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Abstract—We present a very simple, free tool for parallelizing
calculations under Matlab in multicore and cluster environments.
After the installation it does not use any compilers, MEX files,
disk files, etc. It is compatible with the old Paralize package,
but allows the involved cores/machines to do other jobs when a
worker core/machine is not busy.

I. INTRODUCTION

T
HE aim of the described work was to add to the Matlab

software a free and lightweight support for distributed and

parallel computations. The main idea was to provide a simple,

user friendly tool (such as Matlab environment itself), which

does not use too much the machines’ resources to organize

the calculations.

Despite the existence of Matlab Parallel Computing Toolbox

(PCT) and Distributed Computing Server (DCS) [1] there is

still some sense in developing such tools, because:

• Matlab PCT/DCS are changing, that is, there are some

differences between the subsequent versions. For exam-

ple, in recent versions there were changes concerning

two commands: matlabpool (which was replaced in

R2013b release by parpool and completely removed

since release R2015a) and mapreduce,

• if one wants to perform computations in clusters, except

Matlab PCT it is necessary to buy Matlab DCS, which is

much more expensive and complicated in administration,

• universities and research laboratories usually buy Matlab

licenses in packs; this means, that after hours in labs

many licenses are free,

• there is a big interest in free software tools.

Due to these reasons, we observe still a lot of works

devoted to developing software environments to parallelize

Matlab, both on multicores and in clusters [2], to mention

only: Multicore [3], MatlabMPI [4], pMatlab [5] and shared-

matrix [6].

Almost all free packages for parallelizing Matlab calcu-

lations use disk files for communication between Matlab

instances, what is inefficient and prone to errors. They are

often based on C-MEX files, which have to be ported to every

environment (i.e., compiler, operating system), where the tool

will be used. Some of them also make use of the remote

execution of the child processes through the shells such as

ssh, rsh, which are neither convenient to use, nor available

everywhere (e.g., in Windows operating system). Most of these

packages introduces plenty of Matlab functions or extend basic

syntax to provide communication and synchronization between

computing nodes. And last, but not least, these packages do

not always work under new versions of Matlab.

Our goal was to find a solution for the described issues and

to provide a smart, but easy to install and use tool for parallel

and distributed computing, working under different versions

of Matlab.

One of the oldest and - no doubts - the simplest soft-

ware packages to parallelize Matlab calculations is Paral-

ize [7]. It consists of only two m-functions: paralize.m

and serve.m of, respectively, 146 and 94 lines (including

comment lines) and implements fork-join model of parallel

computations, without communication and synchronization

between instances. It helps to make calculations both within

multiprocessor/multicore machines and in clusters of comput-

ers. The biggest drawback of Paralize is that communication

and synchronization is realized via the disk files, what involves

active polling, or, in other words, busy waiting and sometimes

causes race conditions errors.
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The jPar package is as simple as Paralize from the user

point of view (actually it is compatible with it), very easy

to install, but it does not waste the cycles of cores on active

polling and allows to use the machines with started Matlab

instances to other purposes. Moreover, it does not use for

communication and synchronization network filesystem, but

more efficient and reliable Java RMI and Java threads.

II. JPAR PROJECT AND IMPLEMENTATION

The basic requirements for jPar were:

• to avoid communication via disk files, which is slow and

may cause race conditions errors,

• to avoid active polling, that is the waste of time of

processors/cores (and energy),

• it should be portable (implemented in Java and .m

scripts),

• it should be possibly small,

• it should be easy to install and use.

Distribution of the work in jPar is done by dividing the

data and executing the same operation on all chunks by slave

Matlab processes called solvers. The data chunk together

with a function to be executed (task) is passed to solvers.

When the calculations are finished, the results are gathered

on the console (i.e., the client) Matlab session (Fig. 1), so

the calculations with jPar may be interpreted as a simplified

implementation of the distributed arrays idea.

registration

server

MATLAB 0

MATLAB 1 MATLAB p...

console:

solvers:

Fig. 1. jPar communication model.

The presented approach has been implemented using Java

language, owing to its portability and ease of interfacing with

Matlab [8]. Synchronization and data exchange between the

nodes were done by means of Java RMI (Remote Method

Invocation) mechanism.

The package consists of only three components:

1) Registration server

2) Solvers

3) Client.

The first process to be run is the registration server, which

task is to manage the set of solvers. It is provided in the form

of a single Java executable JAR file (which also contains all

the Java classes used by Matlab) and should be started from

the command line of the operating system.

The next step is starting several Matlab instances: one

for the jPar console and the others for solvers. The latter

should be started from within Matlab sessions (from the same

directory) and left. It does not matter what operating systems

are used, since both computing (Matlab) and communication

(Java) environments are system independent. The registration

is done by adding a handle to a remote solver object to the

managed set. Then the Matlab sessions are blocked until the

new tasks are available. The client just divides input data into

chunks (as in Paralize, along the third dimension) and creates

partial tasks to perform the distributed job.

In our first version solver was implemented as a non-

blocking function. Calling Matlab from Java was done by

using JMI (Java Matlab Interface) with functions and classes

defined in the Matlab JMI package (JAR file JMI.jar). How-

ever, this implementation required running solvers within Mat-

lab sessions with GUI display. Another important drawback

of this solution was, that the JMI package was distributed

by MathWorks ”as it is”, without any warranty, support or

documentation.

Hence, in the final version solver is a blocking Matlab

function, which waits on a Java object, until it is notified.

Then, using provided methods, solver gathers all parameters,

converts them from Java representation and makes calculations

in Matlab. At the end the results are converted and sent back

to the jPar client.

As it was mentioned before, to perform the computation

on multiple nodes, the input data has to be in the form of

a three dimensional array. The job is divided into chunks by

the partition along the third coordinate, which identifies the

task (and the chunk). All the remaining parameters are passed

unmodified to solvers.

In the example presented below ten tasks will be created

(each to handle 100× 100 matrix):

>> a=rand ( 1 0 0 , 1 0 0 , 1 0 ) + i ∗rand ( 1 0 0 , 1 0 0 , 1 0 ) ;

>> [V,D]= j p a r _ c l i e n t ( ’ e i g ’ , a ) ;

Marshalling and unmarshalling the data objects is done by

RMI, but some attention was also paid to the transfer of

data between Matlab and Java. While basic types (such as

double) are automatically converted, the imaginary part of a

number is discarded. There is also an issue with vectors, where

dimension has to be preserved, since Java does not distinct

between horizontal and vertical arrangement of the elements.

In these cases Matlab data is converted by the package to the

internal representation:

p u b l i c c l a s s JMArray

implemen t s S e r i a l i z a b l e {

p r i v a t e O b j e c t r e a l p a r t , i m a g p a r t ;

p r i v a t e i n t dimX , dimY ;

/∗ . . . ∗ /

}

Since the options of some solvers are passed as Matlab

structures (e.g., in fmincon function from Matlab Optimization

Toolbox), the package also converts them to an internal

representation:

p u b l i c c l a s s J M S t r u c t
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imp lemen t s S e r i a l i z a b l e {

p r i v a t e O b j e c t f i e l d s , v a l u e s ;

p r i v a t e i n t dimX , dimY ;

/∗ . . . ∗ /

}

The variables dimX and dimY are also used to reshape the

structure after Matlab→Java→Matlab conversion to match the

original arrangement. In fields the package sustains the field

names of the original Matlab structure, values are collected as

in the original structure.

It is possible to pass strings or function handles as second

and further arguments of jPar, that is the actual parameters

of parallelized functions. To make it possible, a Java class

JMHandle in package matlab.jmhandle was created. The pur-

pose of this class is to store both the information about the

name of the function used to create handle and the absolute

path to the file containing that function. When we are passing

a function handle to jPar, an object - an instance of JMHandle

class - is created. When the JMHandle object is received, a

Matlab function handle is recreated basing on the information

stored in the object.

It is also possible to pass sparse matrices as arguments.

To pass a single sparse matrix as an argument of a function

being parallelized no special effort is needed. In order to

pass multiple sparse matrices designated for parallelization, a

vector of cells containing these sparse matrices must be created

and passed as an argument to the function being parallelized.

Sparse matrices must be stored in a cell array of size 1×N ,

where N is the number of matrices. All matrices in this

"vector" must be sparse.

For example:

>> as = s p a r s e ( a ) ;

>> bs= s p a r s e ( b ) ;

>> cs = s p a r s e ( c ) ;

>> con {1} = as ;

>> con {2} = bs ;

>> con {3} = cs ;

When a proper argument is passed, jPar converts sparse

matrices to vectors that represent coordinates and values.

These vectors are passed to JMSparse class in Java. After that

the data is transferred between the client and a solver. Before

the computations, the solver is restoring sparse matrices from

the vectors. If results of function being parallelized are sparse

matrices, jPar puts them into the vector of cells.

The complete implementation of jPar has about 800 lines of

Java code and 400 lines of Matlab code. It has been tested on

computers running both Linux and Windows. It is important to

note, that a job can be divided and allocated to solvers running

under different operating systems and even under different

versions of Matlab and Java Virtual Machines.

III. THE INSTALLATION AND USE OF JPAR

The jPar distribution package containing all the source files

may be downloaded from the MatlabCentral Web page [9].

The installation of jPar is very simple:

1) To build jPar you need to have JDK (Java Development

Kit) with javac and jar tools installed. Start com-

mand line (shell) interface and add JDK tools directory

to your PATH environment variable if necessary (Win-

dows) / change the proper shell configuration file (e.g.:

.profile, .zshrc, .cshrc) (Unix/Linux).

2) Build the jpar.jar Java archive with command

"compile.bat" (Windows) or "sh compile.sh"

(Unix/Linux).

3) Copy the .java.policy file to home

directory (in Windows use "Documents

and Settings\Username" directory) or

use "install.bat" (Windows) / "sh

./install.sh" (Unix/Linux) scripts on every

node, where you want to run jPar client or solver.

4) Check whether the folder with Java binaries is in the

system path writing "java" in the command window.

If it is not, change the path variable, adding this directory

(see p. 1).

The installation is performed only once. To use jPar, that

is to start a session with it, you should:

1) Run one instance of jPar server using

"jpar_server.bat" (Windows) / "sh

./jpar_server.sh" (Unix/Linux) on a node,

where you want to run jPar client.

2) Start Matlab sessions and change the directory to the

one which contains jPar files (if they were not started

from this directory).

3) Start solvers from Matlab session in jPar directory

using:

>> j p a r _ s o l v e r ( [ ’<hostname > ’ ] ) ;

where <hostname> is the name of host where jPar

server is running (default to localhost).

4) Start a distributed application by the following com-

mand:

>> [ < o u t p u t >]= j p a r _ c l i e n t ( . . .

’< n a m e _ o f _ t h e _ f u n c t i o n > ’ , . . .

< p a r a m e t e r s >)

where both input and output parameters are separated

by commas.

After the work is done, the user should kill the solvers:

>> j p a r _ c l i e n t ( ’ k i l l ’ ) ;

To see free solvers one may use the command:

>> j p a r _ c l i e n t ( ’ h o s t s ’ ) ;

IV. CASE STUDY - PARALLEL AND DISTRIBUTED

OPTIMIZATION

The tests have been performed on a network of Windows

PCs with Intel Dual Core 3 GHz processors connected by 100

Mb/s network. All computers had common filesystem provided
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by Linux server running Samba. The test job was to find the

solution of a constrained separable optimization problem:

min
x∈X

p
∑

i=1

fi(xi) (1)

subject to

p
∑

i=1

gji(xi) ≤ Mj , j = 1, . . . ,m (2)

x = (x1, x2, . . . , xp) ∈ X = X1 ×X2 × . . . Xp (3)

Xi ⊆ R
ni , n =

p
∑

i=1

ni (4)

where all functions fi are strictly convex, gji - convex, i =
1, . . . , p; j = 1, . . . ,m.

Big optimization and optimal control problems solved in

Matlab environment are often decomposed and parallelized

[10]. To solve the above problem in a decomposed, parallel

way the classical price method of hierarchical optimization

was applied [11]. This method, which is often used to solve

network optimization and control problems [12],[13], consists

in the decomposition of the minimization of the Lagrangian

L(x, λ) while calculation of the dual function LD(λ) in the

following way:

LD(λ) = min
x∈X

[

L(x, λ) =

p
∑

i=1

fi(xi)

+
m
∑

j=1

λj

(

p
∑

i=1

gji(xi)−Mj

)



 =

= min
xi∈Xi,
i=1,...,p





p
∑

i=1



fi(xi) +
m
∑

j=1

λjgji(xi)



−
m
∑

j=1

λjMj



 =

=

p
∑

i=1

min
xi∈Xi



fi(xi) +
m
∑

j=1

λjgji(xi)



−
m
∑

j=1

λjMj (5)

where λj , j = 1, . . . ,m are nonnegative Lagrange multipli-

ers. In the natural way we obtain a hierarchical, two-level

optimization scheme:

1) Local (slaves’) level; the i-th local problem, i =
1, . . . , p :

min
xi∈Xi



Li(xi, λ) = fi(xi) +
m
∑

j=1

λjgji(xi)



 (6)

2) Coordination (master) level:

max
λ≥0



LD(λ) =

p
∑

i=1

Li(xi(λ), λ)−
m
∑

j=1

λjMj



 (7)

where xi(λ) is the solution of the i-th local problem (6),

i = 1, . . . , p.

The algorithm was implemented under Matlab with the hill

climbing gradient method on the coordination level and the

call of native Matlab fmincon solver on the local level. The

tests were performed on the Powell20 problem [14]:

min
y∈Rn

0.5(y21 + y22 + . . .+ y2n) (8)

yk+1 − yk ≥ −0.5 + (−1)k · k, k = 1, ..., n− 1 (9)

y1 − yn ≥ n− 0.5; (10)

To transform this problem to the separable form (1)-(4)

the vector x was divided into p parts of the dimension

n1 = n2 = . . . = np = n
p

(we assumed that p|n), what implied

the corresponding division of the constraints: the p common

ones were treated as global constraints and the Lagrange

relaxation was applied to them (the remaining defined the

subsequent sets Xi).

Denoting:

xij = y(i−1)ni+j , i = 1, . . . , p; j = 1, ..., ni, (11)

xi =
[

xi1 , xi2 , . . . , xini

]T
(12)

[

xT
1 , x

T
2 , . . . , x

T
p

]T
= y (13)

fi(xi) = 0.5

ni
∑

k=1

x2
ik
, i = 1, . . . , p (14)

Xi =
{

xi ∈ R
ni |xil − xil+1

− 0.5 + (−1)k(i,l) · k(i, l) ≤ 0,

l = 1, . . . , ni − 1
}

(15)

where k(i, l) = (i−1)·ni+l; cj = −0.5+(−1)j·nj ·(j·nj), j =
1, . . . ,m; m = p.

gji(xi)







0 i /∈ {j,mod(j, p) + 1}
xini

i = j

−xi1 i = mod(j, p) + 1
(16)

for i = 1, . . . , p; j = 1, . . . ,m.

Mj = −cj = 0.5− (−1)j·nj · (j · nj), j = 1, . . . ,m (17)

we can transform our Powell20 problem (8)-(10) to the sepa-

rable form (1)-(4).

What concerns the parallelization of the Matlab application

code, the only necessary work was to replace the lines:

f o r i =1 : p

[ x i ( : , 1 , i ) , f i ( 1 , 1 , i ) ] = pow20_pm_loct ( . . .

x l o c ( : , 1 , i ) , lambda , ni , p , o p t i o n s _ k ) ;

end

where pow20_pm_loct is the Matlab function solving the

local problem (6), with the line:

[ x i , f i ]= j p a r _ c l i e n t ( ’ pow20_pm_loct ’ , . . .

x loc , lambda , ni , p , o p t i o n s _ k ) ;
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TABLE I
TIMES OF CALCULATIONS WITH Paralize AND jPar (IN [S]).

p
n 1 2 4 6

Para- Para- Para-
lize jPar lize jPar lize jPar

108 1.68 17.7 16.1 12.7 15.8 23.9 21.7

216 14.68 39.5 40.4 33.1 31.5 40.4 41.0

432 58.82 366.8 331.6 100.6 99.5 89.9 84.5

648 2072 2033.2 1832.7 299.7 287.2 192.6 183.5

864 NT 2620.4 2390.5 810.1 786.8 381.3 377.7

2 4 6 8 10 12

500

1000

1500

2000

2500

Calculation time for n = 864

p

T
im

e
 [

s
]

 

 

Paralize

jPar

Fig. 2. The speed-up of the decomposition and parallelization for the biggest
problem solved

The results are presented in Table I (NT means, that the

calculations were not done for such (p, n) parameters) and

in Fig. 2.

The superlinear speed-up in some tests was obtained due to a

lucky choice of the starting points of optimization for some

combinations of problem dimensions and the number of local

problems.

Comparing to the original Paralize, jPar proved to be a bit

faster, but more reliable and not "paralyzing" processors of the

machines by empty loops.

V. CONCLUSIONS

We presented a very simple, portable package which may be

used to parallelize Matlab scripts on multicore/multiprocessor

computers with shared and local memory and in heterogenous

clusters without a big effort. The only prerequisites are:

• fork-join structure of the application,

• access of all machines to the same file system.

The main advantages of jPar are:

• relatively small size,

• simplicity (the time spent on installation and learning it

is very short),

• reliability (there are no errors caused by disk transmis-

sions),

• heterogeneity (it was tested on x86 machines under both

Linux and Windows),

• interoperability between various Matlab and Java ver-

sions,

• not blocking the machines between subsequent chunks of

calculations and avoiding flooding of the local network

with messages caused by active polling,

• openness, the free use with unlimited number of workers

(solvers).

JPar is a little (∼ 10%) faster than Paralize. Avoiding active

polling it does not waste the energy and allows the cores to

do other tasks.

Coarse-grained problems, that may be solved in the parallel

way, are most suitable for the fast parallelization with jPar.

The changes in code are very small and their best illustration

is the line replacing the for loop block presented at the end

of the Section IV.

A beta version of jPar was already used as the initial

environment to perform parallel executions and the communi-

cation between master and slaves in MEIGO (MEtaheuristics

for systems biology and bIoinformatics Global Optimization)

[15] and CeSS (Cooperative enhanced Scatter Search) [16]

packages, containing efficient solvers for hard global opti-

mization problems arising in bioinformatics and computational

systems biology, based on metaheuristics. This confirms that

jPar is useful and easy to use not only for computer science

specialists.

JPar is free and can be downloaded from the MatlabCentral

page [9].
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