The

parameters of a variable selection model are the number of

selected variables and the subset of variables. A hierarchic

prior is considered, by first choosing the number of selected

variables and second choosing the subset of selected variables.

The conditional likelihood of the models exploits the Naive

Bayes assumption, which directly provides the conditional

probability of each label. This allows an exact calculation

of the posterior probability of the models. Efficient search

heuristic with super-linear computation time are proposed, on

the basis of greedy forward addition and backward elimination

of variables. The classifier resulting from the best subset of

variables is the MAP (maximum a posteriori) Naive Bayes,

which we call MNB in the rest of the paper.

C. Compression-Based Model Averaging

Model averaging has been successfully exploited in bag-

ging [11] using multiple classifiers trained from re-sampled

datasets. In this approach, the averaged classifier uses a voting

rule to classify new instances. Unlike this approach, where

each classifier has the same weight, the Bayesian Model Av-

eraging (BMA) approach [12] weights the classifiers according

to their posterior probability. In the case of the Selective Naive

Bayes classifier, an inspection of the optimized models reveals

that their posterior distribution is so sharply peaked that av-

eraging them according to the BMA approach almost reduces

to the MAP model. In this situation, averaging is useless. In

order to find a trade-off between equal weights as in bagging

and extremely unbalanced weights as in the BMA approach,

a logarithmic smoothing of the posterior distribution, called

Compression-based Model Averaging (CMA), is introduced

in [2]. The weighting scheme on the models reduces to a

weighting scheme on the variables, and finally results in a sin-

gle Naive Bayes classifier with weights per variable. Extensive

experiments demonstrate that the resulting Compression-based

Model Averaging scheme clearly outperforms the Bayesian

Model Averaging scheme. In the rest of the paper, the classifier

resulting from model averaging is called Selective Naive Bayes

(SNB).

D. Training Time Complexity

The algorithm consists in three phase: data preprocessing

using discretization or value grouping, variable selection and

model averaging. The preprocessing phase is super-linear

in time and requires O(KN logN) time, where K is the

number of variables and N the number of instances. In

the variable selection algorithm, the method alternates fast

forward and backward variable selection steps based on ran-

domized reorderings of the variables, and repeats the process

several times in order to better explore the search space

and reduce the variance caused by the dependence over the

order of the variables. The number of repeats is fixed to

logN + logK, so that the overall time complexity of this

phase is O(KN(logK+logN)), which is comparable to that

of the preprocessing phase. The model averaging algorithm

consists in collecting all the models evaluated in the variable

selection phase and averaging then according to a logarithmic

smoothing of their posterior probability, with no overhead

on the time complexity. Overall, the train algorithm has an

O(KN(logK + logN)) time complexity and O(KN) space

complexity.

III. CHALLENGE SUBMISSION

A. Preliminary experiments
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Fig. 1. Train versus test AUC for the MNB and SNB classifiers

The SNB classifier outputs several indicators for each

variable:

• Level: evaluation of the predictive importance of the

variable taken individually, based a normalized estimation

of class conditional entropy. The level is between 0

(variable without predictive interest) and 1 (variable with

optimal predictive importance).

• MAP: indicates that the variable belongs to best subset

of variables, related to the MNB classifier.

• Weight: weight of the variable in the SNB classifier

that exploits the model averaging method summarized in

Section II.

We consider the standard NB classifier that exploits all

the predictive variables; the non-informative variables with

Level 0 are discarded. We also consider the 1NB classifier,

which uses only one variable, the one with the highest Level.

The MNB classifier is based on a subset of variables with

fewer redundancy problems than the NB classifier. The SNB

classifier exploits the same variables as the NB classifier, with

weights per variable: it cannot be considered as a true Naive

Bayes classifier.

As the challenge requires few variables, we focus on the

MNB classifier which is very parsimonious compared to the

SNB classifier, although it is both less accurate and less robust.
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Fig. 2. AUC versus number of variables for the 1NB, MNB, NB and SNB
classifiers

We trained the classifier 2 on a 70% − 30% split of the

challenge dataset to evaluate its performance and robustness.

We obtained a mean 96.9 train AUC and 95.6 test AUC for

the SNB classifier, 94.0 train AUC and 91.6 test AUC for the

MNB classifier, which confirms the usual behavior of both

classifiers. This is illustrated in Figure 1, where the mean train

and test AUC are presented as well as the detailed AUC per

class.

We then trained the classifier using all the available data in

order to reach better accuracy and robustness, with an expected

decrease in accuracy on the challenge hidden dataset of about

1% for the SNB and 2% the MNB. In Figure 2, we report

the AUC versus the number of variables for the 1NB, MNB,

NB (empty shapes on the curves) and SNB (plain shapes)

classifiers. As a reminder, the default AUC (with no variables)

is 0.5. The results show that using one single variable, the 1NB

classifier gets very good AUC, between 0.70 and 0.85. The

MNB obtains 0.903 AUC with 20 variables for the first class,

0.959 AUC with 12 variables for the second class, 0.961 AUC

with 68 variables for the third class. The NB classifier that

keeps between 400 and 2000 informative variables out of the

11,852 input variables suffers from redundancy between the

variables, which is harmful w.r.t. the independence assump-

tion. All together, the NB uses far more variables than the

MNB and gets a lower AUC. As expected, the SNB classifier

obtains the higher accuracy using variable weights.

B. First submission

To get familiar with the challenge evaluation protocol,

we grouped together the MAP variables of our three MNB

classifiers (without removing the duplicates) and obtained a

set of 100 variables. As the variable number is greater than

that of each MNB, a better accuracy and robustness can be

expected. The challenge rules states that the variable set is

evaluated using and ensemble of ten Naive Bayes classifiers,

each consisting of at least three variables. We chose to partition

our set of 100 variables into ten random subsets of equal

size, with the hope that the resulting ensemble classifier would

behave similarly to a single Naive Bayes with 100 variables.

This first submission was settled within a few hours after the

2Available as a shareware at www.khiops.com

download of the challenge data and got a score of 0.9468 on

the leaderboard, second behind the leader (0.9476) on 2014-

04-18.

C. Additional experiments

As this first result was promising, we decided to proceed

with further optimizations. The challenge evaluation criterion

(score) is a mean AUC minus a penalty. The mean AUC

should be above 0.5 (default performance). The penalty in the

challenge is quadratic w.r.t the number of selected variables

|s| according to

penalty(s) = (
|s| − 30

1000
)2.

It is 0 with 30 variables and reaches 0.5 with 737 variables.

With 100 variables, we got a penalty of 0.005 and therefore

a leaderboard AUC of about 0.952, which is in line with our

expectation. There might be room for some improvement, by

optimizing directly the challenge evaluation criterion.

Algorithm 1 Bachward variable selection

Require: X = (X1, X2, . . . XK) {Set of input variables}
Ensure: SBest {Best subset of variables}

1: S = X,SBest = X {Start with all the input variables}
2: {Backward selection}
3: while |S| > 30 do

4: {Select best variable to remove}
5: for Xk ∈ S do

6: if (score(S − {Xk}) < score(S)) then

7: XRemove = Xk

8: end if

9: end for

10: {Update selection}
11: S = S − {XRemove}
12: if (score(S) < score(SBest)) then

13: SBest = S

14: end if

15: end while

We then started from our subsets of MAP variables for

each of the three classes, augmented with MAP variables

resulting from the training of the three classes simultane-

ously (AllClass = Concat(Class1, Class2, Class3)). We

obtained a starting set of 103 distinct variables. We then used

a standard variable backward elimination algorithm based on a

direct optimization of the challenge criterion on all the dataset.

This variable selection method is summarized in Algorithm 1.

At each step, it evaluates each variable elimination, then

removes the variable that brings the best score. The algorithm

returns the best subset of variables found during optimization.

In Figure 3, we report the AUC per class and the mean

AUC obtained along the optimization path, from 103 variables

down to 30 variables. The very few first optimization steps

eliminate redundant variables, and improve the mean AUC

from 0.953 to 0.957 with 95 variables. We then have a long

plateau until getting 65 variables, and finally a slow decrease in
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Fig. 3. Sensibility analysis: AUC versus number of selected variables

AUC, with a final AUC of 0.949 with 30 variables. The shape

of the AUC curves is similar to that of Figure 2, which shows

three AUC results with selections from one single variable to

thousands of variables. The AUC increases quickly with very

few variables (in Figure 2, one single variable is sufficient

to goes from an AUC of 0.5 to around 0.75). Then, after

a few tens of variables, a plateau is reached, and finally,

for large numbers of variables, the performance decreases

significantly down to the performance of the NB classifier

(0.89 on average in Figure 2). In this bi-criterion problem, the

beginning of the curve presented in Figure 3 can be interpreted

as a Pareto curve, where each point corresponds to an optimal

AUC given a max number of selected variables. In real data

mining projects, this kind of curve might be helpful to find

the best trade-off between accuracy and number of selected

variables, according to the requirement and constraints of the

project.

In the challenge, the score includes a penalty to choose

the best trade-off. The challenge score is reported with black

circles in Figure 3. The best score shown in Figure 3 gets

a 0.5% improvement (up to a train score of 0.955 with 65

variables). This improvement is rather small and might be

prone to overfitting, with an expected increased variance as

the number of variables decreases. We got a score of 0.9452

on the leaderboard with this optimized solution. We tried

other random partitions of the same variables into ten subsets

(for the ten Naive Bayes ensemble classifier) and obtained

score variations of about 0.3%. We also submitted a series of

variable sets of increasing size along our optimization path,

from 30 variables up to 100 variables by steps of ten. The

resulting leaderboard scores (reported using white circles in

Figure 3) shows that the improvements obtained during the

train optimization vanish withing the variance of the results on

the challenge leaderboard dataset. Furthermore, within a same

set of selected variables, different random partitions in ten
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Fig. 4. Final challenge results

subsets produce a variance of the results of similar magnitude.

D. Final submission

The sensibility analysis of performance versus number of

selected variables in Section III-C shows that the initial sub-

mission (see Section III-B) is competitive w.r.t. the objective

of the challenge. Given the expected small and unreliable

improvement in challenge score, the potential risk of using

too few variables (larger expected variance) and the ignorance

regarding the behavior of the ensemble classifier used in the

challenge, we finally came back to the first submission. We

removed the duplicate variables (keeping 97 variables), and

obtained a challenge leaderboard score of 0.9491.
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E. Challenge results

The last day of the challenge, our submission was ranked

3rd on the leaderboard. Usually, in data mining challenges, the

participants tend to overfit the leaderboard score with many

submissions, and we anticipated to get lower scores in the

final results. Figure 4 shows the leaderboard versus final scores

of all participants that obtained a score beyond that of the

organizer’s baseline; our score is represented by the red circle.

Our final score (0.9536) was improved by 0.5% compared to

the leaderboard score, which was a good surprise. Overall in

this challenge, the final scores where improved on average by

1%. Participants ranked 4th to 6th on the leaderboard dataset

got a 1.5% improvement of their final score and we finally

got ranked 6th in the final evaluation, 0.9% behind the winner.

IV. CONCLUSION

In most data mining projects, specific business requirements

and constraints must be fulfilled. Several criterions must be

taken into account, such as the time spend for the project,

the training time, the deployment time, the intepretability

of the models, the predictive accuracy. The AAIA’14 Data

Mining Competition was an interesting challenge that focused

on predictive accuracy versus number of selected variables.

We have shown that using the Selective Naive Bayes classifier

allows to quickly and efficiently obtain a competitive solution.

We have also presented a sensitivity analysis between the

two challenge criterions, that presents all possible trade-

offs along a Pareto curve. This kind of analysis might be

helpful to fulfill requirements in real world data mining

projects.
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