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Abstract—In this paper we consider a hub location problem in
a real multimodal public transportation network. This problem is
also  known  as  the  park-and-ride  problem.  Hubs  stations  are
special  facilities  that  serve  as  switches  in  such  a  network.  In
practice the set of hubs has a strategic importance, because all of
the traffic that passes through the network can be controlled by
these elements. From the theoretical point of view, the minimal
hub  problem  is  NP  hard.  Two  different  approaches  to  this
problem are presented. The first group of methods bases on the
greedy algorithms. In the second group the evolutionary strategy
is used. The computational results for these algorithms proved a
significant efficiency, what can be clearly expressed in terms of
an input data reduction and also in quality measure values for
the obtained solutions of this problem.

I. INTRODUCTION

ET US consider  a  real  public transportation  network.

This network can be described as a graph [3], [8], [9].

In this graph, each tram/bus stop corresponds to one vertex

and any two vertices are adjacent iff they belong to at least

one common public transport line. Hence, the set of vertices

along  a  route  forms  a  connected  subgraph  of  the  entire

graph. Each vertex in this graph is characterized/labeled by a

set of numbers of tram/bus lines passing through it. 

L

In such a graph, a hub set is a subset of vertices, such that

any two vertices are connected by a path whose vertices lie

in it.  Let  us  define  the minimum hub set  problem as  the

problem of finding the hub set of minimal cardinality for a

given graph. This collection has a strategic importance for

the  transportation system, because all the traffic that passes

through the network  can  be controlled   by these  vertices.

Communication hubs are excellent candidates for park-and-

ride (P&R, sometimes P+R) points ([4]) with good  connec-

tions to the center and other parts of the city and this idea is

a basis of  presented work. This problem is well known and

is commonly used in industry, in particular in such areas as

transport, telecommunication, and distributed computing [1],

[2], [11], [13], [16].  

Let us observe that we can try to find the minimum hub

set for a given network in two different ways. This problem

would be directly reduced to the task of designation the min-

imum dominating set [6], [14], [15]. Alternatively, we have a

possibility of creating  a hypergraph, such that its set of ver-

tices is the same as in the original network, and for each set

of  vertices,  which  correspond  to  stops  lying  along  a

tram/bus route, we form the hyperedge. In this case, we re-

duce the considered problem to the search for the minimal

transversal  in a constructed hypergraph.

II. BASIC MATHEMATICAL DEFINITIONS

This section provides some basic notation. A graph is a

representation of a set of objects, where some pairs of ob-

jects are connected by links. The interconnected objects are

represented  by  mathematical  abstractions  called  vertices,

and the links that connect some pairs of vertices are called

edges. More formally, a  graph is an ordered pair G=(V, E)

comprising a set V of vertices or nodes together with a set E

of edges, which are 2-element subsets of V  (E is a subset of

VxV). An undirected graph is the one in which edges have

no orientation. The edge (a, b) is then identical to the edge

(b, a). 

Let N(v)={u  V: (v, u) E} be an open  ∈ ∈ neighborhood

for a given vertex v. 

A dominating set for a graph G is a subset D of V such

that every vertex not in D is adjacent to at least one member

of  D.  This  problem is  strongly related  to  a  problem well

known in computational geometry,  the  art gallery prob-

lem. The  domination number  γ(G) is the number of ver-

tices in a smallest dominating set for G. The k-dominating

set problem concerns testing whether γ(G) = k for a given

graph G and natural number k; it is a classical NP-complete

decision  problem in  computational  complexity  theory

(Garey & Johnson 1979)  [3], [8], [9].

Theorem (Ore):  If  G=(V, E)  is  a  graph  without  isolated
vertices, then the complement of a minimal dominating set
of G is also a dominating set of G. This implies that every
such graph has two disjoint dominating sets and hence, γ(G)
≤ ½ Card(V) [3], [8], [9].

Theorem (Arnautov  1974,  Payan  1975,  Alon  1990)  :  If
G=(V,  E)  is  a  graph  with  minimum  degree
d > 1,  then  γ(G)   ≤ [(1 + ln(d+1))/(d  + 1)]  Card(V)  [3],
[8], [9].
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An independent set is a set of vertices in a graph, such
that no two of them are adjacent. The size of such a set is
called the independence number of G, and is denoted α(G).
The problem of finding the set such that α(G)  = k is called
the k-independent  set  problem and  is  an  NP-complete
decision problem. The dominating sets are closely related to
independent  sets  (e.g.  the  8-Queens Problem Puzzle).
Namely, an independent set is also a dominating set if and
only  if  it  is  a  maximal  independent  set,  so  any  maximal
independent  set  in  a  graph  is  necessarily  also  a  minimal
dominating set. 

A hypergraph is a generalization of a graph in which an
edge can  connect  any  number  of  vertices.  Formally,  a
hypergraph  H is  a  pair  H=(X,F), where  X  is  a  set  of
elements called vertices, and F is a set of non-empty subsets
of  X called  hyperedges.  Let  F  be  a  subset  of  P(X)\{Ø},
where P(X) is the power set of X and F(x) =  {f F: x f }∈ ∈

for x   X∈ .  A hypergraph is also called a set system or a
family of sets drawn from the universal set X. The rank of
hypergraph H is the size of the largest hyperedge in H.  A
set covering of a hypergraph H=(X, F) is a subfamily C of
F, such  that  the  union  of  hyperedges  from  C  equals  the
universe  of  vertices.  A  transversal (or  hitting set)  of  a
hypergraph H=(X, F) is a subset T of X that has a nonempty
intersection with every edge. The notions of hitting set and
set  covering  are  equivalent.  The  decision versions of
hitting set and set covering problems are NP-complete.
 

For  any  given  graph  G=(V,  E)  with  V={1,  2,...,  n},
construct a hypergraph H=(X, F) as follows: the universe X
is V, and the family of hyperedges F is {F1, F2, ..., Fn} such
that Fv consists of the vertex v and all vertices adjacent to v
in G. Hence, if D is a dominating set for G, then S={Sv:
v D} is a feasible solution of the set cover problem, with∈

Card(C)=Card(D). Conversely, if S={Sv: v D} is a feasible∈

solution of the set cover problem, then D is a dominating set
for G, with Card(D)=Card(C). 

The  greedy algorithm for set covering chooses the sets

according to one rule: at each stage, choose the hyperedge

that contains the largest number of uncovered elements. This

algorithm  actually  achieves  an  approximation ratio

Card(C)/Card(Opt)  (Opt  –  is  an  optimal  set  covering)  of

h(rank),  where  h(n)  is  the

n-th harmonic  number. This  value  is  approximately given

by:   O((1+ log(Card(V))). We can construct dual algorithm

for  hitting  set  problem  for  which  performance  ratio  is:

O((1+ log(Card(F))). 

Algorithm 0 – Greedy set covering method

1.   input:   a hypergraph H=(X, F);
2.   output:   a set covering C;
3.    U := X; C :=  Ø;
4.    while( C ≠ X )do{
5.       select S from F such that maximizes Card(S ∩ U);
6.       U := U  \   S;
7.       C := C ∪  {S};
8.     }
9.   return: C;

It is interesting that there exists a pair of polynomial-time

reduction between the minimum dominating set problem

and  the  minimum  set  covering  problem (Kannan  1992

pp.108–109). These reductions show that an efficient algo-

rithm for the minimum dominating set problem would pro-

vide  an  efficient  algorithm for  the set  cover  problem and

vice  versa.  According  to  the  above  presented  facts,  the

greedy algorithm provides a factor 1+ log(Card(V)) approxi-

mation of a minimum dominating set.

Algorithm 1 – Greedy hitting set method

1.    input:     a hypergraph H=(X, F);
2.    output:   a hitting set – transversal T;
3.    T := Ø; E :=  F;
4.    while( E ≠ Ø )do{
5.       select x from X such that maximizes Card(F(x)  ∩  E);
6.       T :=  T ∪  {x} ;
7.       E := E  \ F(x);
8.     }
9. return: T;

Consider another approach to the hitting set problem, I.e.

algorithm 2 (MSBT)  [12].  It  seeks  the  vertices  with  the

lowest degree and removes them from the set of vertices. If

(without a removed vertex) the vertex set is not a transver-

sal, then this vertex should be added to the transversal under

construction, and the edges incident with it are eliminated

from the hypergraph – they are deemed to be covered. 

Yet another method (algorithm RSBT) [12] seeks a max-

imum transversal in the sense of cardinality.  Contrary to the

MSBT algorithm, the RSBT removes vertices with the big-

gest degree as long as it can. All the rest is the same as in the

MSBT algorithm.  

Algorithm 2 - MSBT

1.  input:      a hypergraph H=(X, F);
2.  output:   a hitting set – transversal T;
3.  T :=  Ø  V := X; Q := X; E := F;
4.  while( V ≠  Ø & E ≠  Ø) do
5.    { x := vertices with the lowest degree; V := V \ {k};
6.   if( V is not transversal of hypergraph (Q, E) )
7.       then {  T := T ∪  {x}; E := E \ F(x); V := V \ { v ∈ V: F(v) = Ø};}
8.       else
9.    for( each edge covers by exact one vertex v )do
10.             {T := T ∪  {v}; E := E \ F(v) ; V := V \ {v};}
11.       Q:=V;
12.    }

The algorithms MSBT and RSBT are the algorithms de-

signed by authors as a complement of the Algorithm 1.

Let  us  consider  a  reduction  from  the  dominating  set

problem to the set covering problem. For any given graph

G=(V, E) with V={1, 2,..., n}, construct a hypergraph H=(X,

F) as follows: the universe X is V, and the family of hyper-

edges F is {F1, F2, ..., Fn} such that Fv consists of the ver-

tex v and all vertices adjacent to v in G. Hence, if D is a

dominating set for G, then S={Sv: v D} is a feasible solu∈ -

tion of the set cover problem, with Card(C)=Card(D). Con-

versely,  if  S={Sv:  v D}  is  a  feasible  solution  of  the  set∈

cover  problem,  then  D  is  a  dominating  set  for  G,  with

Card(D)=Card(C). 
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According to the above presented facts, the greedy algo-

rithm provides a factor 1+ log(Card(V)) approximation of a

minimum dominating set. Additionally,  Raz  and  Safra

(1997) show that  no algorithm can achieve an approxima-

tion factor better than clog((Card(V)) for some c > 0 unless

P = NP. Fomin, Gradoni and Kratsch (2009) show an exact

algorithm which can be used to find a minimum dominating

set in time O((1.5264)^n) and polynomial space. In parallel,

a faster algorithm, using  O((1.5048)^n) time was found by

van Rooij, Nederlof and van Dijk (2009).

III. EVOLUTIONARY ALGORITHM 

Graph problems such as graph coloring, TSP, graph parti-

tioning,  maximum clique search,  etc.  (NP-hard optimiza-

tion problems) are often solved using computational intelli-

gence methods due to the lack of efficient polynomial algo-

rithms.  Among them,  the  evolutionary algorithms (EAs)

are often applied; thus, it seems fully justified to use the EA

in the  present  graph  transformation  problem.  The EA ap-

proach  is  quite  different  than  the described  earlier  hyper-

graph method. The EA method tries to find hubs, which are

strongly connected (in the sense of high capacity of connec-

tions – see formula (4)) among them and allow for fast mass

travel  to  the  center  of  the city and  other  hubs.  It  is  very

likely that such hubs are good candidates for the park-and-

ride locations.

In our approach, information about the transformed graph

is  stored  in  an  array  of  data  describing  all  connections

among graph nodes – public communication stops. This ar-

ray is an adjacency matrix of undirected graph with stored

values – weights, denoting the capacities of connections. 

The idea of our approach is based on the hub and spoke

paradigm. The spokes,  which in this case represent public

transport  stops  of  minor  importance,  constitute  groups  of

nodes connected with their hubs. The size of the subgraph of

hubs is known in advance. Hubs (should) represent impor-

tant  public  transport  stops  with fast  and  frequent  connec-

tions with other important stops and the center of the city.  

Algorithm 4.  shows how the typical  EA work,  but  this

general  framework requires  several  improvements to work

efficiently and thus a specialized evolutionary method, de-

veloped by authors is used to solve the problem.

To adjust the EA to the solved problem it is necessary to
apply  proper,  problem-specific  encoding of  solutions
(sometimes called also population members,  individuals or
even  agents),  to  develop   specialized  genetic operators
tailored  for  the  analysed  data  structure  and  the  solved
problem and,  finally,  to  formulate  the  problem-dependent
fitness function to be optimized by the algorithm.

Algorithm 4 - The standard evolutionary algorithm

1. input:    a given problem;
2. output:  solution of problem; 
3.  {     while( not stop condition )do
4.  {  reproduction and modification 

of solutions using genetic operators;
5.    valuation of obtained solutions;
6.    selection of individuals for the next generation;
7.  }
8.   }

The first step to obtain efficient evolutionary method is to

choose an appropriate encoding method. It  is obvious that

there are plenty of possible solutions with different advan-

tages and drawbacks. In presented approach the solution is

stored  as  a  vector  of  selected  hubs  with lists  (or  variable

length vectors) of attached to them spokes. 

An important problem in developing an efficient EA is the

design of  genetic operators for the adopted data structure,

taking into account the constraints imposed on solutions. In

the case here considered, the standard crossover and muta-

tion operators are not proper, so the problem-specific, spe-

cialized operators must be prepared to efficiently solve the

problems considered. When one element of a modified solu-

tion (for instance one node) is to be moved to another place

(e.g. to the cluster of another hub), it must first be checked if

it has a connection with this new hub. If not, the operation is

canceled to avoid creation of infeasible solutions. Altogether,

here, the set of genetic operators is:

• mutation  –  exchange  of  randomly  chosen  nodes  in
different sets of spokes,

• relocation of a randomly chosen node to a different set
of spokes,

• exchange  of  a  randomly  selected  hub  for  randomly
selected spoke.

Application  of  several  specialized  genetic  operators  re-

quires a method of selecting and executing them in all itera-

tions of the algorithm. In the approach used in [17] it is as-

sumed that an operator that generated good results for some

population member should have bigger probability of execu-

tion  for  its  possible  offspring  and  more  frequently  affect

them than the remaining operators. But it is very likely that

the  operator  that  improves  one  individual  and  its  descen-

dants may give worse effects for other individuals, because

of its location in the domain of possible solutions. Thus, ev-

ery individual should have its own preferences and could be

treated as an agent, whose role is to select and call one of the

evolutionary operators  (or  to perform an action) to obtain

improvement of solution (or its income) as high as possible.

In the EA here used, every individual has an additional vec-

tor of floating point numbers, besides the encoded solution.

Each number corresponds to one genetic operator and is a

measure of its quality (a quality factor). The higher the fac-

tor, the higher the probability of calling and executing the

operator. Simple normalization of the vector of quality coef-

ficients turns it into a vector of operator execution probabili-

ties. This set of probabilities is also an expression of experi-

ence  of  every  individual  and  according  to  the  experience

gathered one can maximize the chances of its offspring to

survive.

The method of computing quality factors is based on re-

inforcement learning. When the selected by the individual-

agent ith operator is applied, this can be regarded as an agent

performing action ai leading to a new state si, which, in this

case, is a new solution. The agent (or individual, solution or

population member)  receives  reward or  penalty depending

on the quality of  the new state (solution).  The aim of the

agent is to perform the actions, which give the highest long

KRZYSZTOF SĘP ET AL.: GRAPH BASED APPROACH TO THE MINIMUM HUB PROBLEM IN TRANSPORTATION NETWORK 1643



term  discounted  cumulative  reward  V*, maximizing  its

chances to have offspring in next generations:

V Π=EΠ(∑
k=0

∞

γk r
t+k +1) , (1)

V
∗=max

Π
(V Π) . (2)

The following formula, derived from (1) and (2), is used

for evaluation purposes:
 

V (s t+1)=V (st )+α(r t+1+γV
∗(s t+1)−V (s t)) , (3)

where:

Π   - the set of possible strategies of the agent,

V      - the discounted cumulative reward obtained using strategy Π,

E   - expected value, 

k    - consecutive time steps, 

t     - current time, 

V(st) - quality factor or discounted cumulative reward, 

V*(st+1)  - estimated value of the best quality factor 
               (in our experiments we take the value attained 

               by the best operator), 

α     - the learning factor, 

γ     - the discount factor, 

rt+1    - reward for the best action, equal to the improvement 

         of the quality of solution after execution 

          of the evolutionary operator.

In  the here presented experiments,  the values  of  α and  γ

were set to 0.1 and 0.2, respectively.

The fitness function in the EA is closely connected with

problem specific quality function. The fitness function eval-

uates  the  members  of  the  population.  It  is  a  modified

(scaled, translated, etc.) problem quality function, prepared

for computational purposes in the EA. The quality function

directs  evolutionary  computations  to  obtaining  the  proper

graph structure. In the considered problem the quality func-

tion is formulated to direct the EA towards the desired struc-

ture of potential P&R, taking into account weights among

the graph vertices. Several quality functions can be used, de-

pending on input data (binary, integer or real) or what kind

of set of P&R nodes one wants to obtain. The formula pre-

sented in this paper was  obtained on the basis of experi-

ments. Usually, such formulas contain a penalty part for the

potential invalid or improper structure of the obtained solu-

tions.

For the  hub and spoke structure with the predetermined

number of kernel nodes the quality function promotes solu-

tions where a rather small subgraph of hubs is (almost) fully

connected and the sets of spokes attached to their hubs have

medium sizes:

max Q=∑
i=1

n

(a∗∑
j=1

k
i

w
ij
+b∗w

iC
+c∗∑

m=1

k −k
i

w
im) , (4)

where:
wij   – weight between candidate for P&R (hub) and its subgraph
              of communication stops (spokes),

wiC – weight between candidate for P&R (hub) and 
              the center of the city1,
wim – weight between candidate for P&R (hub) 
           and remaining communication stops,
n – predetermined (constant) number of hubs (candidates for P&R) 
         in the solution,
ki  – number of nodes attached to ith hub,
k    – number of nodes in the whole graph,
a, b, c – non-negative constants values that emphasize the influence 
               of corresponding factor.

IV. DATA BASE & COMPUTATIONAL ENVIRONMENT 

For the computational experiments a set of data files was

obtained from the www page: http://www.ztm.waw.pl/. The

description  of  the structure  of  public transport  in  Warsaw

and full list of bus, subway and tramway stops and all lines

of these means of transport  are collected in the data files.

The data include more than 5600 stops, but the majority of

them are stops located not far from each other, with the same

names but different minor numbers (like Centrum 01, Cen-

trum 02,...), which indicate the opposite direction or differ-

ent transport mean or extensions for bigger numbers of vehi-

cles  boarding  passengers  simultaneously.  Thus,  first  the

stops were aggregated: all of them with the same names and

different minor numbers were treated as one. This allowed to

reduce the size of the communication network to 1883 stops.

We  prepared  computation  experiments  for  this  article
based on typical personal computer (with an Intel i5 4 x3.2
GHz microprocessor) running Linux OS. All our programs
were written in the C language and compiled with the g++
compiler application. 

V. DATA REDUCTION

At the second step, some preliminary computations for

the considered data allowed to reduce the size of the prob-

lem even more. This preprocessing was oriented to reduce

input data (filtering method). We can treat the graph G as a

representation of Warsaw transportation network being an

input data for our programs. 

Looking at this graph one can observe that it is possible to
remove some of the redundant edges. It is clear that if two
vertices,  a  and  b,  are  adjacent  in G and the sets  of
bus/subway/tram lines passing through them are the same,
then we can apply the edge (a, b) contraction operation. An
edge contraction  is an operation which  removes an edge
from a graph while simultaneously merging the two vertices
that it previously joined. More precisely, the edge (a, b) is
removed and its two incident vertices,  a and b, are merged
into  a  new  vertex  c, where  the  edges  incident  to  c
correspond to edges incident to either a or b. Obviously, it is
possible to apply these contraction operations several times,
in  polynomial  time.  After  executing  this  procedure  an
obtained graph consists of  1003 vertices (reduction of 880
vertices). 

VI. THE RESULTS OF PRESENTED APPROACHES

Given the above, we can try to find the minimum hub set

for the given network by applying the presented algorithms.

1We decided to emphasize a central communication stop in the city as a
virtual aim of the majority of commuters.
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At the beginning we construct  a hypergraph, such that its

set of vertices is the same as it is in the input network. Let

for  each  set  of  vertices,  which  correspond  to  stops  lying

along a tram/bus route, form a hyperedge. In this case, we

reduce the problem considered to the minimal transversal

construction  for  this  hypergraph.  Therefore,  two  different

approaches are possible - deterministic and random:

(a) application of greedy methods 
(in different versions);

(b) use of evolutionary algorithms.

In order to compare these methods we also made compu-

tations with and  without  the preliminary reduction.  In  the

first approach  (greedy method), algorithm 2 found 35 ver-

tices.  The  RSBT found smaller  transversal  – 140 vertices

instead of 152 vertices found without the reduction. Consid-

ering the obtained results it looks like the reduction could be

used for the EA approach. There was no change as to the re-

sult obtained in the evolutionary algorithm, but there was a

significant reduction of time needed for computation.

Due  to  a  smaller  graph  of  public  communication  stops

considered  each  iteration  of  EA last  significantly  shorter,

while  the  number  of  them  remained  unchanged. For  the

greedy method the time of computation is very short  (less

than 1 s.) with and without the reduction, thus it is no use to

compare them with EA and with or without the reduction.

TABLE 1.
 COMPUTATIONAL RESULTS 

Number of

hubs

Time of 10 000

EA iterations

 (average of 10 trials)

Before

reduction

After

reduction

50 5 854 s 2 478 s

100 13 433 s 5 895 s

152 27 231 s 14 256 s

Figure 1: Result obtained by the EA with the imposed number of 50 hubs
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Figure 2: Result obtained by the EA with the imposed number of 152 hubs

Figure 3: Result obtained by the MSBT algorithm - 35 points selected
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 Figure 4: Result obtained by the RSBT algorithm - 140 points selected

VII. CONCLUSIONS

This article is devoted to the problem of locating hubs in a

public transportation network. Two different approaches to

this problem are presented. Namely, the first group of con-

sidered methods are based on greedy strategies, and the sec-

ond group, using evolutionary strategy. In the computational

experiments the model of the transportation network of War-

saw  was  analysed.  The  obtained  results  showed  for  this

model the potential P&R set of 34 stations using the  MSBT

greedy method and of 140 potential points using the RSBT

greedy method. Using the EA with imposed number of hubs,

satisfactory  solutions  for  50,  100  and  152  predetermined

numbers of candidates were obtained.  Additionally, it must

be concluded that the graph reduction could be used espe-

cially for  the evolutionary approach as a filtration method

significantly reducing the size of  the solved  problem. Al-

most always the preliminary reduction of the stop number

speed up the computational process by about 46%. Accord-

ing to the quality of solutions obtained with and without the

preliminary reduction it appears that the use of the proposed

preprocessing method seems to be justified.

This work is the first step towards obtaining a more com-

plete model of communication in Warsaw, which would be a

base to find and project  communication hubs with proper

places for P&R facilities.
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KRZYSZTOF SĘP ET AL.: GRAPH BASED APPROACH TO THE MINIMUM HUB PROBLEM IN TRANSPORTATION NETWORK 1647



[10] Jin-Hua Zhao,  Habibulla  Y.,  Hai-Jun Zhou,  Statistical
Mechanics  of  the Minimum Dominating Set Problem,
Journal of Statistical Physics, 2015,

[11] Krishnam  R.,  Indukuri  R.,  Penumathsa  S.V.,
Dominating  Sets  and  Spanning  Tree  based  Clustering
Algorithms for Mobile Ad hoc Networks,  International
Journal  of  Advanced  Computer  Science  and
Applications, Vol. 2, No.2, February 2011,

[12] Mażbic-Kulma  B.,  Sęp  K.,  Some  approximation
algorithms for minimum vertex cover in a hypergraph.
Computer  Recognition  Systems  2.  Springer-Verlag,
Berlin-Heidelberg,  pp.  250-257.  Series:  Advances  in
Soft Computing, 2007,

[13] Milenkovic  T.,  Memisevic  V.,  Bonato  A.,  Przulj  N.,
Dominating Biological Networks, PLoS ONE, 2011,

[14] Molnár F. , Sreenivasan S., Szymanski B. K. & Korniss
G.  Minimum Dominating Sets  in Scale-Free  Network
Ensembles, Nature, 2015,

[15] Naixue  Xiong,  Xingbo  Huang,  Hongju  Cheng,  and
Zheng  Wan,  Energy-Efficient  Algorithm  for
Broadcasting  in  Ad  Hoc  Wireless  Sensor  Networks,
Sensors 2013,

[16] Nettleton  D.  F.,  Data  mining  of  social  networks
represented  as  graphs,  Computer  Science  Review,
Elsevier, 2013,

[17] Stańczak  J.  (2003)  Biologically  inspired  methods  for
control  of  evolutionary  algorithms.  Control  and
Cybernetics, 32(2), pp. 411-433.

1648 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015


