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Abstract—Collecting data at regular time nowadays is ubiqui-
tous. The most widely used type of data that is being collected and
analyzed is financial data and sensor readings. Various businesses
have realized that financial time series analysis is a powerful
analytical tool that can lead to competitive advantages. Likewise,
sensor networks generate time series and if they are properly
analyzed can give a better understanding of the processes that
are being monitored. In this paper we propose a novel generic
histogram-based method for feature engineering of time series
data. The preprocessing phase consists of several steps: desean-
sonalyzing the time series data, modeling the speed of change with
first derivatives, and finally calculating histograms. By doing all
of those steps the goal is three-fold: achieve invariance to different
factors, good modeling of the data and preform significant feature
reduction. This method was applied to the AATA Data Mining
Competition 2015, which was concerned with recognition of
activities carried out by firefighters by analyzing body sensor
network readings. By doing that we were able to score the third
place with predictive accuracy of about 83%, which was about
1% worse than the winning solution.

Keywords—feature engineering, feature reduction, time series
classification, temporal data mining

I. INTRODUCTION

HE introduction of lightweight and low-cost sensors has

increased the potential for real time measurements of
different activities. The advancements in microelectronics,
wireless communications and other scientific areas has intro-
duced the possibility of placing tiny sensor nodes on specific
places of the body in order to monitor the health of patients or
human body activities in general [1]. These sensors generate
large amounts of data that need to be processed often in
real-time. Most of the data, like temperature, accelerometer
readings, GPS locations, etc can be presented as a time series
data and processed as such. Time series data analysis allows
detection of patterns in the data and making assumptions about
the current activities or even predict future activities based
on the past data. The operations that can be performed based
on the time series data are mainly directed towards pattern
discovery, clustering, classification and rule discovery [2]. Due
to the density of the available data that can be collected by
the sensors and the nature of the time series data, there are
three main tasks that need to be defined so that the previously
mentioned operations can be performed [3]: Dimensionality
reduction and Data representation, Distance measurement and
Indexing.
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Dimensionality reduction and Data representation is one
of the most important tasks that need to be performed when
analyzing the time series data. This process is taken for granted
when we use our sensory organs to obtain the data and then
our brain processes it so we can make conclusions. The time
series data is usually noisy and too large to be processed
by a computer in an acceptable time frame. The human
brain processes have learned to ignore the noisy data when
generating conclusions. This is why a good representation and
dimensionality reduction is crucial before we can continue with
the decision making based on the given or obtained data when
using a machine learning method. The representation must
consider the assumption that time series data is not always
aligned properly [4], that it is noisy and that it should comply
to the constraints of time and space for its processing. By
choosing the right data representation we are able to engineer
good features for any given dataset.

The distance measurement is one of the main things that
need to be defined in order to make a successful distinction
between different time series and be able to correctly classify
or identify similar patterns in the data. There are several well
known distance measurements that can be used to identify
difference between time series. The distance measurement
must be invariant to many transformations of the time series
data such as amplitude or time shifting, uniform amplification,
additive noise, time scaling, etc [3]. For this reason many
types of distance measurements have been proposed in the
literature and each have their advantages and drawbacks.
They can be divided in several groups. There are distance
measurements based on the time series shape that use the
direct signal properties to give the distance between two
series. Then, there are measurements based on the operations
needed to make the signals similar with each-other. Also there
are measurements based on features extracted from the signal
and finally there are measurements based on finding some
higher level structure so the series can be compared.

The Indexing problem is related to improving the retrieval
speed for a given series when searching trough a database of
time series data.

In this paper we propose a histogram-based method for
feature engineering for time series data. We use Support Vector
Machine to generate the classification model for the data and
present the obtained results.
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The paper is organized as follows. In section II we describe
the problem that is addressed by this paper. Then, in section
IIT we give overview of the process used to generate the
features and the needed transformations of the data. Next,
in section IV we address the machine learning method for
generating classification models based on the obtained features.
Thereupon, in section V we present the obtained results after
applying the proposed methods on the competition dataset. Fi-
nally, in section VI we discuss the findings of this research and
make some conclusions about the applicability of the proposed
methods for feature engineering of time series in general.

II. PROBLEM DESCRIPTION

The topic of the AAIA’15 Data Mining Competition [5]
was Tagging Firefighter Activities at a Fire Scene. In particular,
the task is related to the problem of recognizing activities
carried out by firefighters based on streams of information
from body sensor networks. A fire ground is considered to
be one of the most challenging decision taking environment.
In dynamically changing situations, such as those occurring at
a fire scene, all decisions need to be taken in a very short time
[6]. Several initiatives and research projects analyze various
aspect of this complex problem [6, 7, 8]. The lack of situational
awareness is listed there as the main factor associated with
major accidents among firefighters. The research presented in
these papers aims to increase the firefighter safety by monitor-
ing their kinematics and psychophysical condition during the
course of fire and rescue actions. The following paragraph is
extracted from the competition website [5] and describes the
task in more detail.

During the course of the ICRA project [9], a so called
“smart jacket” have been developed. This device is a wearable
set of body sensors that allows to automatically track a fire-
fighter at a fire scene. It also enables real-time screening of fire-
fighter’s vital functions and monitoring of ongoing activities at
the scene. The later of those two tasks is the main scope of this
AAIA’15 Data Mining Competition. The goal was participants
to come up with efficient algorithms for labeling activities
conducted by firefighters during their training exercises, based
on provided data sets from a body sensor network. The data
were obtained during training exercises conducted by a group
of eight firefighters from The Main School of Fire Service. The
sensors were registering firefighter’s vital functions (i.e. ECG,
heart rate, respiration rate, skin temperature) and movement
(i.e. seven sets of accelerometers and gyroscopes placed on
torso, hands, arms and legs). Each exercise session was also
captured on video and the recordings were synchronized with
time series representing the sensor readings. All this data were
presented to experts who manually labeled it with activities.
The objective in this competition is to devise efficient methods
for automatic labeling of short series of the sensory data with
basic activities of a firefighter. On the one hand, this task is
very challenging due to a fact that different people tend to per-
form the same activities in different ways. On the other hand,
however, automatically generated and accurate activity labels
would facilitate monitoring of firefighter’s safety and con-
tribute to development of efficient command support systems.

The submitted solutions were evaluated on-line and the
preliminary results were published on the competition leader-
board. The preliminary score was computed on a random
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subset of the test set, fixed for all participants. It corresponded
to approximately 10% (about 2000 instances) of the test data.
The final evaluation was performed after completion of the
competition using the remaining part of the test data (about
18000 instances). Those results was also published on-line.
The assessment of solutions was done using the balanced
accuracy measure which is defined as an average accuracy
within all decision classes. It was computed separately for the
labels describing the posture and main activities of firefighters.
The final score in the competition was a weighted average of
balanced accuracies computed for those two sets of labels.
Namely, for a vector of predictions preds and a vector of true
labels labels, the balanced accuracy is defined with eq. (1) and
(2). Here BAC), is the balanced accuracy for labels describing
the posture, and BAC, is the balanced accuracy for labels
describing the main activity.

] : - j — /l i )
ACC;(preds,labels) = |7 pr-eds] labe 8‘] il n
|7 : labels; = i

!
BAC (preds, labels) = (Z AC’CApTeds,labels)) /U (2)
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The final score in the competition for a solution s was be
computed with eq. (3):

BAC),(s) +2 x BAC,(s)
3

3)

score(s) =

The instances of the available training and test datasets are
comprised mostly of sensor readings as time series and 42
values representing some aggregations of data from sensors
monitoring firefighter’s vital functions. There are totally 7 sen-
sor locations and 2 sensor types, and each sensor is providing
readings for the 3 axes, so the total number of time series is
7 x 2 x 3 = 42. Each of those 42 time series has 400 samples,
and one additional series of the timestamps of the readings
relative to the start of the series. Each instance is labeled with
two labels: one representing the posture of the body, and one
representing the main activity of the firefighter. After analyzing
the datasets, it is evident that there are 4 classes of the first
label and 16 classes of the second label, while there are totally
24 different class combinations of the first and second label.
Table I displays the classes for each of the two labels and their
distribution in the training set.

Obviously the first challenge in this task is the feature
engineering of the time series, so that they can be powerful
predictors in relation to the labels, but also to be invariant to
several things:

e Invariant to the range of values of the sensor readings
because different firefighters can perform the same
actions differently.

e Invariant to the alignment of the interval represented
by the time series. In the current case, let us consider
an action that is being performed longer the duration
of the intervals. For example, the firefighter might be
running for 20 seconds. From those 20 seconds we
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TABLE 1. DISTRIBUTION OF CLASSES PER LABEL

Label 1 Label 2 Training Instances Distribution (%)
crawling searching 459 2.3
crouching manipulating 1764 8.8
crouching no_action 87 0.4
crouching nozzle_usage 492 2.5
crouching signal_water_main 46 0.2
moving ladder_down 465 23
moving ladder_up 476 24
moving manipulating 331 1.7
moving running 4324 21.6
moving signal_water_first 41 0.2
moving stairs_down 644 32
moving stairs_up 1157 5.8
moving walking 1064 53
standing manipulating 2356 11.8
standing no_action 491 2.5
standing nozzle_usage 443 22
standing  signal_hose_pullback 98 0.5
standing signal_water_first 496 2.5
standing signal_water_main 405 2.0
standing signal_water_stop 277 1.4
standing striking 1022 5.1
standing throwing_hose 234 1.2
stooping manipulating 1898 9.5
stooping throwing_hose 930 4.6

could extract thousands of different 1.8s subintervals
that represent the action running. Ideally, the feature
representation should describe all of those subintervals
with almost the same feature vector.

e Invariant of the actions that precede the action that
is currently being predicted. To put it differently,
the feature descriptor should be invariant to Markov
properties of the time series. Firefighter actions have
these characteristics so they should be properly mod-
eled. From the actions listed in table I, it seems
highly unlikely that the firefighter can perform all
pairs of actions (i.e. states) in sequence with the same
probability. On the contrary, some state transitions
seem very unlikely.

After the features are engineered and the dataset is pro-
cessed, the next challenge is how to perform feature selection.
This is essential because there is significant amount of fea-
tures that can have negative impact on the used classification
algorithms.

Finally, the last challenge is how to build classification
models for the different labels given the training dataset.
Table I reveals another significant challenge - the number
of labels is large and their distribution is highly unbalanced.
In the following sections we describe how we have coped
with the above challenges and which results were obtained
using different techniques. Even though at this point we have
mentioned specific numbers like the number of time series or
the number of samples in a time series, the approach is generic
and in the remaining of the paper we use parameters for them.

III. FEATURE ENGINEERING

In order to address the feature engineering for any problem,
first we need to understand the nature of the time series data.
Time series data can have different time sampling intervals and
different scales of the values, however, most of the data can be
useful when building a classification model. In the following
subsections we describe which methods were used to address
different types of challenges in modeling the time series.

A. Capturing the sensitivity to change with first derivatives

By definition first derivatives are used to capture the speed
of changes of some function. When instead of a continuous
function we have a discrete sample, like a time series, finding
an analytic solution is difficult. Nevertheless, we can estimate
them. For a time series with K readings that are collected at
times ¢[i],0 < ¢ < K, we can calculate K — 1 first derivatives.
In this case K = 400, but we also have the timestamps of the
readings which show that usually the interval between readings
is 4.5ms. Nevertheless, we decided to use the original time
stamp in order to calculate the first derivatives more accurately.
Eq. 4 shows how the first derivative fd of time series j and
at time #(7),0 < ¢ < N can be estimated.

reading; (i) — reading; (i — 1)
t(i) —t(i—1)

fd;(i) = “)

B. Modeling seasonality

Often in time series there are seasonal components that
can consist of periodic, repetitive, and generally regular and
predictable patterns in the levels of its values. This is especially
evident in business data where things like the holidays, days of
week, months, quarters have impact on the values in a business
time series (e.g. sales, profit, etc). Seasonal effects can conceal
both the true underlying movement in the series, as well as
certain non-seasonal characteristics which may be of interest to
analysts. There are several main reasons for studying seasonal
variation:

e Describing the seasonal effect can provide a better
understanding of its impact on a time series.

e  FEliminating the seasonal component from time series
can aid studying other components such as cyclical
and irregular variations.

e Use it to build better models for forecasting and
prediction of future seasonal trends.

Keeping in mind that many body movements are also
periodic, it occurred to us that maybe we should try to discover
and model the seasonality in the current problem. We believe
that seasonality in this domain should capture the individual
characteristics and style of a particular firefighter and/or the
context when some action is performed. By context we mean
whether the firefighter is rested (e.g. at the beginning of an ex-
ercise), tired (after some time performing various actions), etc.

Before continuing to describing methods for modeling
seasonality, some components need to be defined:

e  The irregular component (sometimes also known as
the residual) is what remains after the seasonal and
trend components of a time series have been estimated
and removed. It results from short term fluctuations in
the series which are neither systematic nor predictable.
In a highly irregular series, these fluctuations can
dominate movements, which will mask the trend and
seasonality.

e The trend is defined as the long term movement in
a time series without irregular effects (like calendar
related effects in business data), and is a reflection of
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the underlying level. In financial data it is the result of
influences such as population growth, price inflation
and general economic changes.

To model a seasonal component, as described in [10], the
following methods are usually used:

1) In an additive time-series model, the seasonal com-
ponent is estimated as defined with eq. (5). There S
stands for the seasonal values, Y is for actual data
values of the time-series, T is for trend values, C' is
for cyclical values and [ is for irregular values.

S=Y - (T+C+1I) 5

2) In a multiplicative time-series model, the seasonal
component is expressed in terms of ratio and option-
ally with percentage as in eq. (6):
TxSxCxI

S=————x100= —F+—
TxCxI x TxCxI
3) The deseasonalized time-series data will have only
trend (7T") cyclical(C) and irregular (I) components

and is expressed with eq. (7) and (8), respectively:

Y-S=T+S+C+0)-S=T+C+1 (7

x 100 (6)

_T><S><C><I

XXlOO
S - S

100 = (T'x C'x I)x 100
®)

Additionally there is a pseudo-additive model that can be
used, but as it was not explored in this research we do not
provide more information about it.

The main challenge is discovering the seasonal index that
describes the seasonality. Some of the methods for measuring
it are: methods of simple averages, ratio to trend, and ratio to
moving average. In order to apply them we would have needed
experimentation about the length of the sliding window, for
which we did not have time, so we decided to do something
simpler. Namely, we have opted to use the additive model
because we believed that it will correspond to the nature of
the data. In particular, although there are difference between
the same actions performed by different individuals, they are
only linearly shifted values.

Next, we assumed that the seasonal component for each
of the N time series (N = 42 in the case-study) in one
sample can be modeled with the mean value of the K values
(K = 400 in the case-study). In like manner, we calculated the
deseasonalized values (refereed to as deltas in the remaining
of the paper) in each training and test instance as defined with
eq. (9), where 0 <14 <42 and 0 < j < 400.

K-1

1
Delta;(j) = reading;(j) — o Z reading;(j), (9)

J=0

The motivation behind this approach came from the compe-
tition problem. Namely, the observation that some movements
should have higher amplitudes than other (e.g. acceleration
during running compared to acceleration during walking or
standing). With this approach we hope to capture the charac-
teristics of each movement in a more invariant way. Namely,
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the logic is that if some firefighter performs the same action
with higher amplitudes than another, the actual sensor readings
for the two series would differ more then the delta values (see
eq. (9)).

After we have modeled the characteristics of each move-
ment and posture with the first derivatives and the deltas, as
explained in section III the set of available features in the
datasets is comprised of:

e 42 values representing the vital functions (specific
only to the current problem).

e N x K which corresponds to the number of series
times the number of samples in the series. In this
case, this is 42 x 400 = 16800 values for the deltas,
which represent the original readings from the sensors.
Although we are not including the original time series
in the model, we calculate some statistics based on
them, as described in the following paragraph.

e N x(K—1) which corresponds to the number of series
times the number of first derivatives in the series. In
this case this is 42 x 399 = 16758 values for the first
derivatives.

e N x K which corresponds to the number of series
times the number of samples in the series. In this case
this is 42 x 400 = 16800 values for the deltas.

To summarize, after modeling the sensitivity to change with
first derivatives as described in subsection III-A, and modeling
the seasonality described in the current section, there are 3
time series: the original sensor readings, the series of first
derivatives and the time series of deltas. For each of them
we can calculate the minimum, maximum, mean and standard
deviation, a total of 4 metrics, which results in N x 3 x 4 values
(504 in this case). With this the total number of available
features adds up to N x K + N x (K — 1)+ N x 3 x 4.
In general, we could enrich the feature set by adding other
statistics like first quartile, median, third quartile, interquartile
range, skewness, kurtosis, etc, but in this research we have not
explored this.

The first obvious problem is the number of features, which
is way to high for most machine learning algorithms. More
importantly, these features are dependent on the start and
alignment of the time series. In section V we discuss how
these considerations apply to the competition dataset. In the
next subsection III-C we propose a robust method that can
address these issues.

C. Histogram-based modeling of time series

In order to address the issues with the features that are
available after modeling the sensitivity to change of the time
series and modeling the seasonality, it is evident that we need
to perform some transformation. Discrete Fourier Transforma-
tion (DFT) [11] converts a finite list of equally spaced samples
of a function into the list of coefficients of a finite combination
of complex sinusoids that has those same sample values. It is
usually used to transform the sampled function from its time to
the frequency domain. The obtained list of coefficients would
be used as a descriptor for the time series, however, we needed
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a simpler approach that would be more useful for real time
applications.

Nevertheless, DFT lead us to the idea to discretize the
values in the time series and then to compute histograms based
on it. There are multiple ways in which we can discretize
the data, but we decided to apply the simplest one, which
is uniform discretization. In order to do that, we needed the
minimum and maximum values of series and the number of
discretization intervals (referred to as bins in the remaining
of the paper). Namely, after calculating the minimum and
maximum values of each of the N series of first derivatives and
deltas, we only needed to decide how many discretization bins
to use. In this case we have N = 42 series of first derivatives
and N = 42 series of deltas. Using more bins means results
in more values in the histograms and finer grained granularity,
but yields more features. In our tests we have tried using 30, 50
and 100 bins. Somewhat surprisingly, the number of bins did
not have a significant impact on the classification results. Our
analysis showed that with proper classification model one can
achieve good performance using a reasonably small number of
bins. We provide more details regarding the influence of the
number of discretization bins on the classification performance
in section V.

To better explain how the histogram-based approach works
let us consider only one time series instance with N values.
The following steps should be performed prior applying the
transformation:

e  Determine the minimum and maximum values of each
time series. We need them in order to find on which
interval the discretization should be performed.

e  Determine the step between discreet values ds based
on the number of discretization bins B and the min
and max values for the particular time series. This
can be calculated with eq. (10)

_max — min

ds = 5

After the discretization step, ds, is calculated for a par-
ticular time series, all training and test instances can then be
discretized. For each original value V' we can calculate the
discrete value DV with eq. (11).

(10)

DV = —|min| + round ,0) xds  (11)

( |min| +V
ds

The next step is to calculate the histogram for the time
series. If we use B bins, then the histogram for a particular
training instance will have B values. By doing this, from
a time series with N values we obtain a histogram of B
values, where NV > B. The B values represent the transformed
features which are robust, but are also a significantly reduced
representation of the original time series.

To illustrate the transformation let us consider the exem-
plary time series shown at Fig. 1. Let us assume that we want to
discretize the values of this time series (red line) to B = 7 bins
on the interval [—3,3]. After we calculate the discretization
step according to eq. (10) we determine the discrete values
according to (11). Using the discrete values (blue line) we
can calculate the histogram displayed on Fig. 2. Consequently

Discrete Values / Original Values

5
—e— Discrete Values  —=— Original Values

Samples

Fig. 1. Original and discrete values of an exemplary time series
Histogram of the discretized time series
8
6
S
b 4
2
0
-3 -1 0 1 2 4
Discretization interval
Fig. 2. Histogram of the discrete values of an exemplary time series

starting from a time series with 20 values, a histogram of 7
values is obtained.

After applying the histogram transformation of the time
series described above, when using B discretization bins, the
following dataset is obtained:

e 42 values representing the vital functions (specific to
this case only).

e 2 x N x B for the first derivatives and the deltas. In
this case N = 42, so Hist = 2 x 1260 for B = 30,
Hist = 2 x 2100 for B = 50, and Hist = 2 x 4200
for B = 100.

e N x 3 x4 for the 4 aggregated values of the 3 types
of series, which in this case is 504 additional features.

To summarize, after performing the histogram transforma-
tion, the total number of features in the dataset of the current
problem was 3066, 4746 and 8946 when using 30, 50 and 100
bins, respectively.

D. Feature selection

After inspection of the transformed dataset it was evident
that for some features almost all training instances had the
same value. In order to address this, we calculated the vari-
ance of each feature in the training set. Using the variance
for discarding non-informative features is a simple baseline
approach to feature selection. It removes all features whose
variance does not meet some threshold. If a feature has the
same value in all training samples, then its variance is 0.
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When discarding the features with different thresholds for
the variance, we have obtained the results in the following
table. It can be noted that using a threshold greater than 0.05
does not significantly reduce the number of features. On the
contrary, the cross validation results showed decline in per-
formance. Table II shows the number of retained features per
discretization bins and variance threshold on the competition
datasets.

TABLE II. RETAINED FEATURES PER DISCRETIZATION BINS AND

VARIANCE THRESHOLD

Discretization bins  Features  Variance threshold  Retained features

30 3066 0.05 1780
50 4746 0.001 3196
50 4746 0.01 2601
50 4746 0.03 2272
50 4746 0.05 2137
50 4746 0.1 1927
100 8946 0.1 5569

In the case when we used 100 bins we applied 0.1 as a
variance threshold aiming to discard more features, but still
over 5000 features remained. That is why we applied PCA
(Principal Component Analysis) [12] and limited the selected
features to 2000 explicitly. We have chosen the value of
2000 because it was close to the number of retained features
obtained by the variance filter when using smaller number of
bins.

When doing feature selection with PCA the results were
similar in terms of the actual selected features, but for that
the computation time was greater. We acknowledge that with
more sophisticated feature selection methods like wrappers
we might further lower the dimensionality and improve the
classification performance. Nevertheless, the nature of the
features is such that the features are different from each other
because they represent different things. With this in mind,
the expectation is that there are no redundant features in the
dataset. Additionally, some machine learning algorithms like
Support Vector Machines (SVMs) are able to cope with small
number of redundant features without significant degrading of
performance.

E. Data normalization

Prior building any models we normalized the data using
mean and standard deviation calculated from the training
set. This process notably helps the next step while building
prediction models. The process is recommended as part of
the data preprocessing when using Support Vector Machines
(SVM) [13] to make the classification model and is known to
decrease the classification error [14] .

IV. MODEL BUILDING

Prior building any models for the competition challenge
one needs to define how the two different labels will be
handled. One idea is to build a separate model for each label
and then to merge the predictions, but also making sure that
there are not any contradictions, i.e. combinations that are
not possible. Another idea is to perform hierarchical multi-
label classification, so first we would classify the training data
based on the first label, and then to perform classification
based on the second label. When building the second-level
models one can perform one-vs-all classification based on the
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possible outcomes of the second label assuming the first label
was correctly predicted. This approach helps by not needing to
explore all possible classes of the second label. Nevertheless,
given that the combinations of the second label (16) were close
to the number of total combinations (24) and due to the limited
time for the competition we did not explore these approaches
significantly. Instead we used a one-level classification. The
label of the instances is the combination of the two original
labels, meaning that our classification model tries to predict
both labels at the same time.

The set of features after the feature selection (i.e. prepro-
cessed descriptor) is used to generate a classification model
using SVM. SVM generates a classification model by finding
the optimal support vectors that divide the feature space with
the highest margin between the vector and the nearest points,
so that all instances on one side of the support vectors belong
to one class, and all other instances belong to other classes.
For the purpose of our task we are using SVM with Radial
Based Function (Gaussian function) that uses two parameters
in the optimization process, C and gamma. Since most of
the classification problems are not linearly separable, we are
using the Gaussian SVM so that the separation is done in a
higher dimension vector space generated with the nonlinear
Gaussian kernel. To obtain the best parameters on the given
data, we are using grid search as suggested in [15]. During the
grid search we use exponentially increasing parameters. We
have searched both C and gamma parameters in the interval
1075 to 10° evaluating 11 x 11 = 121 combinations. Then
in the intervals that were giving best results we conducted
finer grained grid search with smaller steps for gamma and
C. Depending on the different training datasets (varied by the
number of discretization bins and the variance threshold for
feature selection) we have obtained different optimal values.
For C the optimal values ranged from 1 to 1000 and for gamma
they were usually from 1075 to 10~%. Also important to realize
is the unbalanced distribution on the classes. In order to address
this problem, we used the class distribution to automatically
adjust the weights inversely proportional to class frequencies.
The estimated weights are then multiplied by the C parameter
and those weighted C parameters are used when building the
one-vs-all classification models for multi-class classification.
This significantly improved the performance of the classifiers
when using cross validation, but more importantly on the
leaderboard set.

V. EVALUATION OF THE PROPOSED METHODS ON THE
COMPETITION DATASET

For the current challenge, we began our analysis with
plotting and visual inspection of some of the sensor readings
for random training samples. Before inspecting the data the
impression was that the interval of 4.5 milliseconds between
different readings could be too short for the sensors to output
different values. On the contrary, the analysis showed that there
are evident differences between consecutive readings, meaning
that indeed all values in the series are potentially useful for
building prediction models.

After we have modeled the characteristics of each move-
ment and posture with the first derivatives and the deltas, as
explained in subsections III-A and III-B the set of available
features in the datasets is comprised of:
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TABLE III.

Id  Leaderbord Score  Bins  Variance  Retained features
1 0.8502 N/A  N/A N/A
2 0.8381 50 0.05 2137
3 0.8380 30 0.05 1780
4 0.8379 50  0.05 2137
5 0.8376 30  0.05 1780
6 0.8371 50 0.05 2137
7 0.8371 50 0.05 2137
8 0.8349 50  0.05 2137
9 0.8342 30  0.05 1780

10 0.8341 50 0.05 2137

11 0.8337 50 0.1 1927

12 0.8313 50 0.05 2137

13 0.8308 30 0.05 1780

14 0.8302 30 005 1780

15 0.8288 100 0.1

16 0.8279 100 0.1

17 0.8257 30 005 1780

18 0.8251 50 0.1 1927

19 0.8225 100 0.1

20 0.8198 100 0.1

21 0.8191 30 0.05 1780

22 0.8167 50  0.05 2137

23 0.8110 100 0.1

24 0.8077 50 0.05 2137

25 0.8062 50 0.05 2137

e 42 values representing the vital functions (specific to
this case only).

e 2 x N x B for the first derivatives and the deltas. In
this case N = 42, so Hist = 2 x 1260 for B = 30,
Hist = 2 x 2100 for B = 50, and Hist = 2 x 4200
for B = 100.

e N x 3 x4 for the 4 aggregated values of the 3 series,
which in this case is 504 additional features.

The first obvious problem is the number of features, which
is way to high for most machine learning algorithms. More
importantly, these features are dependent on the start of the
time series. For instance, let us assume that we have an action
(e.g. running) that is being performed with a total duration of
10000 milliseconds (10 seconds). If we extract two samples
(training or test instances) from it, sample A spreading from
t; = Oms to ta = 1800ms, and sample B spreading from
ts = 9ms to t4 = 1809ms. The logic is that those two samples
are nearly identical and should be treated accordingly in a good
feature space. However, in the current representation they will
be different because they are shifted by 2 periods of 4.5ms.
Obviously this needs to be addressed, and this is performed
by the histogram-based method described in subsection III-C.
Then with the method described in subsection III-D we have
reduced the number of features as shown with table II.

We have obtained many similar results based on the differ-
ent alternatives we tried (different C and gamma parameters,
number of discretization bins, etc.) on both the leaderboard
dataset and with 5-fold cross validation with the training set.
Table III shows some of the more significant configurations
ordered by the score on the leaderboard dataset in descending
order. Before explaining the best score, which is shown in the
first line in this table, we first want to discuss the scores of the
individual classifier configurations shown in all other rows.

The first obvious thing to notice is that when applying
weights (denoted as “weight=auto” in table III to the C pa-
rameters improves the performance of the classifiers. Namely
row 25 does not have weights applied to the C parameter,

2000 (reduced from 5569 with PCA)
2000 (reduced from 5569 with PCA)

2000 (reduced from 5569 with PCA)
2000 (reduced from 5569 with PCA)

2000 (reduced from 5569 with PCA)

SCORE ON THE LEARDERBOARD DATASET DEPENDING ON VARIOUS DISCRETIZATION BINS AND SVM CONFIGURATIONS

SVM with RBF kernel
Combination of configurations in rows 2 and 3 (below)
C=10 gamma=0.00002 weight=auto
C=10 gamma=0.000035 weight=auto
C=10 gamma=0.000015 weight=auto
C=10 gamma=0.00004 weight=auto
C=10 gamma=0.000025 weight=auto
C=20 gamma=0.00001 weight=auto
C=10 gamma=0.00004 weight=auto
C=10 gamma=0.00002 weight=auto
C=20 gamma=0.00002 weight=auto
C=10 gamma=0.00002 weight=auto
C=10 gamma=0.00001 weight=auto
C=10 gamma=0.00007 weight=auto
C=10 gamma=0.00008 weight=auto
C=10 gamma=0.0001 weight=auto
C=10 gamma=0.00004 weight=auto
C=10 gamma=0.0001 weight=auto
C=10 gamma=0.00004 weight=auto
C=10 gamma=0.00002 weight=auto
C=10 gamma=0.00001 weight=auto
C=10 gamma=0.0001 weight=auto
C=10 gamma=0.0001 weight=auto
C=1.0 gamma=0.0001 weight=auto
C=1000 gamma=0.0001 weight=auto
C=10 gamma=0.0001

meaning the value of C=10 is used for all classes in the one-
vs-all multi-class SVM. When applying weights proportional
to the class frequencies in the training dataset the performance
is improved as shown in row 22. We have noticed the same
pattern in other configurations (i.e. different bin size, different
C and gamma parameters) which are not shown in this table.

Next, we have noticed that when varying the values of the C
and gamma parameters the classification score also varies when
using the same feature set. This was expected and confirms
the need for grid search, as described in section IV, to find
the optimal values for those parameters.

Finally, the most important realization is that the greater
number of discretization bins does not necessarily mean the
score will be better. Most compelling evidence to this statement
are the two best configurations shown in rows 2 and 3. Row
2 uses 50 bins, while row 3 uses 30 bins, but the difference
between their score is 0.0001 in favour of the 50 bins feature
set. On the other hand, the 30 bins feature set has 357 features
less, which in turn leads to less training and test time. Another
evidence that supports this claim is the case when we use 100
bins (rows 15, 16, 19, 20, 23). In those cases we obtain a much
greater number of features than when using 50 or 30 bins,
so we have to perform additional feature selection in order to
reduce the training time. If we have retained more features and
performed more detailed grid search for those feature sets, the
results might have been better. Our initial tests showed that
this in fact leads towards over-fitting and generating too many
support vectors. For this reason this did not seem like worth
doing, especially because we have managed to find better
solutions with significantly less features.

The score difference between different configurations may
seem negligible, but when looking at the actual predictions
made by the 2 best models (rows 2 and 3) we came to an
important realization. Namely, it was evident that both cross-
validation and test predictions made by the 2 models are signif-
icantly different, yet the score of the 2 models was similar. This
gave us an idea to train a second-level (ensemble) model. The
features for this model were the predictions and probabilities

387



388

of the 2 individual classifiers made with cross validation on
the training dataset and the class was combination of the two
labels. By applying this we further improved the score on
the leaderboard dataset, and our final solution had a score
of 0.8502. It was the third-placed score on the leaderboard
and was only 0.001 behind the second-placed solution, 0.008
behind the first place, and 0.025 better then the fourth-placed
solution. After the final results were published our score was
still third - 0.8261, while the first was 0.8391, the runner-up
was 0.82985 and the fourth placed score was 0.80408. We
acknowledge that combining more individual models should
be explored with a more generic approach.

VI. CONCLUSION AND FUTURE WORK

Based on the obtained results, we can conclude that the
proposed descriptor gives a good model for the movements,
while providing some invariance to deviation of the input val-
ues and also performing significant feature reduction. During
the analysis of the predictions made by the different classifi-
cation models we observed that most of the miss-classification
errors were made when the classification model was trying to
distinguish between very similar tasks for the given dataset,
such as moving + stairs-up vs moving + stairs-down and
moving + manipulating vs crouching + manipulating. These
errors were inevitable since our approach for generating the
descriptors is amplitude based and some specific movements
have very similar amplitude characteristics. We believe that
there is room for further improvement if we add additional
descriptors to the feature space like: other statistics to describe
the time series, amplitudes of the acceleration across all 3
axes, discovering and modeling the trend in the series, trying
logarithmic transformations, adding second order derivatives,
etc. Performing a better feature selection may also improve
the performance. Finally, a better modeling that takes into
account the hierarchical nature of the classification problems,
as discussed previously, can further improve the results.

The main contribution of this paper is the proposed method
for invariant modeling the time series by using first derivatives
and deltas. Moreover, the novelty of our approach is in the
proposed histogram-based method for feature reduction of
the time series. Even though it was developed during the
competition, it is applicable to time series regardless from their
domain. In our future research we plan to affirm this method
by analyzing time series from various domains and comparing
it to other methods for modeling time series.
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