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Abstract—We propose to use a randomization technique based
on Random Butterfly Transformations (RBT) in the Algebraic
Recursive Multilevel Solver (ARMS) to improve the precondi-
tioning phase in the iterative solution of sparse linear systems.
We integrated the RBT technique into the parallel version of
ARMS (pARMS). The preliminary experimental results on some
matrices from the Davis’ collection show an improvement of the
convergence and accuracy of the results when compared with
existing implementations of the pARMS preconditioner.

I. INTRODUCTION

W
ITH the evolution of recent computer architectures, the

growing gap between communication and computation

efficiency makes communication very expensive (at a cost of

one communication we can generally perform thousands of

arithmetical operations). This requires the rethinking of most

of numerical libraries in order to take advantage of current

parallel architectures which are commonly based on multicore

processors [1], possibly with accelerators [2], such as Graphics

Processing Units (GPU) or Intel Xeon Phi.

In this work we are concerned with the solution of linear

systems Ax = b where A is an n × n real matrix (dense or

sparse), b is a real n-vector and x is the n-vector of unknowns.

This operation is at the heart of many applications in high-

performance computing (HPC) and is usually solved using

either direct or iterative methods.

Direct methods [3] usually solve a linear system of equa-

tions Ax = b using factorization techniques depending on

the properties of the original matrix A. For a general system,

we compute an LU factorization of A that decomposes the

input matrix A into the product L × U , where L is a lower

triangular matrix and U is an upper triangular matrix. When

A is positive definite, then we decompose the matrix A into

the product A = L × LT (Cholesky decomposition, which

requires half the number of flops of the LU factorization). In

This work used resources of the National Energy Research Scientific
Computing Center (NERSC), supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC02-05CH11231. Sosonkina
was supported in part by the Air Force Office of Scientific Research under
the AFOSR award FA9550-12-1-0476, by the National Science Foundation
grants NSF/OCI—0941434, 0904782, 1047772, and by the U.S. Department
of Energy, Office of Advanced Scientific Computing Research, through the
Ames Laboratory, operated by Iowa State University under contract No. DE-
AC02-07CH11358.

both cases (LU or Cholesky), the solution is then obtained by

solving successively 2 triangular systems.

Another possibility to solve Ax = b is to use an iterative

method to compute an approximate solution. These methods

involve passing from one iteration to the next one by mod-

ifying one or a few components of an approximate vector

solution at a time. Classical examples of iterative methods are

the Jacobi, Gauss-Seidel, Successive Over-Relaxation (SOR),

or Krylov subspace methods [4].

The Algebraic Recursive Multilevel Solver (ARMS) is one

of the solvers which applies the iterative Krylov subspace

methods in sparse linear systems, it relies on multilevel partial

elimination. The preconditioning separates the entries into two

parts, the first part called fine set which is composed of block

independent set, and the second part called coarse set which

contains the rest of the entries. The coarse set can be used

to built the Schur complement, which allows us to perform a

block LU factorization. The inter-level LU factorization can

be built from the upper level LU factorization and the fine set,

up to the first level.

Parallel ARMS (pARMS) is a distributed-memory imple-

mentation of ARMS, which relies on distributed group inde-

pendent sets. It provides a set of standard preconditioners such

as Additive Schwartz, Schur complement and Block Jacobi,

which allow to run performance tests.

When solving square linear systems Ax = b using Gaussian

elimination (e.g., in LU factorization), we commonly use

partial pivoting to avoid having zero or too-small numbers on

the diagonal. This technique is implemented in current linear

algebra libraries and ensures stability [5]. However, partial

pivoting requires communication (search for pivots, swapping

of rows). For example, on a hybrid CPU/GPU system, the LU
algorithm in the MAGMA library [2] spends more than 20%

of the factorization time in pivoting even for a large random

matrix of size 10, 000 × 10,000 [6].

As an alternative to pivoting, an approach based on ran-

domization called Random Butterfly Transformation (RBT) [7]

was recently revisited. Following the RBT method, A is

transformed into a matrix that would be sufficiently random

to avoid pivoting (with a probability close to 1). RBT is a

random transformation of A which can avoid pivoting and

then can reduce the amount of communication. We can obtain
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satisfying accuracy with an additional computational cost,

which is negligible compared to the cost of factorization. This

method has been successfully applied to dense linear systems

for either general [6] or symmetric indefinite [8] systems, in

the context of direct methods based on matrix factorization.

In this work we want to study the possibility of using RBT

in iterative linear system solvers based on Krylov Subspace

methods, which are widely used in physical and industrial

applications.

This paper is organized as follows. Section II presents

the preconditioned Krylov subspace method (PKSM) and

the parallel Algebraic Recursive Multilevel Solver (pARMS)

for solving sparse linear systems. Section III explains how

randomization through Random Butterfly Transformation can

be integrated into pARMS. For the obtained solver, Section IV

proposes performance and accuracy results. Conclusions are

presented in Section V.

II. PRECONDITIONED KRYLOV METHODS AND THE

PARMS SOLVER

A. Preconditioned Krylov Methods

A preconditioned Krylov subspace method (PKSM) is used

to solve the linear system Ax = b, where A is square non-

symmetric matrix, in general. If M is a preconditioning matrix,

then the right-preconditioned system is may be expressed as:

AM−1y = b, where y = Mx , (1)

which is solved instead of the original system Ax = b. To

solve this system by using iterative methods, first, we compute

the residual r0 = b−Ax0 [9] after initializing x0, then we may

use a right-preconditioned Krylov subspace method to find an

approximate solution from the affine subspace [10]:

xm = x0 + span{r0, AM−1r0, . . . , (AM
−1)m−1r0} , (2)

which satisfies certain conditions. For instance, the GMRES

algorithm [4] requires that the residual rm = b − Axm has

a minimal 2-norm. The flexible GMRES is abbreviated as

FGMRES [4]. Its implementation differs from that of GMRES

mainly in storing the preconditioned vectors zj = M−1

j vj
because the relation AZm = Vm+1H̄m is used instead of a

simpler one (AM−1)Vm = Vm+1H̄m from GMRES.

One way to obtain the preconditioning matrix M is to use

an incomplete LU (ILU) factorization. ILU is constructed by

performing an approximate Gaussian Elimination (GE) [11]

on a sparse matrix A and dropping certain nonzero entries

of the factorization according to different dropping strategies.

A dropping strategy that relies on levels of the matrix fill-in

results in a factorization called ILU(K).
The preconditioner ILU(0) is obtained by performing the

LU factorization of A and dropping all fill-in elements gen-

erated during the process. Conversely, if the nonzeros are

dropped according to their numerical value magnitudes, then

the resulting factorization is called ILU with the threshold

or—if combined with the dropping strategy based on the

number of remaining nonzero—with dual threshold (ILUT )

and is performed as follows. In the algorithm ILUT (k, τ),
there are two important rules. (1) If an element is less than

relative tolerance τi (τ × the norm of the ith row), it is

dropped. (2) Keep only the k largest elements in the L and U
parts of the row along with the diagonal element.

In this work, we use a preconditioner called Algebraic

Recursive Multilevel Solver (ARMS) [12], which is based on

a block incomplete LU factorization with different dropping

strategies. This block factorization consists of an approximate

GE process separating the unknowns into two sets; and an

idea of independent or “group independent” set is exploited to

define the separation. Hence, the original linear system Ax = b
is permuted into the form:

(

B F

E C

)

×
(

u

y

)

=

(

f

g

)

, (3)

where the submatrix B corresponds to group-independent

set reorderings, thereby generating a block-diagonal matrix

B [13]. Thus, it is convenient to eliminate the u variable to

obtain a system with only y variable. The coefficient matrix

for the resulting “reduced system” is the Schur complement

S = C − EB−1F [14]. A recursion can now be exploited,

such that dropping is applied to S to limit the fill-ins followed

by the reordering of the resulting reduced system into the

form (3) by using the group-independent set reordering again.

This process is repeated for several levels of recursion until the

Schur-complement system is small enough or until a maximum

number of recursion levels is reached. Then, the last Schur

complement may be solved by a direct or an iterative solver.

Note that the sparsification of the Schur complement may

be undertaken at each level of recursion, to keep down the

preconditioning costs.

In this paper, we are interested in parallelizing the iterative

methods rather than direct methods. There are two reasons can

explicate our choices. First, the direct methods are scale poorly

with problem size, when the problem size augment rapidly, the

iterative methods are the only choice, which can compute the

approximate solution of linear system Ax = b. Second, it is

hard to parallelize the direct methods which need more space

and time to compute, while iterative methods involve passing

from one iteration to the next one by modifying one or a few

components of an approximate vector solution at a time and

it is easy to parallelize.

B. Parallel Implementation of ARMS

Figure 1 outlines distributed linear system solution using

pARMS [15]. First, the initial matrix A is distributed among

the processors, using a graph partitioning method. In Figure 1,

each column of blocks depicts one processor, hence there are

five processors shown. Second, each processor solves its part

of the system in parallel to construct its portion of the global

preconditioner. Then FGMRES solves the preconditioned sys-

tem with a given accuracy.

When considering the parallel implementation, it is impor-

tant to specify how the matrix is distributed and handled in

parallel. In particular, our pARMS implementation partitions
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Fig. 1. Sketch of the distributed linear system solution using pARMS on five processors.

Fig. 2. Per-subdomain view of equation variables-points.

the whole matrix on a single processor using a distributed

site expansion (DSE) technique, which is rather simple yet

effective in constructing well-balanced subdomains with small

interfaces [16]. Although partitioning the entire matrix by a

single processor lacks scalability, we note here that this is done

by the driver routine, which may be adapted to an application

matrix size and format at hand. Given a distributed matrix,

Figure 2 shows the per-subdomain division of variables into

internal, interdomain interface, and external (residing on the

neighboring processors) sets.

We outline now three global preconditioners types

available in pARMS: Block-Jacobi preconditioner (BJ), Schur

complement preconditioner (SCHUR), and Schur-complement

based Restrictive Additive Schwartz preconditioner

(SchurRAS). BJ is the simplest global preconditioner

because it does not take into account the interface information

between neighboring subdomains [17]. SCHUR relates

equations associated with the local and interdomain interface

points [18]. SchurRAS is constructed from the local ARMS

preconditioners in each subdomain using an overlap similar to

a standard RAS preconditioner [19] and acting on the Schur

complement system as shown in [20]. Specifically, for each

of the three preconditioner types, the following algorithms

may be implemented in each subdomain.

BJ preconditioner:

1. Update local residual: ri = (b−Ax)i,
2. Solve: Aiδi = ri,
3. Update local solution: xi = xi + δi.
SCHUR preconditioner:

1. From (3) compute: g′i = gi − EiB
−1

i fi,
2. Solve: Siyi+

∑

j∈Ni
Eijyj = g′i, where Si = Ci−EiB

−1

i F
and Ni is a set of neighboring subdomains,

3. Back substitute: ui with Biui = fi − Eiyi.
SchurRAS preconditioner:

1. Compute local right-hand side g′i.
2. Solve local Schur-complement system extended with rows

for all external variables yi,ext.
3. Back substitute: ui with Biui = fi − Eiyi.

Note that the local solves in step 2 of BJ, SCHUR, and

SchurRAS may be accomplished using incomplete LU or

ARMS procedures, mentioned in section II-A. In this work, we

apply ARMS enhanced with Recursive Butterfly Transforma-

tions (RBT) in step 2 of SCHUR to alleviate the extra work

associated with pivoting that may be required in the Schur-

complement matrix Si due to its poor conditioning.
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III. OVERVIEW OF RANDOM BUTTERFLY

TRANSFORMATIONS AND IMPLEMENTATION

In this section we recall the main definitions related to RBT

and how it can be applied to pARMS.

A. Randomization

Random Butterfly Transformation (RBT) is a randomization

technique initially described by Parker [7] and recently revis-

ited in [6] for general dense systems and [8] for symmetric

indefinite systems. It has also been applied recently to a sparse

direct solver in a preliminary paper [21]. The procedure to

solve Ax = b, where A is a general matrix, using a random

transformation and the LU factorization is summarized in

Algorithm 1. The random matrices U and V are chosen

among a particular class of matrices called recursive butterfly

matrices. A butterfly matrix is a random n× n matrix of the

form

B<n> =
1√
2

[

R0 R1

R0 −R1

]

,

where R0 and R1 are random diagonal n
2
× n

2
matrices. A

recursive butterfly matrix of size n and depth d is defined

recursively as

W<n,d> =









B
<n/2d−1>
1

. . .

B
<n/2d−1>

2d−1









·W<n,d−1>

with W<n,1> = B<n> where the B
<n/2d−1>
i are butterflies

of size n/2d−1, and B<n> is a butterfly of size n.

In the original work by Parker, d = log2 n; it is proved

that, given two recursive butterfly matrices U and V , the

matrix UTAV can be factored into LU without pivoting

with probability 1 in exact arithmetic, or with probability

1 − O(2−t) using t-bit floating point numbers. RBT was

extensively studied for dense matrices and it was shown in [6]

that in practice, d = 1 or 2 is enough to obtain a satisfactory

accuracy (in most cases a few steps of iterative refinement can

recover the digits that have been lost). It has been showed

that random butterfly matrices are cheap to store and to

apply (O(nd) and O(dn2) respectively) and they proposed

implementations using the dense linear algebra PLASMA and

MAGMA. As was demonstrated in the related papers, the

preprocessing by RBT can be easily parallelized and provides

good scalability.

Algorithm 1 Random Butterfly Transformation Algorithm

Generate recursive butterfly matrices U and V
Perform randomization to update the matrix A and obtain

the randomized matrix Ar = UTAV
Factorize the randomized matrix with no pivoting [22]

Compute UT b and solve Ary = UT b, then x = V y

B. Integration of RBT into pARMS

We describe in this section how Random Butterfly Trans-

formations can be integrated into pARMS. Our goal is to

find the last level of preconditioning and then replace the

original ILUT factorization by the RBT pre-processing. Note

that RBT usually concerns dense linear systems, while ARMS

addresses sparse linear systems. So we have to convert the

last Schur complement which is a sparse matrix into a dense

format, and after that we can use RBT. Then after randomizing

the last Schur complement A with recursive butterfly matrices

U and V , the dense matrix is factorized using a Lapack-

like [23] routine that performs Gaussian elimination without

pivoting, followed by two triangular solves. Note that RBT

requires the size of the matrix to be a power of 2, which can

be obtained by “augmenting” the matrix A with additional 1’s

on the diagonal.

The pARMS solver manages the parallel part by using

global preconditioning with MPI instructions, while the local

part of the code, more precisely the local preconditioning

phase does not use MPI instructions. Then the parallelism

is entirely managed by pARMS. The local preconditioning

can be based on ilu0, iluk, ilut or arms. The essential part

resides in the last Schur complement, where we implemented

RBT and the preconditioned matrix is then used in FGMRES

in order to solve the linear system.

IV. NUMERICAL EXPERIMENTS

This section describes preliminary results obtained by inte-

grating RBT into the pARMS solver. The experiments have

been carried out using one node (2 twelve-core AMD Mag-

nyCours Opteron 6172 processors running at 2.10GHz) of the

Hopper machine located at NERSC1. In these experiments,

we used matrices from the Davis’ collection [24] to test

the performance of different preconditioners. The first matrix

(Sherman5) is a real non-symmetric matrix of size 3, 312
(nnz = 20,793). Sherman5 arises from a three dimensional

simulation model on a nx × ny × nz grid using a seven-

point finite-difference approximation with nc equations and

unknowns per grid block, where nx is 16, ny is 23, nz is 3, nc

is 3. The second matrix (Raefsky3) is a real non-symmetric

matrix of size 21, 200 (nnz =1,488,768), which arises from a

fluid structure interaction turbulence problem. The third matrix

(Cant) is a real symmetric matrix that comes from a 2D/3D

FEM problem, of size 62,451 (nnz = 2,034,917). For the three

matrices, we study the results obtained when using a global

Schur complement-based preconditioner with the following lo-

cal preconditioners: ilu0, iluk, ilut, arms, or arms_rbt. The

pARMS parameters are chosen for these matrices following

the guidance for the local ARMS preconditioner, as explained

in [12], for example. Certain parameters influence considerably

the size and density of the last Schur Complement, which,

in turn, affects greatly the performance of RBT. Since the

RBT for dense matrices is used in this work, it is desirable

that the last Schur Complement remains dense while being

1http://www.nersc.gov
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relatively small. Hence, parameter values for the number of

ARMS levels and the ARMS independent block size were

chosen such that a small Schur Complement is obtained. In

particular, the former parameter was small (equals two) while

the latter was large (allowing to form the blocks up to the

entire local matrix size). At the same time, the drop tolerance

for the last Schur Complement was kept quite low (0.001) as

well as all the other intermediate-level drop tolerances, so that

there is close to none sparsification of the Schur Complement.
The experiments are performed using 4 to 12 cores, and

we use one MPI process per core and no multi-threading.

In Figure 3, we compare the number of iterations required

for convergence. We observe that, for matrices Sherman5

(fig. 3(a)), Raefsky3 (fig. 3(b)), arms_rbt performs better

than the other local preconditioners. For Cant, arms_rbt
converges in fewer iterations than the other preconditioners

do so when using up to eight cores. This observation suggests

that arms_rbt may be a more versatile preconditioner to use

for obtaining superior convergence. Note that, for different

numbers of subdomains (one per MPI process) in a given

matrix, the obtained parallel preconditioning varies leading to

the differences in the number of iterations to converge. Note

that for these preliminary tests, arms_rbt requires more time

to solve the system since, in our preliminary implementation,

a dense-matrix solver was used to solve the last Schur com-

plement system in pARMS. In the future, we plan to develop

a sparse RBT solver based on a sparse direct solver, such

as SuperLU [25]. Figure 4 represents the residual obtained

with the five local preconditioners. We observe that these

preconditioners provide us with a similar accuracy, arms_rbt
being more accurate for the matrix Raefsky3.

V. CONCLUSION AND FUTURE WORK

We have investigated the feasibility of using RBT random-

ization in the pARMS solver and how RBT may enhance the

iterative convergence. Most of our experiments showed an im-

provement in the number of iterations and accuracy of results.

However, our integration of RBT in pARMS necessitates an

implementation that may adjust the sparsity of the last Schur

complement matrix based on the available memory and on the

performance characteristics of its (direct) solver at hand. As

a future work, we will integrate a sparse RBT direct solver

based on SuperLU, which will also enable us to solve large-

scale sparse linear systems.
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Fig. 3. Iterations required for convergence with five choices of local preconditioner.
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N = 6 6,07E-005 3,44E-005 8,84E-006 4,22E-005 1,46E-005

N = 8 2,04E-005 3,85E-005 1,11E-005 5,64E-005 2,02E-005

N = 10 4,08E-005 1,03E-005 5,06E-006 2,76E-005 4,40E-007

N = 12 5,37E-005 4,89E-005 3,32E-006 5,28E-006 5,26E-005
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(a) Sherman5

Raefsky3 ilu0 iluk ilut arms arms_rbt

N = 4 5,51E-005 7,30E-005 6,31E-005 7,61E-005 5,15E-005

N = 6 6,21E-005 7,83E-005 7,90E-005 8,13E-005 6,50E-005

N = 8 4,77E-005 5,39E-005 7,13E-005 6,90E-005 4,92E-005

N = 10 6,99E-005 7,88E-005 7,10E-005 6,95E-005 5,03E-005

N = 12 5,80E-005 5,74E-005 7,81E-005 7,64E-005 4,53E-005
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(b) Raefsky3

Cant ilu0 iluk ilut arms arms_rbt

N = 4 1,72E-001 4,41E-002 3,49E-004 2,09E-001 3,07E-001

N = 6 1,08E-001 2,11E-002 7,13E-001 1,46E-001 7,53E-002

N = 8 1,34E-001 2,51E-002 1,19E-004 1,50E-001 2,60E-001

N = 10 1,42E-001 2,52E-002 1,07E-004 7,52E-002 1,48E-001

N = 12 1,59E-001 2,78E-002 1,16E-004 1,10E-001 1,48E-001
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Fig. 4. Residual for test problems with five choices of local preconditioner.
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