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Abstract—In this paper we apply an approach based on the
apparatus of the Index Matrices and the Intuitionistic Fuzzy
Sets – namely InterCriteria Analysis. The main idea is to use
the InterCriteria Analysis to establish the existing relations and
dependencies of defined parameters in non-linear model of an
E. coli fed-batch cultivation process. Moreover, based on results
of series of identification procedures we observe the mutual
relations between model parameters and considered optimiza-
tion techniques outcomes, such as execution time and objective
function value. Based on InterCriteria Analysis we examine the
obtained identification results and discuss the conclusions about
existing relations and dependencies between defined, in terms of
InterCriteria Analysis, criteria.

Index Terms—InterCriteria Analysis; Index matrices; In-

tuitionistic Fuzzy Sets; Genetic Algorithm; chromosomes;

parameter identification; E. coli; fed-batch cultivation process.

I. INTRODUCTION

THE InterCriteria Analysis (ICA) is developed with the

aim to gain additional insight into the nature of the

criteria involved and discover on this basis existing relations

between the criteria themselves [8]. It is based on the apparatus

of the Index Matrices (IM) [10], [11], and the Intuitionistic

Fuzzy Sets [12] and can be applied for decision making in

different areas of science and practice. The approach has

been discussed in a several papers [10], [14], [15], [16].

In [8] a possibility of the ICA method for criterion value

prediction, proposing two algorithms, is presented. In [16]

a discussion on the threshold values in the ICA was further

elaborated. But, up to now, considering ICA application, the

only applications reported are in one area: namely, EU member

states competitiveness analysis [14], [15]. Encouraging results

of these first applications of the ICA provoke us to use the

method for establishing and identifying the relations between

parameters of the mathematical model of an E. coli fed-

batch cultivation process. The model parameters are further

considered as criteria in terms of ICA.

In the case of modelling of cultivation processes ICA

approach could be very useful. Cultivation processes are

characterized with complex, non-linear dynamic and their

modelling is a hard combinatorial optimization problem. On

the one hand, the parameter identification is of key importance

for modelling process and additional knowledge about the

model parameters relations will be extremely useful to improve

the model accuracy. On the other hand, the information may

be used to improve the performance of the used optimization

algorithms if, for instance, some algorithm outcomes are added

to the considered criteria. Thus, the relations between model

parameters and optimization algorithm performance will be

established.

In this paper we applied the ICA to establish the basic

relations between the parameters in the model of an E. coli fed-

batch cultivation process. The existing relations are identified

based on results of a series of parameters identification pro-

cedures. The use of meta-heuristic techniques such as Genetic

Algorithms (GAs) has received more and more attention [3].

These methods offer good solutions, even global optima,

within reasonable computing time [17], so we choose to use

genetic algorithms for estimation of the model parameters.

The paper is organized as follows. The background of

InterCriteria Analysis is given in Section 2. The problem

formulation is described in Section 3. The numerical results

and a discussion are presented in Section 4. Conclusion

remarks are done in Section 5.

II. INTERCRITERIA ANALYSIS

Here we expand on the idea proposed in [8]. Following [8]

and [12] we will obtain an Intuitionistic Fuzzy Pair (IFP) as

the degrees of “agreement” and “disagreement” between two

criteria applied on different objects. We remind briefly that

an IFP is an ordered pair of real non-negative numbers 〈a, b〉
such that:

a+ b ≤ 1.
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For clarity, let us be given an IM (see [10]) whose index sets

consist of the names of the criteria (for rows) and objects (for

columns). The elements of this IM are further supposed to be

real numbers (in the general case, this is not required). We

will obtain an IM with index sets consisting of the names of

the criteria (for rows and for columns) with elements IFPs

corresponding to the “agreement” and “disagreement” of the

respective criteria.

Two things are further supposed (which are not always

guaranteed in practice and, when not fulfilled, present an

interesting direction for new research in themselves):

1) All criteria provide an evaluation for all objects (i.e.

there are no inapplicable criteria for a given object) and

all these evaluations are available (no missing evalua-

tions).

2) All the evaluations of a given criteria can be compared

amongst themselves.

Further by O we denote the set of all objects

O1, O2, . . . , On being evaluated, and by C(O) the set of

values assigned by a given criteria C to the objects, i.e.

O
def
= {O1, O2, . . . , On},

C(O)
def
= {C(O1), C(O2), . . . , C(On)}.

Let:

C∗(O)
def
= {〈x, y〉| x 6= y & 〈x, y〉 ∈ C(O)× C(O)}.

In order to compare two criteria we must construct the vector

of all internal comparisons of each criteria, which fulfill

exactly one of three relations R, R and R̃. In other words,

we require that for a fixed criterion C and any ordered pair

〈x, y〉 ∈ C∗(O) it is true:

〈x, y〉 ∈ R⇔ 〈y, x〉 ∈ R, (1)

〈x, y〉 ∈ R̃⇔ 〈x, y〉 /∈ (R ∪R), (2)

R ∪R ∪ R̃ = C∗(O). (3)

From the above it is seen that we need only consider a subset

of C(O)×C(O) for the effective calculation of the vector of

internal comparisons (denoted further by V (C)) since from

(1), (2) and (3) it follows that if we know what is the relation

between x and y we also know what is the relation between y
and x. Thus we will only consider lexicographically ordered

pairs 〈x, y〉. Let, for brevity:

Ci,j = 〈C(Oi), C(Oj)〉.

Then for a fixed criterion C we construct the vector:

V (C) = {C1,2, C1,3, . . . , C1,n, C2,3, C2,4, . . . ,

C2,n, C3,4, . . . , C3,n, . . . , Cn−1,n}.

It can be easily seen that it has exactly
n(n−1)

2 elements.

Further, to simplify our considerations, we replace the vector

V (C) with V̂ (C), where for each 1 ≤ k ≤ n(n−1)
2 for the

k-th component it is true:

V̂k(C) =











1 iff Vk(C) ∈ R,

−1 iff Vk(C) ∈ R,

0 otherwise.

Then when comparing two criteria we determine the “degree

of agreement” between the two as the number of matching

components (divided by the length of the vector for normal-

ization purposes). This can be done in several ways, e.g.

by counting the matches or by taking the complement of

the Hamming distance. The “degree of disagreement” is the

number of components of opposing signs in the two vectors

(again normalized by the length). This also may be done in

various ways. A pseudocode of the algorithm used in this study

for calculating the degrees of agreement and disagreement

between two criteria C and C ′ is presented below.

Algorithm 1 Calculating “agreement” and “disagreement”

between two criteria

Require: Vectors V̂ (C) and V̂ (C ′)

1: function DEGREE OF AGREEMENT(V̂ (C), V̂ (C ′))
2: V ← V̂ (C)− V̂ (C ′)
3: µC,C′ ← 0

4: for i← 1 to
n(n−1)

2 do

5: if Vi = 0 then

6: µC,C′ ← µC,C′ + 1
7: end if

8: end for

9: µC,C′ ← 2
n(n−1)µC,C′

10: return µC,C′

11: end function

12: function DEGREE OF DISAGREEMENT(V̂ (C), V̂ (C ′))
13: V ← V̂ (C)− V̂ (C ′)
14: νC,C′ ← 0

15: for i← 1 to
n(n−1)

2 do

16: if abs(Vi) = 2 then ⊲ abs: absolute value

17: νC,C′ ← νC,C′ + 1
18: end if

19: end for

20: νC,C′ ← 2
n(n−1)νC,C′

21: return νC,C′

22: end function

It is obvious (from the way of calculation) that for µC,C′ ,
νC,C′ , we have:

µC,C′ = µC′,C , νC,C′ = νC′,C .

Also, 〈µC,C′ , νC,C′〉 is an IFP.
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III. PROBLEM FORMULATION

Let us use the following non-linear differential equation

system to describe the E. coli fed-batch cultivation process

[1], [4]:
dX

dt
= µX −

Fin

V
X, (4)

dS

dt
= −qSX +

Fin

V
(Sin − S), (5)

dV

dt
= Fin, (6)

where

µ = µmax
S

kS + S
, qS =

1

YS/X
µ (7)

and X is the biomass concentration, [g/l]; S is the substrate

concentration, [g/l]; Fin is the feeding rate, [l/h]; V is the

bioreactor volume, [l]; Sin is the substrate concentration in the

feeding solution, [g/l]; µ and qS are the specific rate functions,

[1/h]; µmax is the maximum value of the µ, [1/h]; kS is the

saturation constant, [g/l]; YS/X is the yield coefficient, [-].

For the model (Eq. (4)-Eq. (7)) the parameters that will be

identified are µmax, kS and YS/X .

Let Zmod
def
= [Xmod Smod] (model predictions for biomass

and substrate) and Zexp
def
= [Xexp Sexp] (known experimental

data for biomass and substrate). Then putting Z = Zmod−Zexp,
we define the objective function as:

J = ‖Z‖2 → min, (8)

where ‖‖ denotes the ℓ2-vector norm.

For the model parameters identification we use experimental

data for biomass and glucose concentration of an E. coli

MC4110 fed-batch fermentation process. The detailed de-

scription of the process condition and experimental data are

presented in [2].

To estimate the model parameters we applied consistently

14 differently tuned GA. We use various population sizes –

from 5 to 200 chromosomes in the population. The number of

generations is fixed to 200. The main GA operators and pa-

rameters are summarized in Table I. Because of the stochastic

nature of the applied algorithms we perform series of 30 runs

for each population size. Thus, we obtain the average, best and

worst estimate of the parameters, as well as of the algorithm

execution time and value of objective function. The detailed

description of identification procedure is given in [7].

To perform ICA three IMs are constructed – the IM A1

(Eq. 9) with the obtained average results, the IM A2 (Eq. 10)

with the best obtained results and IM A3 (Eq. 11) with the

worst obtained results. In addition to the presented in [7]

results here the average, worst and best estimates for the

tree model parameters in all 14 cases are given too. Thus,

five criteria are considered – C1 is parameter µmax, C2 is

parameter kS , C3 is parameter YS/X , C4 is objective function

value J and C5 is resulting execution time T .

TABLE I
MAIN GA OPERATORS AND PARAMETERS

Operator Type

fitness function linear ranking

selection function roulette wheel selection

crossover function simple crossover

mutation function binary mutation

reinsertion fitness-based

Parameter Value

generation gap 0.97

crossover probability 0.75

mutation probability 0.01

number of generations 200

IV. NUMERICAL RESULTS AND DISCUSSION

Computer specification to run all identification procedures

are Intel Core i5-2329 3.0 GHz, 8 GB Memory, Windows 7

(64bit) operating system.

Based on the presented Algorithm 1 the ICA is imple-

mented in the Matlab 7.5 environment. We obtain IMs that

determine the degrees of “agreement” (µC,C′ ) and “disagree-

ment” (νC,C′ ) between criteria for the three cases.

1) Case of average results:

Resulting degrees of “agreement” (µC,C′ ) are as follows:

IM1 =

C1 C2 C3 C4 C5

C1 1 0.91 0.41 0.74 0.26
C2 0.91 1 0.36 0.78 0.27
C3 0.41 0.36 1 0.55 0.38
C4 0.74 0.78 0.55 1 0.11
C5 0.26 0.27 0.38 0.11 1

Resulting degrees of “disagreement” (νC,C′ ) are as follows:

IM2 =

C1 C2 C3 C4 C5

C1 0 0.08 0.58 0.26 0.74
C2 0.08 0 0.62 0.21 0.71
C3 0.58 0.62 0 0.44 0.60
C4 0.26 0.21 0.44 0 0.89
C5 0.74 0.71 0.60 0.89 0

2) Case of worst results:

Resulting degrees of “agreement” (µC,C′ ) are as follows:

IM5 =

C1 C2 C3 C4 C5

C1 1 0.79 0.34 0.88 0.14
C2 0.79 1 0.18 0.84 0.22
C3 0.34 0.18 1 0.33 0.64
C4 0.88 0.84 0.33 1 0.07
C5 0.14 0.22 0.64 0.07 1

Resulting degrees of “disagreement” (νC,C′ ) are as follows:

STEFKA FIDANOVA ET AL.: INTERCRITERIA ANALYSIS OF A MODEL PARAMETERS IDENTIFICATION USING GENETIC ALGORITHM 503



A1(average) =

GA5 GA10 GA20 GA30 GA40 GA50 GA60 GA70 GA80 GA90 GA100 GA110 GA150 GA200

C1 0.552 0.525 0.515 0.491 0.486 0.508 0.497 0.498 0.498 0.496 0.494 0.500 0.492 0.489

C2 0.022 0.021 0.018 0.013 0.010 0.016 0.014 0.013 0.014 0.014 0.012 0.015 0.013 0.011

C3 2.032 2.025 2.019 2.023 2.023 2.020 2.022 2.022 2.022 2.021 2.023 2.021 2.021 2.023

C4 6.271 5.838 4.760 4.561 4.646 4.607 4.580 4.568 4.578 4.570 4.553 4.547 4.560 4.545

C5 4.649 6.053 7.472 11.248 12.917 14.649 16.973 19.719 21.793 24.196 26.848 29.515 39.406 51.917

(9)

A2(best) =

GA5 GA10 GA20 GA30 GA40 GA50 GA60 GA70 GA80 GA90 GA100 GA110 GA150 GA200

C1 0.491 0.480 0.494 0.491 0.488 0.492 0.488 0.490 0.484 0.491 0.488 0.486 0.488 0.488

C2 0.013 0.011 0.013 0.012 0.012 0.012 0.012 0.013 0.011 0.013 0.012 0.012 0.012 0.012

C3 2.023 2.024 2.018 2.023 2.020 2.023 2.020 2.019 2.019 2.020 2.019 2.021 2.019 2.018

C4 4.833 4.855 4.475 4.482 4.444 4.449 4.463 4.438 4.447 4.450 4.425 4.433 4.458 4.436

C5 4.867 5.912 7.675 11.295 13.229 15.007 17.316 20.062 22.667 24.757 26.926 30.015 39.780 52.323

(10)

A3(worst) =

GA5 GA10 GA20 GA30 GA40 GA50 GA60 GA70 GA80 GA90 GA100 GA110 GA150 GA200

C1 0.577 0.538 0.544 0.518 0.521 0.517 0.515 0.510 0.510 0.505 0.489 0.510 0.504 0.511

C2 0.015 0.026 0.024 0.018 0.019 0.018 0.018 0.016 0.017 0.015 0.012 0.016 0.015 0.016

C3 2.037 1.995 2.019 2.021 2.021 2.021 2.020 2.022 2.021 2.022 2.022 2.023 2.022 2.022

C4 9.296 9.618 5.363 5.009 4.967 4.864 4.808 4.736 4.746 4.721 4.702 4.732 4.672 4.721

C5 5.600 5.632 7.301 10.827 12.496 14.399 16.801 19.500 21.715 23.915 27.051 29.188 39.921 51.309

(11)

IM6 =

C1 C2 C3 C4 C5

C1 0 0.20 0.65 0.12 0.86
C2 0.20 0 0.80 0.15 0.77
C3 0.65 0.80 0 0.66 0.35
C4 0.12 0.15 0.66 0 0.93
C5 0.86 0.77 0.35 0.93 0

3) Case of best results:

Resulting degrees of “agreement” (µC,C′ ) are as follows:

IM3 =

C1 C2 C3 C4 C5

C1 1 0.74 0.49 0.63 0.36
C2 0.74 1 0.35 0.53 0.51
C3 0.49 0.35 1 0.71 0.30
C4 0.63 0.53 0.71 1 0.25
C5 0.36 0.51 0.30 0.25 1

Resulting degrees of “disagreement” (νC,C′ ) are as follows:

IM4 =

C1 C2 C3 C4 C5

C1 0 0.19 0.44 0.33 0.59
C2 0.19 0 0.59 0.44 0.46
C3 0.44 0.59 0 0.26 0.68
C4 0.33 0.44 0.26 0 0.75
C5 0.59 0.46 0.68 0.75 0

Let us consider the following scheme for defining the

consonance and dissonance between each pair of criteria (see

Table III).

TABLE II
CRITERIA RELATIONS SORTED BY µC,C′ VALUES

Criteria relation
Obtained 〈µC,C′ , νC,C′ 〉 values in case of

average results worst results best results

C1 ↔ C2 〈0.91, 0.08〉 〈0.79, 0.20〉 〈0.74, 0.19〉

C2 ↔ C4 〈0.78, 0.21〉 〈0.84, 0.15〉 〈0.53, 0.44〉

C1 ↔ C4 〈0.74, 0.26〉 〈0.88, 0.12〉 〈0.63, 0.33〉

C3 ↔ C4 〈0.55, 0.44〉 〈0.33, 0.66〉 〈0.71, 0.26〉

C1 ↔ C3 〈0.41, 0.58〉 〈0.34, 0.65〉 〈0.49, 0.44〉

C3 ↔ C5 〈0.38, 0.60〉 〈0.64, 0.35〉 〈0.30, 0.68〉

C2 ↔ C3 〈0.36, 0.62〉 〈0.18, 0.80〉 〈0.35, 0.59〉

C2 ↔ C5 〈0.27, 0.71〉 〈0.22, 0.77〉 〈0.51, 0.46〉

C1 ↔ C5 〈0.26, 0.74〉 〈0.14, 0.86〉 〈0.36, 0.59〉

C4 ↔ C5 〈0.11, 0.89〉 〈0.07, 0.93〉 〈0.25, 0.75〉

In the case of the average values of the examined criteria,

in accordance with the scale presented in Table III, we found

the following pair dependencies:

• There is no observed strong positive consonance or strong

negative consonance between any of the ten criteria pairs.

Since the observed values depend on the number of

objects if we can expand their number, it is possible to
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Fig. 1. Degrees of “agreement” (µC,C′ values) for all cases

TABLE III
CONSONANCE AND DISSONANCE SCALE

Interval of µC,C′ , % Meaning

[0-5] strong negative consonance

(5-15] negative consonance

(15-25] weak negative consonance

(25-33] weak dissonance

(33-43] dissonance

(43-57] strong dissonance

(57-67] dissonance

(67-75] weak dissonance

(75-85] weak positive consonance

(85-95] positive consonance

(95-100] strong positive consonance

obtain values in these intervals.

• For the pair C4 ↔ C5 (i.e., T↔J) a negative consonance

is identified. Such dependence is logical – for a large

number of algorithm iterations (i.e., greater execution

time T ) it is more likely to find a more accurate solution,

i.e. smaller value of J .

• The pairs C2 ↔ C5 (i.e., kS↔T ) show identical results

– these criteria are in weak dissonance. The third model

parameter YS/X and T are in dissonance. The conclusion

is that the total execution time is not dependent solely on

one of the model parameters. Logically the triple of these

parameters should be in consonance with T .

• For the pairs C1 ↔ C3 (i.e., µmax ↔ YS/X ) and

C2 ↔ C3 (i.e., kS ↔ YS/X ) a dissonance is observed.

Considering the physical meaning of the model param-

eters [1] it is clear that there is no dependence between

these criteria. A strong correlation is expected between

criteria C1 ↔ C2 (i.e., µmax ↔ kS) [1]. The results

confirmed these expectation – these criteria are in a

positive consonance.

• The observed low value of µC3,C4
, i.e., strong dissonance

between YS/X↔J show the low sensitivity of this model

parameter. According to [18] the parameter YS/X has

lower sensitivity compared to parameter µmax.

• Due to the established strong correlation between criteria

C1 ↔ C2 (i.e., µmax↔kS) we observe that C1 ↔ C4

(i.e., µmax↔J) and C2 ↔ C4 (i.e., kS↔J) are in,

respectively weak dissonance and weak positive conso-

nance. Similarly to the relations with T the conclusion

is that the accuracy of the criterion is not dependent

solely on one of the model parameters. Logically the

triple of these parameters should be in consonance (or

strong consonance) with the criterion value. Moreover,

taking into account the parameters sensitivity it is clear

that the more sensitive parameter will be more linked to

the value of J .

Due to stochastic nature of considered here GA we observed

some different criteria dependences in the rest two cases – case

of worst and case of best results:

• In the case of the worst results we found weaker relation

between C1 ↔ C2, C3 ↔ C4, C2 ↔ C3, C1 ↔
C5, C2 ↔ C5 and C4 ↔ C5. For the pairs C1 ↔
C4, C2 ↔ C4 and C3 ↔ C5 we observed higher value

of µC,C′ . Compared to the case of average results there

are no large, strongly manifested discrepancies. In case
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of discrepancy, the considered criteria pair appears in

an adjacent scale according to Table III. For example,

pair C1 ↔ C2 in case of average results are in positive

consonance, while in case of worst results – in weak

positive consonance.

• In the case of the best results we identify the same

results – in case of discrepancy the considered criteria

pair appears in an adjacent scale. However, in this case we

observed some larger discrepancies. Taking into account

the nature of the GA we consider that the results in case

of average criteria values have the highest significance.

V. CONCLUSION

In this paper based on the apparatus of the Index Matrices

and the Intuitionistic Fuzzy Sets, InterCriteria Analysis of

a model parameters identification using Genetic Algorithm

is performed. A non-linear model of an E. coli fed-batch

cultivation process is considered. Series of model identification

procedures using Genetic Algorithms are done. The Inter-

Criteria Analysis is applied to explore the existing relations

and dependencies of defined model parameters and Genetic

Algorithms outcomes – execution time and objective function

value. Three case studies are examined – considering average,

worst and best results for the obtained model parameters,

execution time and objective function value. Applying the

InterCriteria Analysis we establish relations and dependencies

between the defined criteria. Based on the used scale for

defining the consonance and dissonance between each pair

of criteria, we discuss which criteria are in consonance and

dissonance, as well as the degree of their dependence.
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