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Abstract—This paper presents a theory and an empirical eval-
uation of Higher-Order Quantum-Inspired Genetic Algorithms.
Fundamental notions of the theory have been introduced, and
a novel Order-2 Quantum-Inspired Genetic Algorithm (QIGA2)
has been developed. Contrary to all QIGA algorithms which
represent quantum genes as independent qubits, in higher-
order QIGAs quantum registers are used to represent genes
strings, which allows modelling of genes relations using quantum
phenomena. Performance comparison has been conducted on a
benchmark of 20 deceptive combinatorial optimization problems.
It has been presented that using higher quantum orders is
beneficial for genetic algorithm efficiency, and the new QIGA2
algorithm outperforms the old QIGA algorithm tuned in highly
compute-intensive metaoptimization process.

I. INTRODUTION

R
ESEARCH on quantum-inspired computational intelli-

gence techniques was started by Narayann[1] in 1996,

and the first proposal of Quantum-Inspired Genetic Algorithm

(QIGA1) has been presented by Han and Kim in [2]. Quantum-

Inspired Genetic Algorithms belong to a new class of arti-

ficial intelligence techniques, drawing inspiration from both

evolutionary[3] and quantum[4] computing. Current literature

on the subject consists of about a few hundreds scientific

papers. Only a few papers attempt to theoretically analyse

the properties of that class of algorithms. Among those there

are i.a. [22,28], which has been emphasized in conclusions of

recent comprehensive surveys [18,29].
In QIGA algorithms, representation and genetic operators

are based on computationally useful aspects of both bio-

logical evolution and unitary evolution of quantum systems.

QIGA algorithms use quantum mechanics concepts including

qubits and superposition of states. QIGA algorithms have

been successfully applied to a broad range of search and

optimization problems[5,6,7]. The algorithms have demon-

strated their particular efficacy for solving complex opti-

mization problems. Recent years have witnessed successful

applications of Quantum-Inspired Genetic Algorithms in a

variety of fields, including image processing[8,9,10], flow shop

scheduling[11,12], thermal unit commitment[13,14], power

system optimization[15,16], localization of mobile robots[17]

and many others.
For a current and comprehensive survey of Quantum-

Inspired Genetic Algorithms and the necessary background

of Quantum Computing and Quantum-Inspired Computational

Intelligence techniques, the reader is referred to [1,2,18,29].

This work was supported in part by PL-Grid Infrastructure

This paper is structured as follows. In Section 1, an in-

troductory background and the most important references for

the subject field have been given. In Section 2, the theory

of Higher-Order Quantum-Inspired Genetic Algorithms has

been presented. In Section 3, details of the original Order-2

Quantum-Inspired Genetic Algorithm have been provided. In

Section 4, experimental results have been provided and eval-

uated. In Section 5, the article has been briefly summarized,

final conclusions have been drawn, and also possible directions

for future research have been suggested.

II. THEORY OF HIGHER-ORDER QUANTUM-INSPIRED

GENETIC ALGORITHMS

Let N ∈ N
+ denote the length of chromosomes in the

algorithm (i.e. problem size), X – search space of the opti-

mization problem, Q – quantum population (a set of quantum

individuals in QIGA algorithm), and P – classical population

(a set of elements in X space). Let us assume that each

individual in the algorithm consists of a single quantum

chromosome.

We introduce the following new notions.

Definition 1 (quantum order r ∈ N
+): the size of the

biggest quantum register used in the algorithm.

1 ≤ r ≤ N (1)

We say an algorithm is Order-r, if r is the size of the biggest

quantum register used in that algorithm. All Quantum-Inspired

Genetic Algorithms that use independent qubits to represent

binary genes are Order-1. All existing algorithms, presented

in the literature so far are Order-1 in terms of this theory. To

simplify the further discussion, let us assume that all quantum

registers used in the algorithm have the same size.

Definition 2 (relative quantum order w): – the ratio of

quantum order r to quantum chromosomes length N (problem

size) in the algorithm.

w =
r

N
∈ (0, 1] (2)

If a certain QIGA algorithm uses a representation of solu-

tions based on 100 independent qubits (binary quantum genes),

the relative quantum order for that algorithm is w = 1

100
. If the

size of a problem (the number of binary variables) is N = 60,

and the representation is based on 3-qubit registers, then the

relative quantum range is w = 3

60
= 0.05 etc.

The algorithms characterised by w = 1 are "true" quantum

algorithms, where a single quantum register contains all the
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Fig. 1. Examples of chromosomes of length N = 12 for Order-1 and
Order-3 algorithms. Consecutive genes are joined to r-qubit quantum registers.
In Order-1 algorithm, the chromosome consists of 12 independent qubits,
each one is a unit vector in 2-dimensional space. In Order-3 algorithm, the
chromosome consists of 4 quantum registers, each one is a unit vector in
2
3
= 8-dimensional space.

binary variables. For w = 1, when the number of binary

variables (the size of the problem N ) grows linearly, the cost

of simulation grows exponentially (which corresponds to a

simulation of a real quantum computer).

Definition 3 (quantum factor λ ∈ [0, 1]): For a given algo-

rithm, the quantum factor is defined as a ratio of the dimension

of space in a given class of algorithms to the dimension of

space of the full quantum register of N qubits. Additionally, if

there are no quantum elements in the algorithm (e.g. a simple

genetic algorithm SGA[30], operating in a discrete space of

binary strings), then λ = 0.

Thus, the numerical value of the factor is expressed as:

λ =
2r N

r

2N
=

2r

w2N
(3)

where r is the quantum order of an algorithm and N is the

problem size. The 2r in the numerator of the above formula

corresponds to the dimension of the state space in the r-

qubit quantum register (the biggest quantum register used in

an algorithm of that class). Such quantum register codes a

2r-point probability distribution (it shows the probability of

choosing one from 2r elements of a solution space X). 2N

corresponds to the dimension of the state space of a quantum

register containing all N qubits.

In Order-1 algorithms, chromosomes consist of N inde-

pendent qubits. According to the Quantum Computing theory

the state of each qubit is described by a unit vector in a 2-

dimensional space (|q〉 = [α β]T ), so the space dimension for

the chromosomes in such algorithms is 2r N
r
= 2N .

In Order-2 algorithms, chromosomes consist of N
2

size-2

quantum registers. The state for each register is described by a

unit vector in a 4-dimensional space (|q〉 = [α0 α1 α2 α3]
T ).

Therefore, the dimension of space for the chromosomes in

such algorithms is also 22N
2

= 2N . However, in Order-1

algorithms only one qubit coordinate might be independently

modified (one degree of freedom), while in Order-2 algorithms

the same can be done with 3 out of 4 coordinates of the

2-qubit quantum register state. Consequently, it allows for

modelling of relations between two neighbouring genes joined

in a common register.
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Fig. 2. Quantum factor λ for different problem size N and different quantum
orders r ∈ {1, 2, 3, 4, 5}

For even Higher-Order algorithms (r ≥ 3), simulating

quantum element makes the algorithm exponential com-

putational complexity. Relationship between quantum factor

λ, quantum order r for growing problem size N has been

presented in Figure 2.

It should be noted that for r = 1 (all regular Order-1 QIGA

algorithms):

λ =
21N

1

2N
=

2 ·N
2N

Thus, for example, in an algorithm coding solutions in the

form of 10-element strings of independent qubits, λ = 20

210
≈

0.02. It means that the size of space in such algorithm

comprises 2% of the full quantum register state space,

which would include 10 binary variables. Together with the

increase of size of a problem N and for a constant quantum

order r = 1, the quantum factor decreases exponentially and

becomes λ < 10−10 for N = 50.

For that reason, for a constant quantum order r = 1 (QIGA

Order-I quantum-inspired algorithms) and for an increasing

size of a problem N , the quantum factor λ has a limit that

equals zero:

lim
r=1

N→∞

λ = lim
r=1

N→∞

2 ·N
2N

= 0

However, for r = N (typical quantum algorithms)

λ =
2N N

N

2N
=

2N

2N
= 1 (4)

For λ = 1, when the number of variables (the size of a problem

N ) grows linearly, the cost of simulation grows exponentially

(which corresponds to a full simulation of a real quantum

computer).

Thus, algorithms can be classified according to quantum factor

λ value as follows:
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Algorithm 1 Order-2 Quantum-Inspired Genetic Algorithm

1: t← 0
2: Initialize quantum population Q(0)
3: while t ≤ tmax do

4: t← t+ 1
5: Generate P (t) by observing quantum pop. Q(t− 1)
6: Evaluate classical population P (t)
7: Update Q(t)
8: Save best classical individual to b
9: end while

1) λ = 0 – a classical algorithm without any quantum ele-

ments, operating in a discrete finite space (e.x. SGA[30]

operating in finite discrete binary strings space).

2) λ ∈ (0, 1) – a quantum-inspired algorithm, like QIGA1

(order r = 1), or higher-order algorithm.

3) λ = 1 – a "true" quantum algorithm which requires

either a real quantum level hardware, or an exponential

complexity simulation on classical computer.

Order-r Quantum-Inspired Genetic Algorithms are ca-

pable of modelling relations between separate genes which

are joined into the same quantum register of size r.

This allows the algorithm to work better for deceptive

combinatorial optimization problems and to better solve

strong epistasis in deceptive problems. This is presented

empirically the next sections of the paper.

III. ORDER-2 QUANTUM-INSPIRED GENETIC ALGORITHM

In this section, a novel Order-2 Quantum-Inspired Genetic

Algorithm (QIGA2) has been presented. The algorithm has

been developed based on the theory of higher-order quantum-

inspired algorithms presented in the previous section.

Pseudocode of the algorithm has been presented in Algo-

rithm 1, and in general it is very similar to a typical evolution-

ary algorithm scheme. The general principle of operation of

the algorithm is very similar to the initial QIGA 1 algorithm,

but instead of independent qubits modelling successive binary

genes, the QIGA 2 algorithm uses 2-qubit quantum registers

representing successive pairs of genes.

In each generation of the algorithm a classic population P (a

set of elements from the solution space X) is sampled through

observation of quantum states of the quantum population Q
i.e. |P |-times repeated sampling of the space X according to

probability distributions stored in Q. The classical population

P is then evaluated exactly as in a typical evolutionary

algorithm. The quantum population Q, however, is updated

in consecutive generations in such a way that it increases the

probability of sampling the best solution b neighbourhood,

which has been recorded in previous generations of P .

The key new elements distinguishing QIGA2 from the

previous Order-1 algorithms are the modified method of rep-

resenting solutions and the new genetic operators working in a

space of a higher dimension and described by 4×4 unitary ma-

trices in the quantum-mechanic sense. Both original elements

have been described in the next subsections respectively.

Fig. 3. In QIGA1, representation is based on isolated qubits / binary quantum
genes

Fig. 4. In QIGA2, quantum registers are used to represent pairs of genes

A. Representation of solutions in QIGA2

The fundamental difference between the already existing

QIGA1 and QIGA2 algorithms lies in the way they represent

solutions. In QIGA1 algorithms, quantum genes are modelled

with qubits i.e. two-level quantum systems |q〉 = α|0〉 +
β|1〉 = [α β]T which are able to code two-point probability

distributions. It corresponds to a possibility of each gene to

have a value 0 or 1 with a probability of |α|2 and |β|2
accordingly. It has been depicted in Figure 3.

In the authors’ QIGA2 algorithm, the representation of

solutions is based on using the adjacent 2-qubit quantum

registers. For that purpose the adjacent genes are consec-

utively paired. The corresponding 2-qubit registers |q〉 =
[α0 α1 α2 α3]

T code 4-point probability distributions. So,

in a single quantum register 4 values of probability |α0|2,

|α1|2, |α2|2, |α3|2 are recorded. These are probabilities of

having a value of 00, 01, 10 and 11 for each given pair of

genes accordingly. It is presented in Figure 4. Similarly to

QIGA1 algorithms, the proposed QIGA2 uses only the real

parts of probability amplitudes. It ignores the imaginary part

of amplitudes α0, . . . , α3.

At the stage of the Q(0) base population initialization, all

genes can be given the value of qij = [ 1
2

1

2

1

2

1

2
]T , which

corresponds to a situation when the algorithm samples the

entire solution space X with the same probability.

B. Order-2 quantum genetic operators

The second original element of the QIGA2 algorithm is the

use of genetic operators. In the QIGA1 algorithm genetic oper-

ators are created by unitary 2×2 quantum gates (thanks to the

limiting of the amplitudes to a set R, they become just matrices

of a normalised state vector rotation on a plane). By contrast,

in the QIGA2 algorithm the genetic operators can be described

by 4× 4 quantum gates in the quantum-mechanical sense.
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Algorithm 2 Observation of genes pair in QIGA2

Require: qij = [α0 α1 α2 α3]
T – quantum register of 2

qubits

1: r ← uniformly random number from [0,1]

2: if r < |α0|2 then

3: p← 00
4: else if r < |α0|2 + |α1|2 then

5: p← 01
6: else if r < |α0|2 + |α1|2 + |α2|2 then

7: p← 10
8: else

9: p← 11
10: end if

Algorithm 3 Update of quantum genes states in QIGA2

1: for i in 0, . . . , |Q| − 1 do

2: for j in 0, . . . , N/2 do

3: q′ = [0 0 0 0]T

4: bestamp ← j-th pair of binary genes in b as deci-

mal

5: sum← 0
6: for amp in {0, 1, 2, 3} do

7: if amp 6= bestamp then

8: q′[amp]← µ · qij
9: sum← sum+ (q′[amp])

2

10: end if

11: end for

12: q′[bestamp]←
√
1− sum

13: qij ← q′

14: end for

15: end for

The pseduocode for the operation of measuring the states of

a 2-qubit quantum register qij = α0|00〉+ α1|01〉+ α2|10〉+
α3|11〉 = [α0 α1 α2 α3]

T coding a pair of classic

binary genes is presented in the Algorithm 2. The observation

function returns strings of binary genes 00, 01, 10 and 11 with

a probability of |α0|2, |α1|2, |α2|2 oraz |α3|2 respectively.

Algorithm 3 presents the pseudocode of the proposed new

genetic operator (observing the state of a 2-qubit quantum

gene) in QIGA2. Index i of the main operator’s loop iter-

ates through all the individuals in the quantum population

q0, . . . , q|Q|−1. Index j iterates through all the consecutive

pairs of genes j ∈ {0, 1, . . . N/2} of a given quantum

individual qi. Within these loops, a new state q′ of the quantum

gene pair number j of the character qi is calculated.

The update is performed in the following manner: If the

amplitude αamp(amp ∈ {0, 1, 2, 3}) does not correspond to

a j-th pair of bits of the currently best found individual b,
the amplitude is decreased (amplitude contraction) according

to the rule: qij [amp]′ = µ · qij [amp], where µ ∈ (0, 1) is

the algorithm’s parameter. The amplitude of a pair of bits on

position j in the best individual b is modified to preserve the

normalization condition of the state vector (i.e. unit sum of

Fig. 5. The new quantum genetic operator idea in QIGA2

probabilities
∑3

amp=0
|αamp|2 = 1).

Based on empirical experiments it has been established

that the the best efficacy of an algorithm is achieved for

the parameter value µ ≈ 0.99. In order to further increase

the efficacy, the value of the parameter µ in the QIGA2

algorithm might be subject to metaoptimalisation (similarly

to [19,20,21,31]).

The way the new operator works is illustrated in Fig-

ure 5. The vertical bars represent probability amplitudes

|α0|2, |α1|2, |α2|2, |α3|2. If on the position j ∈ {0, 1, . . . , N
2
}

of the individual b there is a pair of bits 10, all the amplitudes

get contracted by the factor of µ, except for α2 which will

increase. If on the position j of the individual b there is a

pair of bits 00, all the amplitudes get contracted by the factor

of µ, except for α0, which will increase etc. Therefore, the

only amplitude that increases is the one that corresponds to

the j-th pair of bits in the best individual b. This makes the

algorithm converge to the best individual b gradually, but also

doing global exploration of the search space X .

Simplicity is an unquestionable advantage of the QIGA2

algorithm. It is not only simpler than QIGA1, but also less

complicated than its later modified variants, whose authors

also tried improve on the efficacy of the original algorithm. It

should be noted that in QIGA2 the use of the Lookup Table

(used in the original Han’s QIGA1 algorithm[2]) has been

eliminated completely.

IV. NUMERICAL EXPERIMENTS

For empirical comparison of the algorithms performance,

there was used a benchmark consisting of a broad set of 20

recognized combinatorial optimization problems of different

sizes N ∈ {48, 90, . . . , 1000}, encoded in the form of the

NP-complete SAT. Objective of the combinatorial optimization

process was to find a binary string that have maximum fitness

value. The benchmark has been taken from [32], and all details

about the test functions are available there.

The compared algorithms were SGA[30], the original

QIGA1[2], the QIGA1 tuned in meta-optimization process[31]

and the authors’ QIGA2. Numerous publications to date

present that QIGA1 is more effective than other modern

stochastic search methods and hence its comparison to other

algorithms has been omitted in this paper as it has been

assumed to be superior to other newest algorithms.
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Fig. 6. Detailed comparison of the algorithms for a selected problem
knapsack, size N = 250

The classic SGA algorithm was run with its typical param-

eters values taken from [30]: the population size was set to

100 individuals (binary solutions), evolving for 50 generations.

Thus, the total number of fitness evaluations was equal in all

algorithms, and the stopping criterion was maximum number

of fitness evaluations MaxFE = 5000. In SGA, single point

crossover operator with probability Pc = 0.65 and mutation

operator with probability Pm = 0.05 were used. The selection

was based on the roulette wheel method. Implementation of

SGE algorithm was taken from the external PyEvolve library

[26] The parameters for the original QIGA1 algorithm were

taken from [2] as were the parameters for the tuned QIGA1,

where the only changed parameters were those that had been

meta-optimized. The QIGA2 algorithm was run with the value

of the parameter µ = 0.9918. For each of the test problem,

each algorithm was run 50 times.

As a means for evaluating the algorithms efficacy the

authors used the fitness value of the best individual after the

number of generations which reached the 5000th call of the

fitness evaluation function. Because of stochastic nature of

evolutionary algorithms, that value was later averaged for 50

runs of a given algorithm.

In Table 1, the results for each algorithm are presented. In

17 out of 20 test problems (85%), the authors’ QIGA2

algorithm presented on average a better solution than

both the original and the tuned QIGA1 algorithm. Table

2 presents a ranking of the compared algorithms ordered

according to the number of test problems for which a given

algorithm achieved the best result comparing to algorithms.

Figures 6-8 present a detailed comparison of the algorithms

performance for three selected test problems of size N = 250,

N = 1000 and N = 252. The graph shows the mean value

of the best solution found by each of the algorithms versus

number of calls of the individual fitness evaluation function.
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Fig. 7. Detailed comparison of the algorithms for a selected problem
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knapsack, size N = 1000

The presented data is averaged for 50 runs of each algorithm.

Thanks to the simplification of the algorithm and, specifi-

cally, owing to the elimination of the LookupTable, also the

implementation of QIGA2 algorithm is 15-30% faster than

that of the QIGA1 (the algorithms were implemented in

the same programming languages, with the same compiler

versions and on the same hardware platforms).

V. CONCLUSIONS

In this paper, fundamentals of Higher-Order Quantum-

Inspired Genetic Algorithms have been presented. The au-

thors’ original QIGA2 algorithm has been created on the

basis of this theory. The paper introduces a new way of

representing solutions using adjacent quantum registers and
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TABLE I
ALGORITHMS EFFICACY COMPARISON FOR VARIOUS PROBLEMS OF

DIFFERENT SIZE N ∈ {48, . . . , 1000}

Problem Size N SGA QIGA-1 QIGA-1tuned QIGA-2

anomaly 48 251.4 252.55 254.65 255.25

sat 90 284.9 289.2 293.2 293.7

jnh 100 826.15 831.05 839.05 836.05
knapsack 100 577.709 578.812 592.819 596.476

sat 100 408.6 413.6 418.6 419.7

bejing 125 297.35 302.1 305.35 306.2

sat-uuf 225 886.75 898.25 921.65 921.5
knapsack 250 1387.916 1406.528 1449.905 1467.407

sat1 250 981.45 995.15 1021.2 1023.1

sat2 250 982.95 994.6 1019.1 1020.6

sat3 250 984.2 994.3 1021.3 1019.7
bejing 252 709.85 731.0 724.4 745.75

parity 317 1141.65 1158.2 1179.35 1180.75

knapsack 400 2209.925 2222.160 2284.969 2334.494

knapsack 500 2803.266 2812.740 2869.774 2929.469

bejing 590 1263.8 1343.15 1284.0 1353.2

lran 600 2310.9 2330.35 2386.8 2398.95

bejing 708 1510.65 1605.9 1523.15 1611.55

knapsack 1000 5451.656 5462.718 5568.234 5709.116

lran 1000 3819.65 3848.4 3918.5 3937.3

TABLE II
RANKING OF THE COMPARED ALGORITHMS

Rank Algorithm No. of Best

Solutions

1 QIGA2 17
2 QIGA-1 tuned 3
3 QIGA-1 0
4 SGA 0

a new genetic operator working in the space of a higher

dimension in quantum-mechanical sense. Based on empirical

data gathered from 20 varied deceptive test problems of diverse

sizes N ∈ {48, . . . , 1000}, it has been shown that the authors’

QIGA2 algorithm achieves a better performance than both

the original and the tuned QIGA1 algorithms. Consequently,

it shows that using quantum order r = 2 is a method

for improving the performance of Quantum-Inspired Genetic

Algorithms. Further investigations may include the application

of the presented theory of Higher-Order Quantum-Inspired

Genetic Algorithms to a very important field of problems of

numerical optimization.
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