
DiverGene: Experiments on Controlling
Population Diversity in Genetic Algorithm

with a Dispersion Operator

Anna Strzeżek’, Ludwik Trammer’, Marcin Sydow’ ”
’Polish-Japanese Institute of Information Technology

ul. Koszykowa 86, 02-008 Warszawa, Poland

”Institute of Computer Science, Polish Academy of Sciences, Warszawa, Poland

Email: astrzezek@gmail.com, ludwik@trammer.pl, msyd@poljap.edu.pl

Abstract—We present diverGene – a novel, diversity-aware
population selection operator for genetic algorithm – to be used
especially for particularly complex and multi-criteria optimi-
sation problems. Genetic algorithm is one of the most known
evolutionary algorithms for solving hard optimisation problems.
Many attempts have been made to improve its convergence rate
and quality of the result. In this paper we propose a novel
extension of the selection operator that makes it possible to
control the level of diversity in the population. We discuss its
theoretical background, including its computational hardness
and propose an efficient way of computing it. The approach
is implemented and tested on three hard optimisation problems:
Knapsack Problem, Travelling Salesman Problem and a relatively
new Travelling Thief Problem that might be viewed as the
composition of the latter two. We report experimental results
that seem to indicate that the novel approach has a potential to
improve the quality of the results for some hard optimisation
problems.

I. INTRODUCTION

In this paper we present diverGene – a novel, diversity-

aware population selection operator for genetic algorithm. The

idea is based on the concept of the dispersion of the solutions

modelled by means of pair-wise dissimilarity between the

solutions.

The proposed operator seems to be especially useful for

particularly complex optimisation problems of multi-criteria

nature, where the solution space should be intensively explored

due to the potential variety and mutual non-similarity of

potential good solutions to the problem.

A. Genetic Algorithm

The genetic algorithm [1] is a heuristic for finding satis-

factory solutions to problems, using a process inspired by the

natural selection. It does not guarantee to find the optimal

solution and is intended to be used mainly in cases when

finding the optimal solution directly would be too compu-

tationally expensive to be practical (more formally for NP-

hard optimisation problems). In such cases search heuristics

are often used to find a solution that is usually not the best

This work is partially supported by Polish Ministry of Science and Higher
Education grant N N519 578038.

possible one, but is still useful.

The process starts by randomly creating a set of feasible

solutions to the problem. This set of solutions is called

population and each solution in the population is called an in-

dividual, in reference to the biological origins of the algorithm.

The initial state of the population is called the initial (first)

generation. During the course of the algorithm execution,

the subsequent generations are created, each one based on

its immediate predecessor. While the solutions encoded in

the initial generation are completely random, the quality of

solutions in each subsequent generation should gradually get

better, in an evolutionary fashion.

1) Selection: The process of selection is responsible for

the decision on which individuals from the current generation

should be used when creating the next generation (or, in other

words, how many children should an individual have - if any).

This step is essential to the process. Properly defined selection

causes the best individuals to reproduce more intensively,

resulting in a general increase of the solution quality in the

population. On the other hand a selection that is too strong

may lead to some problems - if the algorithm were to always

simplistically select only a small subset of the very best

solutions, there would be a high likelihood of losing the

diversity and getting stuck in a local maximum. The problem is

traditionally solved by introducing an element of randomness

- the better the solution the greater the possibility it will be

selected as a parent. As a consequence, other solutions also

have a chance of being selected, while the overall solution

quality generally increases.

2) Mutation Operator: The process of selection results in

the increase of the overall solution quality in a population by

generally eliminating weak solutions and reproducing stronger

ones, but by itself it doesn’t improve the quality of individual

solutions. It’s the mutation operator that enables the algorithm

to explore other (possibly better) solutions. During the muta-

tion stage there is a small chance of individual elements of a

solution being randomly changed, resulting in a solution that

is similar to one previously selected, but slightly different.

Sometimes the changes are beneficial, but perhaps even more

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 155–162

DOI: 10.15439/2015F411

ACSIS, Vol. 5

978-83-60810-66-8/$25.00 c©2015, IEEE 155

often they make the solution weaker. During the subsequent

selection stages the stronger solutions are more likely to be

chosen than the weaker ones. As a consequence individuals

with harmful mutations will eventually be eliminated, while

individuals with beneficial mutations will become the parents

for multiple newly created individuals, some of which will in

turn be mutated, bringing the possibility of further improve-

ments. The mutation operator corresponds to the concept of

random local search in the solution space.

3) Cross-over Operator: Cross-over stage brings a possibil-

ity of two different solutions being combined. This allows for

new individuals that include good parts of multiple previously

known solutions. Without the cross-over stage there would be

no sharing of good "ideas" within the population.

B. Motivation

As discussed in the "Selection" section above, too much

focus on promoting only the best solutions in the current pop-

ulation during the selection stage (at the expense of alternative

candidate solutions) may result in inadequate exploration of

the space of possible solutions, or, equivalently in getting stuck

in a local optimum.

On the other hand too little focus on choosing good result

will result in a weak evolutionary pressure and population not

getting better over time. The balance is traditionally achieved

by giving better quality solutions a greater probability of being

selected, but allowing other solutions to also be occasionally

selected by random chance. While this method allows for some

additional diversity it does not guarantee it.

In this paper, we investigate whether controlling the level

of diversity within a population at the expense of a slight drop

in the overall population quality would have a positive effect

on the overall performance of the algorithm. In particualr

we want to explore the effect of this aproach on problems

containing multiple interdependent sub-problems, using the

Travelling Thief Problem [8] as an example. It seems that

increased population diversity would especially improve the

performance of the genetic algorithm for such compound hard

optimisation problems.

C. Contributions

The contributions of this paper are the following:

• we propose diverGene – a novel diversity-aware selec-

tion operator that makes it possible to control the balance

between the exploration and exploatation of the solution

space. The selection is based on both fitness and diversity

among its members.

• we report development of a flexible software framework

for testing the operator with various settings.

• we report experimental results on three hard optimisation

problems: the Knapsack problem, the Travelling Sales-

man Problem and the Travelling Thief Problem (the last

one being particularly noteworthy since it is composed

of two interdependent sub-problems). The experiments

concern the impact of the operator in various settings on

the quality of the solutions.

D. Contents

We make a brief overview of the related works in Section

II.

We give some theoretical background concerning the con-

cept of diversity and, in particular, modeling it by means

of dispersion in Section III. In this section we also present

diverGene, our diversity-aware selection operator, and explain

that exact computation of our operator is a hard computational

optimisation problem itself by linking it to a known NP-hard

optimisation problem.

Because of this, in Section IV, we explain how our selection

operator can be efficiently computed with a known poly-time

approximation algorithm.

Section V contains the specifications of the used bench-

mark optimisation problems and describes the some technical

representation and implementation details.

In Section VI we report experimental results that are dis-

cussed in Section VII. We conclude in Section VIII.

II. RELATED WORK

Genetic algorithm belongs to the class of evolutionary al-

gorithms. First mentions of algorithm based on the mechanics

of biological evolution dates back to the half of the previous

century, but it became popular through the work of John

Holland [1].

The concept of Diversity plays an important role in complex

systems [2]. In particular, the diversity of population in biology

is an important mechanism that supports better exploration of

the environment. Therefore, the concept of diversity-awareness

of population in biology is an inspiration for the domain

of genetic algorithms to avoid a premature convergence (ex-

ploatation).

The Max-Sum Facility Dispersion Problem, that inspired

our choice of a specific approach to diversify the population

was studied in many papers in the domain of Operational

Research. An example of such work is [3] that also discusses

its computational hardness and efficient approximation algo-

rithms for this problem. The connection of this problem to Web

search result diversification with a new, parameterised objec-

tive function that takes into account a balance between the

total value and pair-wise dispersion is discussed in [4] which

also inspired our approach presented in this paper. Similar

approach to diversification was proposed in the problem of

semantic entity summarisation in [6] where another nature-

inspired approach is applied to optimise the diversification

problem itself. The study of the influence of the properties

of the pair-wise dissimilarity function on the approximation

factor in Facility Dispersion Problem is recently studied in

[7].

The Travelling Thief Problem was introduced in [8] as a

benchmark for testing heuristic algorithms on a problem that

better resembles real life problems, that are often way more

complex than well known “academic” benchmark problems

like TSP or Knapsack. By its definition, the Travelling Thief

Problem, is a kind of combination of the Knapsack Problem

and TSP Problem.

156 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

III. DIVERGENE: DIVERSITY-AWARE SELECTION

OPERATOR

In this section we introduce diverGene – a modified se-

lection operator that makes it possible to control the desired

level of diversity in the population in genetic algorithm.

In the classical genetic algorithm, the selection operator is

based mainly on the fitness function of an individual. Our

diversity-aware selection operator takes the fitness score into

account, but additionally aims at guaranteeing some level of

the diversity of solutions in the selected population.

More precisely, diversity-aware selection can be viewed

as an optimisation problem itself and can be defined as to

select a sub-population S of cardinality k out of the whole

current population that maximizes the following parameterised

objective function:

fd(S) = (1− α)
∑

p∈S

f(p) + α
∑

p,q∈S

dissimilarity(p, q) (1)

Where S is the selected, diverse sub-population and α is a

parameter controlling the balance between the total fitness
(the f() function) of the selected individuals and pair-wise

dissimilarity between them. dissimilarity is a function

returning a numerical value showing how different two indi-

viduals are. It’s exact definition depends on the problem under

consideration.

A. A Link to Max-Sum Facility Dispersion Problem

Now we are going to explain that maximising the objective

function 1 used in the definition of our population diversity

operator at the beginning of Section III is equivalent to some

well-known optimisation problem that is NP-hard but for

which there exists a fast approximation algorithm. Due to this

we use this approximation algorithm for efficiently compute

the population diversity operator.

More precisely, the diversity selection operator described

in Equation 1 is inspired by the Facility Dispersion Problem

[3] and its recent applications in Web Search Diversification

Problem [4].

In Facility Dispersion Problem, the input consists of a

complete, undirected graph G(V,E), an edge-weight function

d : V 2 → R+∪{0} that represents pairwise distance between

the vertices and a positive natural number k ≤ |V |. The task

is to select a k-element subset S ⊆ V that maximises the

objective function dispersion(S) that represents the notion

of dispersion of the elements of the selected set S.

Facility Dispersion Problem was studied in operational re-

search for modeling the problem of selecting a set of mutually-

distant (dispersed) locations for k obnoxious facilities like

nuclear plants, ammunition dumps, etc.

In the most common variant of this problem, called Max-

Sum Dispersion Problem, the dispersion function to be

maximised is defined as the total pair-wise distance between

the selected locations (to be maximised):

dispersion(S) =
∑

{u,v}⊆S

d(u, v) (2)

The Max Sum Dispersion problem is NP-hard even if the

distance function d is a metric, but in such case there exists a

polynomial-time algorithm of approximation factor of 2 that

was presented in [3].

Recently, the Max-Sum Facility Dispersion problem has

new applications in the Web Search Result Diversification

Problem where the selected items represent documents (or

pieces of information) to be returned by the search system and

d models the pairwise dissimilarity between the documents.

Given a set V of documents to be potentially relevant to a

user query, a number p ∈ N+, k < |V |, a document relevance

function w : V → R+ and pairwise document dissimilarity

function d : V 2 → R+∪{0}, the task is to select a subset S ⊆
V that maximises the value of a properly defined diversity-

aware relevance function. In [4] the following parameterised,

bi-criteria objective function (to be maximised) is proposed as

the diversity-aware relevance function:

fdiv−sum(λ, S) = (k− 1)
∑

v∈S

w(v) + 2λ
∑

{u,v}⊆S

d(u, v) (3)

where λ ∈ R+ ∪ {0} is a parameter that controls the

diversity/relevance-balance.

In the same work it is observed that a proper modifi-

cation of d to d′ (Equation 4) makes the described prob-

lem of maximising fdiv−sum(λ, S) equivalent to maximising
∑

{u,v}⊆S d′λ(u, v), where:

d′λ(u, v) = w(u) + w(v) + 2λd(u, v) (4)

Thus, it makes the result diversification problem described

above equivalent to the Max Sum Dispersion problem for d′λ.

Now, it is not hard to see that the problem of maximising our

dispersion-aware fitness function f (for any value of α) defined

in Equation 1 is equivalent to the problem of maximising the

objective function in Equation 3 for appropriate selection of

the value of λ, thus the problems are equivalent.

To sum up, as the consequence, the problem of maximis-

ing the diversity-aware population fitness function defined

in Equation 1 is NP-hard, as being equivalent to Max-Sum

Dispersion Problem, but any approximation algorithm used for

Max-Sum Dispersion can be used to optimise our problem.

Due to this, in the experiments reported in this paper we

use the 2-factor greedy approximation algorithm for Max-

Sum Facility Dispersion problem described in [3] to efficiently

solve our problem. This is described in Section IV.

IV. DISSIMILARITY SELECTION

Our efficient implementation of diversity-aware selection

operator is based on the algorithm mentioned at the end of

the previous section. This approximation algorithm for finding

subsets (in which weights of edges between those vertices

are maximised) of vertices in a graph, can easily be adapted

MARCIN SYDOW ET AL.: DIVERGENE: EXPERIMENTS ON CONTROLLING POPULATION DIVERSITY 157

for choosing a subset of individuals in a population that are

most different from each other. One just needs to think of

individuals as vertices and the level of dissimilarity between

two individuals as the weight value on edges between the

vertices representing them.

In our case we wanted to take into account both dissimilarity

and fitness of the two individuals, as can be seen in the

function defined in Equation 1. We utilised the link to the pre-

viously studied problems of Max-Sum Facility Dispersion and

Web search diversification described in the previous section

to define a dissimilarity_fitness function that combines

dissimilarity between two individuals and their respective

fitness values:

df(u, v) = fitness(u)+fitness(v)+2λdissimilarity(u, v)

We used the function to calculate values of edges between

the individuals on the graph.

More precisely, the algorithm that we utilize to choose a k-

element subset of individuals from the previous population to

control its guaranteed level of diversity works in the following

way:

1) Create a list with all possible pairs of individuals in a

population.

2) Choose the pair with the highest

dissimilarity_fitness score.

3) Remove all pairs containing one of the individuals from

the chosen pair.

Repeat steps 2–3 k/2 times, where k is the desired size

of the selected population. If k is odd, add an arbitrary

final individual to the selected sub-population. This greedy

algorithm guarantees the approximation factor of 2 to the

solution of such defined optimisation problem [3].

A. Combining two types of selection

We create the new population of size N by combining the

results of two kinds of selection - classical roulette selection

and our own dissimilarity selection described in Section IV.

First we select k individuals using dissimilarity selection and

then achieve the desired population size N by selecting the

remaining N − k of the individuals using standard roulette

selection. The result for small values of k can be viewed

as classic selection enriched by a small pool of individuals

retained for their uniqueness (in combination with their fitness,

since dissimilarity_selection takes both into account).

V. EXPERIMENTAL IMPLEMENTATION

We used the Python programming language to create a

flexible framework to test our novel diversity-aware operator

on various optimisation problems.
In this Section we report experiments performed on two

classic optimisation problems - Knapsack Problem and Trav-

elling Salesman Problem. We also report additional series of

experiments concerning the combination of the latter two – the

Travelling Thief Problem. The framework is designed so that

in the continuation work, the plugins with support for other

optimisation problems can be easily added to it.

A. Knapsack Problem

The Knapsack Problem is one of the a classic NP-hard

optimization problems. In this problem, there are n items.

Each item has a value (pi ∈ Q+) and a weight (wi ∈ Q+).

The capacity (W ∈ Q+) of the knapsack is limited.

The items should be picked so that their total value is max-

imized while their total weight does not exceed the knapsack

capacity:

f(x̄) =
n
∑

i=1

pixi, while
n
∑

i=1

wixi ≤ W

where x̄ = (x1, x2, . . . , xn) and xi ∈ {0, 1} indicates whether

the item is picked (xi = 1) or not (xi = 0).

1) Representing the Knapsack Problem in GA Framework:

A solution is represented as a set of items in a knapsack. The

most natural representation of any solution as a chromosome

is in the form of a characteristic vector of the given subset of

the items.

The mutation operator "flips" bits at random positions of the

corresponding characteristic vector. Each position has an equal

probability of being flipped (in our experiments the probability

always equals pkm = 0.01). If the item was previously in the

set it will be removed, otherwise it will be added to the set.

The cross-over operator exchanges the state between ran-

dom items between two solutions. Each position has an

equal probability of being exchanged (in our experiments the

probability always equals pkc = 0.05).

Both operators may result in a solution that exceeds the

allowed capacity. In such case we fix the solution by removing

random items from the set until the capacity is abided by.

The dissimilarity score is calculated by counting the number

of items present in one solution but not present in the other

(the Hamming distance).

2) Knapsack Dataset: The dataset for Knapsack problem

was generated purposely for our experiments. Each instance

contains 32 items with different values and weights (both

ranging between 1 and 500). The knapsack capacity is set

to 500.

B. Travelling Salesman Problem

The Travelling Salesman Problem (TSP) is also a classic

NP-hard optimization problem. In this paper, we consider a

2-dimensional euclidean variant. In this variant of TSP, there

are n cities (c) with their coordinates (cx and cy). A salesman

must visit each city exactly once and minimize the total length

of the complete tour. The aim is to find a permutaion of the set

containing all cities which minimizes the following equation:

f(c̄) =

n−1
∑

i=1

d(ci, ci+1) + d(cn, c1)

where c̄ = (c1, c2, . . . , cn) represents the tour and d(A,B) is

a distance between the cities A and B:

d(A,B) =
√

(Ax−Bx)2 + (Ay −By)2

158 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

1) Representing TSP in GA Framework: The ordered

crossover and reverse sequence mutation operators were used

for TSP. The ordered crossover operator, presented by Gold-

berg in [5], is a two-point crossover. Given two random

crossover points parent chromosomes are split into three parts.

Child chromosome inherits the left and right parts from the

first parent, and the middle part from the second one. The

elemetns in the right and left parts are removed and rotated to

avoid the duplication of elements [5].

In the reverse sequence mutation operator the sequence of

elements between two randomly chosen positions is reversed.

The dissimilarity operator takes into consideration the num-

ber of different elements on the same positions in both chro-

mosomes and compares it to the total number of elements. For

each position, the values from both individuals are compared.

If they differ, the counter is incremented. After analyzing the

whole chromosomes the counter value is divided by the size

of a chromosome (number of all cities in the instance).

2) TSP Dataset: The dataset for TSP experiments was

taken from the TSPLIB library [9] containing sample instances

for TSP. Berlin52 set was chosen [9] for the experiments. This

set provides coordinates of 52 locations. The optimal solution

to this problem is known, and it has the value of 7542.

C. Travelling Thief Problem

The Travelling Thief Problem is an optimisation problem

related to the Knapsack Problem and the Travelling Salesman

Problem (both described above). It was created to better model

real-life problems, often more complex than the well-known

benchmark NP-hard problems.

The Travelling Thief Problem consists of two interdepen-

dent sub-problems. The sub-problems can not be solved indi-

vidually, because the solution to one sub-problem strongly in-

fluences the quality of the solution of the second sub-problem.

To achieve satisfactory results one needs to solve both sub-

problems at the same time, finding the best combination of

solutions. This resembles the challenge often occurring in the

case of solving complex real-life problems with multiple, often

mutually contradictory, constraints.

We decided to include the Travelling Thief Problem in

our experiments as it seems a natural next step of our work

since it can be viewed as a specific composition of the two

problems described above: the Knapsack Problem and TSP.

Thus, the two components of the specification introduce a

multi-criteria structure. Additional complexity of this problem

is introduced by modeling the varying speed, that depends on

the current contents of the knapsack, that influences the total

cost of the solution, as explained below in this Section. Such a

complex, multi-criteria optimisation specification seems to be

a very natural domain of application for our diversity-aware

population control approach as it enforces exploring multpile,

mutually dissimilar alternatives for the solution.

There are several variants of the TTP problem. The one

implemented by us, known as TTP1, is most likely the most

popular one. There are n cities (represented by a distance

matrix) and m items (each having its own value, weight and

set of cities in which it can be found). A thief has to visit each

city exactly once, picking some items located in those cities

and putting them in their knapsack (which has a maximum

weight capacity W). Thief’s speed depends on the weight of

the knapsack:

VC = Vmax −WC

Vmax − Vmin

W

VC represents the current speed, WC represents the current

weight of the knapsack and W represents the knapsack’s

maximum weight capacity. Vmax and Vmin are parameters

describing the thief’s maximum and minimum speed, respec-

tively. The natural interpretation is as follows: the heavier the

knapsack, the slower the thief. The speed is important, because

the objective function that is to be maximized depends not only

on the value of the picked items, but also on the total time

of the travel, as the thief has to pay for the time when the

knapsack is being used:

G(x, z) = g(z)−R · t(x, z)

Where g is the sum of values of all items in the knapsack,

R is the knapsack payment fee (rent) for the time unit and t
is the function calculating the time of the travel for the given

solution. This means the thief needs to maximise their profit

- the value of the stolen items reduced by the knapsack fee.

A solution consists of a tour x and item picking plan z
(recording the information concerning which items should be

picked in which city - if it is picked at all). The G function

strongly interconnects them, so they can not be optimised

separately.

1) Representing TTP in GA Framework: TTP represen-

tation in GA framework is a union of previously described

Knapsack and TSP representations. The dissimilarity value is

calculated by counting the number of different picks - the

items picked in the different cities at different times.

2) TTP Dataset: We used the dataset for TTP

experiments taken from the webpage of the optimisation

group of the University of Adelaide [10]. The data

provided on this site was used as a benchmark set for

competitions in 2014 and 2015. More precisely, the

Berlin52_n51_bounded-strongly-corr_01

dataset was chosen [10]. This set provides coordinates

of 52 locations and 51 items, one in each city. The optimum

solution to this instance is not provided by the creators of the

dataset nor yet known, to the best knowledge of the authors.

VI. EXPERIMENTAL RESULTS

In the experiments we measured the influence of the dissim-

ilarity operator on the best solution of the objective function

f(S) for diffreent population sizes. The tests where performed

in three groups for each problem:

1) The best solution of f(S) as a function of k for 10, 25,

50 and 100 individuals in population with α set to 0.35
(Fig. 1, 2 & 3)

MARCIN SYDOW ET AL.: DIVERGENE: EXPERIMENTS ON CONTROLLING POPULATION DIVERSITY 159

2) The best solution of f(S) as a function of α for 10, 25,

50, 100 and 150 individuals in population with k set to

20% of population (Fig. 4, 5 & 6)

3) The best solution of f(S) as a function of population

size with α set to 0.35 and k set to 20% of population

(Fig. 7, 8 & 9)

Each test was run 10 times and the median of all the 10 results

was computed and reported.

A. Computational Platform

Since the computations involved in our experiments were

quite extensive it was more natural to perform them on a spe-

cialised computational platform. Due to this, all calculations

were performed on the online data science platform Sense

[11]. Sense is a recently launched (released March 18, 2015)

cloud platform for data science and big data analytics built

by Sense, Inc. company. It provides an interface to multiple

scripted analytic tools like Python, Node.js, SQL and many

more, and allows to launch a new engine with dedicated CPU

and RAM for every created job. It also makes sharing data,

scripts and jobs and colaborating on the same project easy.

VII. DISCUSSION OF THE RESULTS

A. The Best Solution of f(S) as a Function of k

For the Knapsack problem some improvements in quality of

solutions can be observed only for small populations (Fig. 1).

For 10 and 25 individuals using the diversity-aware selection

operator increased the value of the best solution by 12-15%.

For bigger populations (50 and 100 individuals), though, the

positive changes are almost unnoticeable. A critical value of k
can be also observed for all populations. Exceeding k = 0.7N ,

where N is the population size, causes a dramatic decrease of

the best solution value. This could be interpreted as too much

exploatation at the expense of exploration for this relatively

easy1 problem would deteriorate the performance.

More significant positive impact of diversity operator on the

quality of solution can be observed for TSP (Fig. 2). For all

population sizes the results were improved by 30-35% when

15-35% of individuals were selected using the diversity-aware

selection operator. The best solution decrease starts earlier

than in the Knapsack problem but is not so rapid as in the

case of Knapsack - in the worst case the percentage decrease

between the best value of the objective function without and

with diversity-aware selection operator is about 8% while in

the Knapsack problem it is between 30-40%.

In the TTP experiments (Fig. 3) even stronger positive

impact of our diversity operator on the solution quality can be

observed. It reaches up to 40-45%. Importantly and interest-

ingly, the peak representing the best solutions is shift towards

the case when more individuals are being selected using

our diversity-aware selection operator (about 70-75%). After

reaching k = 1N the collected results are the same or slightly

1Remind that Knapsack is a relatively “easy” computational problem
among the NP-hard problems as there exists a pseudo-polynomial dynamic
programming algorithm for it, what excludes it from the class of, so called,
strongly NP-hard problems

400

500

600

700

800

900

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10 individuals
25 individuals
50 individuals

100 individuals

Fig. 1. f(S) as a function of k for Knapsack problem.

400

450

500

550

600

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10 individuals
25 individuals
50 individuals

100 individuals

Fig. 2. f(S) as a function of k for TSP.

worse then for computations without diversity-aware selection

operator. That seems to indicate that for this, particularly hard

and complex, optimisation problem the population diversity

can only improve the performance of the algorithm while it

almost never makes the quality worse.

B. The Best Solution of f(S) as a Function of α

Experiments performed for the Knapsack problem (Fig. 4)

show that changes of α parameter have a positive impact on

the best solution value only for the smallest tested population

composed of 10 individuals (28% increase for α = 0.15). For

bigger populations adding dissimilarity to f(S) has no or

only negative impact on the results.

For our current experimental settings, the TSP (Fig. 5) and

TTP (Fig. 6) tests show no clear dependence between the re-

sults and changes of α. This is an interesting signal that seems

to be counter-intuitive (compared to the results concerning the

dependence on the value of k presented above) and should be

160 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

−9000

−8000

−7000

−6000

−5000

−4000

−3000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10 individuals
25 individuals
50 individuals

100 individuals

Fig. 3. f(S) as a function of k for TTP.

400

500

600

700

800

900

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10 individuals
25 individuals
50 individuals

100 individuals
150 individuals

Fig. 4. f(S) as a function of α for Knapsack problem.

further examined in the continuation work.

C. The Best Solution of f(S) as a Function of Population Size

Analysis of the last group of tests confirms the results ob-

served in the first series of experiments (concerning the depen-

dence of the solution quality on k). Namely, improvements in

Knapsack problem solution (Fig. 7) are visible only for small

populations and there is no change for bigger populations. For

TSP (Fig. 8) a positive impact can be observed for all tested

population sizes (10-200 individuals). The best solutions are

equally improved throughout all the tested populations.

TTP results (Fig. 8) show, that for smaller populations there

is a small postitve or even in some cases a negative impact on

the objective function value. For bigger populations a positive

impact is visible. It increases slightly with population size.

Most importantly, the reported experimental results clearly

indicate that introducing diversity to the solution population

can noticeably increase the quality of the solutions.

400

450

500

550

600

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10 individuals
25 individuals
50 individuals

100 individuals
150 individuals

Fig. 5. f(S) as a function of α for TSP.

−11000

−10000

−9000

−8000

−7000

−6000

−5000

−4000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10 individuals
25 individuals
50 individuals

100 individuals
150 individuals

Fig. 6. f(S) as a function of α for TTP.

400

500

600

700

800

900

0 20 40 60 80 100 120 140 160 180 200

without dissimilarity
with dissimilarity

Fig. 7. f(S) as a function of |S| for Knapsack problem.

MARCIN SYDOW ET AL.: DIVERGENE: EXPERIMENTS ON CONTROLLING POPULATION DIVERSITY 161

400

450

500

550

600

0 20 40 60 80 100 120 140 160 180 200

without dissimilarity
with dissimilarity

Fig. 8. f(S) as a function of |S| for TSP.

−9000

−8000

−7000

−6000

−5000

−4000

−3000

0 20 40 60 80 100 120 140 160 180 200

without dissimilarity
with dissimilarity

Fig. 9. f(S) as a function of |S| for TTP.

VIII. CONCLUSIONS AND FUTURE WORK

The experiments reported in this paper clearly indicate that

controlling the population diversity in genetic algorithm in

the way we proposed in this paper by using diverGene

is a promising technique. In particular, picking a part of

population using the diversity-aware selection operator can

significantly improve results of the objective function f(S) for

the variant of the TSP problem that we studied and, even more

significantly, for the TTP problem. There is also an interesting

observation, that seems to be natural and intuitive, that the

more complex and harder the optimisation problem the more

improvement can be achieved by applying our diversity-aware

selection operator.

More tests should be performed for the studied problems,

including examining other implementations of dissimilarity

operator and other settings.

Another interesting direction could be to study the conver-

gence rate as the function of the population diversity.

It is a bit surprising that we did not observe much depen-

dence of the quality of the solution on the value of the α
parameter. This should be further investigated in the future

work.

It would be also interesting to introduce the self-adaptation

mechanism to our approach. More precisely, to make the

algorithm itself dynamically controlling the values of the

diversity-aware operator parameters (e.g. k and α) to better

control the exploration/exploatation balance.

IX. ACKNOWLEDGEMENTS

This work is partially supported by Polish Ministry of

Science and Higher Education grant N N519 578038.

REFERENCES

[1] John H. Holland Adaptation in Natural and Artificial Systems. University
of Michigan Press,1975

[2] Scott E. Page. Diversity and complexity. Primers in Complex Systems.

Princeton, NJ: Princeton UniversityPress. x, 291 p. $ 19.95, 2011
[3] R. Hassin, S.Rubinstein, A. Tamir, “Approximation algorithms for max-

imum dispersion”, Operations research letters vol. 21/3, 1997, pp. 133–
137.

[4] Sreenivas Gollapudi and Aneesh Sharma. An axiomatic approach for
result diversification. In Proceedings of the 18th international conference

on World wide web, WWW ’09, pages 381–390, New York, NY, USA,
2009. ACM.

[5] David E. Goldberg. 1989. Genetic Algorithms in Search, Optimization

and Machine Learning (1st ed.). Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA.

[6] W.Kosiński, T.Kuśmierczyk, P.Rembelski, M.Sydow "Application of
Ant-Colony Optimisation to Compute Diversified Entity Summarisation
on Semantic Knowledge Graphs", Proc. of International IEEE AAIA
2013/FedCSIS Conference, Annals of Computer Science and Informa-
tion Systems, Volume 1, pp. 69-76, ISSN 2300-5963, ISBN 978-1-4673-
4471-5 (Web), 2013

[7] M.Sydow "Approximation Guarantees for Max Sum and Max Min
Facility Dispersion with Parameterised Triangle Inequality and Applica-
tions in Result Diversification" (extended journal version) Mathematica
Applicanda Vol. 42, no. 2, pp. 241-257, DOI: 10.14708/ma.v42i0.547,
Print ISSN: 1730-2668; On-line ISSN: 2299-4009, Polish Mathematical
Society, 2014

[8] M. R. Bonyadi, Z. Michalewicz, L. Barone (2013, June). The travelling
thief problem: the first step in the transition from theoretical problems
to realistic problems. In Evolutionary Computation (CEC), 2013 IEEE
Congress on (pp. 1037-1044). IEEE.

[9] http://www.iwr.uni-heidelberg.de/groups/comopt/software/
/TSPLIB95/tsp/berlin52.tsp.gz

[10] http://cs.adelaide.edu.au/ optlog/CEC2014COMP_InstancesNew/berlin52-
ttp.rar

[11] http://wwww.sense.io
[12] Mohammad Reza Bonyadi, Zbigniew Michalewicz and Luigi Barone

The travelling thief problem: The first step in the transition from theo-
retical problems to realistic problems. IEEE Congress on Evolutionary

Computation. IEEE, pp. 1037–1044, 2013

162 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

