
FPGA Verification Module

Željko Hocenski, Ivan Aleksi
University of Osijek, Faculty of Electrical Engineering

Zeljko.Hocenski@etfos.hr, Ivan.Aleksi@etfos.hr

Abstract: This paper addresses verification and debugging

tool for development of FPGA modules. Proposed tool is

developed for educational purposes in teaching students on

Digital Design and VHDL programming language. Main goal of

the debugging module is to get/set signal values while the FPGA

board is running the module of interest. Two PicoBlaze CPUs are

used in order to synchronize the input and output signals

between PC and the FPGA. Debugging and verification tool is

wrapped around the testing module, and it occupies 14% of the

Spartan 3 XC3S200 FPGA device. While using proposed tool,

students are getting the knowledge about the PicoBlaze CPU,

assembly language, FPGA, VHDL. When using proposed tool,

students get deeper understanding of the hardware-software co-

design concept. Finally, individual tasks are assigned to student

workgroups. Some typical tasks are illustrated in this paper.

Keywords: FPGA, PicoBlaze CPU, Verification, Debugging.

I. INTRODUCTION

FPGA debugging module is proposed in this work. HDL
modules debugging is a critical stage in the development of
FPGA modules [1]. Verification and validation takes 50% of
the product’s cost, and it takes 40% or more of the overall
design cycle [2]. In addition to shorten design cycle for
students on their HDL FPGA project, this paper proposes a
debugging platform for FPGA module in the development

phase, as it was done in [3]. Proposed platform extends the
number of the input and the output ports by using one or more
input or output buffers. The platform consists of the FPGA-PC
communication and a PC-based graphical user interface (GUI).
In this way, students can have an insight to the signals of FPGA
module in the development phase. Signal values are placed in
buffers on the FPGA and on the PC’s GUI. Each buffer can be
set as an input or an output. Buffers values on the FPGA and
their corresponding copy on the PC are synchronized by the
use of two PicoBlaze CPUs and UART communication module
{[4],[5]}, c.f. Fig. 1. Usually, development kits have a limited
number of I/O devices: buttons, switches, LEDs, etc. On the
other hand, proposed debugging tool enables arbitrary large
number of I/O devices.

II. RELATED WORK

Similar work is done in [6] where authors presented their
Reconfigurable Virtual Instrumentation (RVI). By the cross-
university collaboration virtual devices are developed and
shared. In this way the RVI becomes an evolvable low-cost
hardware-software co-design (HW/SW) educational platform.
This platform saves money since it can replace some of the
expensive measurement instrumentation, for example:
oscilloscope, logic analyzer, etc. In contrast to their grooving
variations of virtual devices, we are proposing simple and

Fig. 1. Virtual devices platform (VDP) with input and output virtual devices (VD)s for functional verification phase of the FPGA modules development.

Proceedings of the E2LP Workshop

Warsaw, 2014, pp. 9–12

DOI: 10.15439/2014F673

ACSIS, Vol. 4

c© 2014, PTI 9

small VDP that is oriented towards verification and validation
of HDL modules via the FPGA-PC interface.

Simple FPGA e-Lab is presented in [7]. By using Windows
XP Remote Desktop Connection students can remotely connect
to a laboratory PC, which is connected with the Spartan 3-E
FPGA device. User interface is done over a GUI that is made
with National Instrument's LabView software. Authors made
control hardware surrounding the FPGA kit. They also
connected a web camera for visual feedback, so one can always
see if his experiment is running or not. Students are able to
upload final project done at home and implement the bit file
into the FPGA device. More sophisticated remote learning
FPGA facility is presented in [8]. As an approach it is cost
effective when compared with classical non-remote
laboratories. Authors considered a cluster of FPGA devices that
students can use remotely. Students liked that they can connect
later and try again if their project didn't work from the first try.
However, {[7],[8]} do not offer system verification and
validation, as it is presented in this work. Our device is done in
MS Visual Basic and does not require the expensive software
tools.

According to [9], FPGAs are the key components for
making possible to finish complex projects in a one year
period. Students were assigned a task to build mobile robot
projects. Before taking the FPGA into education courses,
students were focused only on a software design of bought
professional robotics equipment. The author concluded that
undergraduate students are able to construct competitive robots
with the use of the FPGA and a basic robot parts.

The authors in [10] prefer teaching real-time digital signal
processing by using FPGAs. They believe that the FPGA
technology provides more flexibility when compared with the
DSP or the MATLAB. The FPGAs are capable for
implementing the microprocessor cores, what exclude the need
for a certain DSP that is programmable in an embedded C.
With the use of Hardware/Software co-design, the FPGAs
allow algorithm improvements by using its hardware and/or
even parallel implementation. In reference [11], the same
author presented the FPGA-based system on programmable
chip (SoPC) development platform with NIOS 32-bit RISC
soft processor and the µClinux operating system (OS). Students
had to implement a VGS and a SRAM interfaces with the
SoPC. On the software part of the design, students had to
develop routines that control a custom graphical hardware.
When combining those two components, the students were
exposed to hardware/software co-design, operating systems,
reconfigurable hardware and system design concept. The
authors concluded that the use of the FPGA-based SoPC in
student courses enabled the development of more involved
senior design projects.

Authors in [12] presented their work through three
consecutive courses in one academic year. Their 1st course
deals with logic design using Verilog, followed by 2nd course
that deals with logic synthesys and system on chip design,
while 3rd course deals with timing and testing of digital design.
The topics covered with proposed courses are: digital
electronic, Boolean algebra, Karnaugh maps, finite state
machine, Verilog HDL, 8-bit RISC SoPC, HW/SW co-design,

testing of digital systems, test economics, fault modeling and
simulation, sequential test methods, and design-for-test
techniques. Since none of the topics deals with the Digital
Design Verification, the authors announced a new course with
that topic.

Distance laboratory access to the server with dedicated
FPGA hardware is presented in [13]. The mainstream of this
concept is that students can register, login and reserve a term in
order to access the hardware resources. When their term is
active, they can send their CAD design and the server’s
software can implement it on the FPGA. After the execution,
the student receives an e-mail with the results. This design
concept saves a lot of time to the professors and it enables an
individual self learning process.

A multimedia tool for teaching reconfigurable computing is
presented in [14]. In order to get familiar with the VHDL and
FPGA, in the first few weeks, students had to implement a few
medium complexity VHDL modules: VGA, PS/2, LCD,
calculator and a simple processor. Their knowledge about
computer architecture is used to speed up the learning process
about the reconfigurable computing. Behavioral VHDL model
of a MIPS processor is used in order to instantiate a MIPS
microprocessor with some parts missing. Students have to
recover the missing VHDL parts (ALU, register file, etc.) and
test the functionality of their MIPS using the iCmips simulator.
Simulator provides a full view into the registers, data memory,
while it executes all of the commands on the real hardware.

Remote laboratory for HW/SW co-design that is proposed
in [15] accepts a student's HW and SW design files,
implements the HDL file on the real FPGA and executes the
software test bench file. As the result, the output file is then
sent back to the student. The task was to implement a simple
16-bit RISC processor with Harvard architecture, different
memories for machine code and storage data and four general
purpose register. The CPU design had to execute nine basic
instructions: load, store, move, add, sub, compare, halt,
conditional and unconditional jumps.

III. FPGA-BASED
HARDWARE/SOFTWARE CO-DESIGN

Common system design approach in embedded systems is a
Hardware/Software co-design concept [2]. FPGA devices are
capable to synthesize such design concept since they possess a
large number of programmable logic cells, which can be
configured as combinatorial and sequential, respectively.
Hardware/Software co-design commonly consists of
programmable devices, microcontrollers, microprocessors or
signal processors, which have a memory for a software part of
the design, c.f. Fig. 1.

Proposed hardware design uses 14% of the Xilinx's
Spartan-3 XC3S200 FPGA device, c.f. Table I. It contains of
two of the PicoBlaze CPU’s, where each occupies 5%.
Remaining 4% are used by UART and some signal
interchange. Minimum period of implemented logic is 7.922ns,
and the maximum operating frequency of VDP is
126.239(MHz). Proposed design consumes 48(mW).
Utilization summary for Xilinx's 3s200ft256-5 device is
illustrated in Table I.

10 PROCEEDINGS OF THE E2LP WORKSHOP, WARSAW, 2014

TABLE I. UTILIZATION SUMMARY FOR XILINX 3S200FT256-5.

Resource Number of resources [%]

Number of Slices 282 out of 1920 14 %

Number of Slice Flip Flops 323 out of 3840 8 %

Number of 4 input LUTs 521 out of 3840 13 %

Verification is done with an arbitrary large set of input and
output buffers that enables a real-time insight into internal
FPGA signals. Each buffer is 8-bit long with assigned value
and unique address. Buffers exist on FPGA and have
corresponding copy on the PC. FPGA and PC buffer values are
synchronized by using two of the PicoBlaze CPU’s which
communicate with the UART-based full-duplex RS232
communication protocol @ 38400 baud rate. One PicoBlaze
CPU is used for data transmission, while the other one is used
for data reception. Software algorithms for buffer array
synchronization are described with Alg. 1 and Alg. 2.

Algorithm 1. Reception PicoBlaze (PC to FPGA).
1. byte  GetByte()
2. Set data  byte
3. byte  GetByte()
4. Set address  byte
5. Set BufferArray[address]  data

6. Go to Line 1

Algorithm 2. Transmission PicoBlaze (FPGA to PC).
1. For each address = 8 to address = 16 with step +1
2. Set data  BufferArray[address]
3. SendByte(data)
4. SendByte(address)
5. Go to Line 1

Buffer values on the PC are displayed with the GUI, c.f.
Fig. 2. PC-based GUI is implemented in the Visual Basic
programming language on a standard PC. It represents the
software part of the design that communicates with the FPGA
over the RS2323 serial port. USB to RS232 adapter is used in
this work. The GUI is made by using dynamical programming
techniques with the following features.

• Management of serial port communication;

• Dynamic buffer creation and deletion;

• Selection of arbitrary address for a certain buffer;

• Data transmission from the PC to FPGA’s input
buffers;

• Data reception from FPGA’s output buffers to the PC;

• Displaying buffer values on the screen.

Proposed debugging and verification platform is adaptive
since it can dynamically create/delete buffers with arbitrary
address and buffer’s type: switches, buttons, LED and HEX
displays, c.f. Fig. 2.

IV. EXPERIMENTAL RESULTS

In this section, one Array Adder is considered as an FPGA
module in the development phase. In this work we used the
array adder with 5 8-bit inputs, one 8-bit output and one bit
output, c.f. Fig. 3. Array adder has a task to sum 5 8-bit
numbers and provide a result as an 8-bit sum with 1-bit carry
out. Firstly, the VHDL code was successfully tested with
simulations. Subsequently, proposed debugging module was
used to test the design's functionality. After successful
synthesis, students are very happy to be able to see their design
doing required task on an FPGA board.

V. CONCLUSION

Proposed debugging platform is the simple device that
helps students to accomplish their final project successfully. It
is easy to use and will have a lot of applications on future
testing of student projects. It provides the student with
extended I/O devices via FPGA-PC interface and makes easier
to check does the student's product meet the requirements of a
given project by using proposed GUI. Proposed approach is
quite challenging for students since it includes

Fig. 2. PC-based graphical user interface for validation and verification
phase of FPGA modules development.

Fig. 3. Example application for applying functional test on an Array Adder.

IVAN ALEKSI, ŽELJKO HOCENSKI: FPGA VERIFICATION MODULE 11

multidisciplinary tasks: hardware design, embedded assembly
software and verification process. Therefore it can be applied
in the final years of their study.

REFERENCES
[1] M. Pezzé and M. Young, "Software Testing and analysis: Process,

Principles, and Techniques," Wiley, ISBN 13: 978-0-471-45593-6, USA,
2007.

[2] R.C. Cofer, B.F. Harding, "Rapid System Prototyping with FPGAs,"
Newnes, ISBN: 0750678667, September, 2005.

[3] Ž. Hocenski, I. Aleksi, V. Sruk, "Adaptive Virtual Devices Platform for
Verification of FPGA Modules in Student Courses on Digital Design,"
7th IEEE International Conference on e-Learning in Industrial
Electronics (ICELIE), pp. 22-27, ISBN: 978-1-4799-3180-4, Vienna,
Austria, 10-13.11.2013.

[4] Xilinx Inc., "PicoBlaze 8-bit Embedded Microcontroller User Guide for
Spartan-3, Spartan-6, Virtex-5, and Virtex-6 FPGAs," UG129 (v2.0),
January 28, 2010.

[5] Pong P. Chu, "FPGA Prototyping VHDL Examples, Xilinx Spartan-3
Version", Wiley-Interscience, ISBN: 978-0470185315, February, 2008.

[6] A. Cicuttin, M.L. Crespo, A. Shapiro, N. Abdallah, "Building an
Evolvable Low-Cost HW/SW Educational Platform--Application to
Virtual Instrumentation," IEEE International Conference on
Microelectronic Systems Education (MSE'07), pp.77-78, 2007.

[7] R. Hashemian, J. Riddley, "FPGA e-Lab, a Technique to Remote Access
a Laboratory to Design and Test," IEEE International Conference on
Microelectronic Systems Education (MSE'07), pp.139-140, 2007.

[8] Y. Rajasekhar, W.V. Kritikos, A.G. Schmidt, R. Sass, "Teaching FPGA
system design via a remote laboratory facility," International Conference
on Field Programmable Logic and Applications, DOI:
10.1109/FPL.2008.4630040, pp.687-690, September 2008.

[9] M.A. Soderstrand, "Role of FPGAs in undergraduate project courses,"
MSE, pp.0109, 1997 International Conference on Microelectronics
Systems Education (MSE '97), 1997.

[10] T.S. Hall, D.V. Anderson, "A Framework for Teaching Real-Time Digital
Signal Processing With Field-Programmable Gate Arrays," IEEE
Transactions on Education, vol. 48, no. 3, pp. 551-558, August 2005.

[11] T.S. Hall, J.O. Hamblen, "Using an FPGA Processor Core and
Embedded Linux for Senior Design Projects," MSE '07 Proceedings of
the 2007. IEEE International Conference on Microelectronic Systems
Education.

[12] J.D. Lynch, D. Hammerstrom, R. Kravitz, "A cohesive FPGA-based
system-on-chip design curriculum," IEEE International Conference on
Microelectronic Systems Education, 2005. (MSE '05), DOI:
10.1109/MSE.2005.5, ISBN: 0-7695-2374-9, pp. 17-18, June 2005.

[13] R. Seinauskas, "A distance laboratory for computer-aided design", IEEE
International Conference on Microelectronic Systems Education, 1997.,
ISBN: 0-8186-7996-4, pp. 107 - 108, Jul 1997.

[14] I. Skliarova, "A Multimedia Tool for Teaching Reconfigurable
Computing", Computer and Electrical Engineering, 2009., ICCEE '09,
vol.1, pp.204-208, 28-30, Dec. 2009.

[15] J.S. Pastor, I. Gonzalez, J.Lopez; F.Gomez-Arribas, J.Martinez, "A
remote laboratory for debugging FPGA-based microprocessor
prototypes," IEEE International Conference on Advanced Learning
Technologies, pp. 86-90, DOI: 10.1109/ICALT.2004.1357380,
September 2004.

12 PROCEEDINGS OF THE E2LP WORKSHOP, WARSAW, 2014

