
Using Domain Specific Languages to Improve the
Development of a Power Control Unit

Mathijs Schuts
Philips HealthTech,

Best,

The Netherlands

Email: mathijs.schuts@philips.com

Jozef Hooman
Radboud University & TNO,

Nijmegen & Eindhoven,

The Netherlands

Email: jozef.hooman@tno.nl

Abstract—To improve the design of a power control unit at
Philips, two Domain Specific Languages (DSLs) have been used.
The first DSL provides a concise and readable notation for the
essential state transitions. It is used to generate both configuration
files and analysis models. In addition, we also generate instances
of a second DSL which represents test traces. This second DSL
is used to generate test cases for the power control unit. The use
of DSLs not only improved productivity, but also the quality of
the configuration files and the test set.

I. INTRODUCTION

T
HIS PAPER discusses industrial experience with the

use of Domain Specific Languages (DSLs) at Philips

HealthTech. We have used DSLs to develop power control

units of systems for image guide therapy. These systems are

used during minimally invasive medical treatments, such as the

treatment of cardiology and vascular diseases. An example is

the interventional X-ray system shown in Fig. 1, where X-ray

images support minimally-invasive medical procedures such

as placing a stent via a catheter.

Fig. 1. Interventional X-ray System

Given the long history of these systems and the frequent

need for changes to support new medial procedures, it is

important to keep the software architecture and its components

This research was supported by the Dutch national program COMMIT and
carried out as part of the Allegio project.

flexible and extensible. Hence, legacy components have to be

renewed to keep them prepared for the future.
An example of such a legacy component is the power

control unit. It uses low-level configuration files which are hard

to read and difficult to maintain. Given the increasing number

of configurations and new third-party components that have to

be supported, this starts to become a potential bottleneck. In

addition, only a limited set of regression tests is available.
Already long ago, DSLs have been suggested as a way to

raise the level of abstraction, to deal with variability, and to

improve productivity and maintainability. An early overview of

terminology, techniques and applications can be found in [1].

As one of the disadvantages of DSLs this paper mentions

the costs of designing, implementing and maintaining a DSL.

Since then, however, large improvements have been achieved

in the area of language workbenches. Such tools facilitate the

efficient construction of languages, editors, and transforma-

tions [2], [3]. Examples of workbenches are MetaEdit+ [4],

Rascal [5], Spoofax [6], EMFText [7], and Xtext [8].
There are a number of relevant applications in the domain

of embedded systems. For instance, there is an interesting

laboratory experiment of the application of MetaEdit+ to heart

rate monitors of Polar [9], showing a large increase in produc-

tivity. Xtext has been used to define a DSL which models the

hardware configuration of the complex lithography machines

of ASML [10]. From this DSL, a simulation of hardware

behaviour which enables software in the loop simulation has

been generated. In [11], a DSL based on Xtext has been devel-

oped to generate code for real-time large-scale distributed data

processing. By means of the MPS approach [12], an impressive

extension of the C language has been constructed [13], [14].-
The aim of our work is to investigate whether DSLs

could provide a solution to improve the maintainability and

testability of our power control unit. We would like to get an

answer to the following questions:

• How much time is needed to learn the tools and tech-

niques?

• How much effort is needed to migrate the current legacy

component to a component which is defined by a high-

level human-usable DSL?

• Does the DSL approach support the combination with

analysis techniques such as simulation tools and formal

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 781–788

DOI: 10.15439/2015F46

ACSIS, Vol. 5

978-83-60810-66-8/$25.00 c©2015, IEEE 781

Fig. 2. Overview Power Control Unit

model checkers?

• What are the benefits of introducing these new techniques

compared to the current way of working?

The paper is organized as follows. Sect. II describes our

industrial case. The developed DSLs are presented in Sect. III

and Sect. IV. Sect. V contains an overview of the results and

an evaluation of the approach.

II. CASE: POWER CONTROL UNIT

The interventional X-ray systems of Philips use a distributed

architecture with a large number of hardware and software

components. The system is highly configurable, i.e., customers

can select a particular combination of X-ray stands, monitors,

image processing capabilities, etc. Powering the hardware

components, and starting up and shutting down the software

components are the responsibility of the power control unit.

This unit is installed in a technical room together with a

number of cabinets which contain the required hardware

components. The power control unit consists of a controller

that has three interfaces, as shown in Fig. 2:

• An interface to a User Interface Module (UIM) that has

On and Off buttons, and two LEDs for user feedback.

• An interface with software components running on com-

puters.

• An interface with power distribution panels that are

placed in the cabinets to power the hardware components

installed within the same cabinet. Each power distribution

panel has a number of individually switchable high and

low voltage terminals that are managed by the controller.

The controller and all distribution panels have a 16 bit mi-

crocontroller running an embedded application. They commu-

nicate with each other via LonWorks [15] using a master-

slave topology. LonWorks creates a communication channel

superimposed on the power line with which the controller

powers the distribution panels. The controller implements the

system start-up/shut-down behaviour using a state machine

with two parts:

• A high-level state machine that is part of the application

running inside the controller.

• A configuration file that describes the low-level state

behaviour of the power control unit.

The configuration file is used by the high-level state machine

to perform the configuration-specific transitions. This high-

level state machine is implemented with VisualState [16] and

describes the main states and the associated LED behaviour

when transitioning between these main states. These main

states are:

• Off: the power control unit is not powered;

• Init: represents the start-up of the power control unit, in

this state a Power On Self Test (POST) is executed;

• Standby: the system is off for the user, but power control

unit is standby and some continuous power terminals are

powered;

• Operational: the system is on for the user, typically all

terminals provide power in this state;

• Emergency Power Off (EPO): the controller cuts off the

power of the distribution panels immediately and thereby

also all the terminals loose power (only the controller

stays powered) - used when the user presses a red safety

button;

• Stop: a terminal state which is entered when critical parts

of the power control unit are detected to be faulty during

the POST; in this state only the controller is powered to

be able to diagnose the problem.

The low-level state machine for the power control unit

defines the so-called recalls and the transitions between these

recalls. Each recall denotes a required setting of the high

and low voltage terminals, i.e., whether an individual terminal

needs to provide power or not. These settings are described in

a separate configuration file (not described in this paper).

To realize a particular recall, the controller compares the

current status of the low- and high voltage terminals, which it

has stored in volatile memory, with the desired status of the

low and high voltage terminals. If the current status is different

from the desired one, the controller starts communicating with

the distribution panels to change the status. The transition from

one recall to another may take a considerable amount of time,

because of the inherently slow LonWorks communication. De-

pending on the chosen hardware components by the customer,

there are two or three cabinets and it takes between 10 and

30 seconds to address all distribution panels.

Transitions between recalls are not atomic, that is, during

such a transition a stimulus might lead to another required

recall. To represent the state of these transitions, each main

state consists of three substates:

• Entry: the controller compares the current status of the

low and high voltage terminals with the desired recall.

If they are different the next substate is Transitioning,

otherwise it is Stable, except for the first recall where it

stays in Entry.

782 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

Fig. 3. Two main states and their substates

TABLE I
LINE OF A CONFIGURATION FILE FOR A LOW-LEVEL STATE MACHINE

2 2 0 00000000 00000000 112 4 2 # < OPERATIONAL > recall 2
exit out of forced off

• Transitioning: the controller is busy changing the state of

the low and high voltage terminals.

• Stable: all distribution panels have reached the desired

state for the low and high voltage terminals.

Fig 3 shows part of the high level VisualState state machine

with two main states and their substates. The main states

and substates are fixed, whereas the number of recalls is

variable and defined in the configuration file. The low-level

state machine and the recalls are different for every system

release. The configuration file describes for each recall and

stimulus, possibly with a given guard, what the next recall is

and between which main states it has to transition. This is all

coded in numbers. The main states are numbered, e.g., Standby

= 2 and Operational = 3 and similar for the substates: Entry =

0, Transitioning = 1, and Stable = 2. Also all stimuli and all

transitions between the main states have a fixed number. The

recalls have a configurable number. The guard of a transition

consists of two values: the relevant values of a status register

and a mask. Table I shows an example of a line in the

configuration file. Everything after a # is a comment.

The first three columns of Table I describe the state or -1 if it

does not care.

1) The first column is the main state which is the source of

the transition (in this example, state 2 denotes Standby).

2) The second column the substate which is the source of

the transition (here 2 denotes substate Stable).

3) The third column the source recall (here 0 denoting that

all terminals are off).

The fourth and fifth column describe the guard.

4) The fourth column describes the bits of the status

register.

5) The fifth column the mask that will be applied.

The other columns have the following meaning:

6) The sixth column, describes the stimulus number (in

this example, 112 denotes pushing the on button for 3

seconds).

7) The seventh column is the number of the specified

TABLE II
PART OF A TEST CASE

PDS:QUE9:PAR NoErr 30000 1000 2000 On Button
PDS:SYST? 3:2:2 1000 1000 2000 System On

transition between two main states (it might be a self-

transition).

8) The eighth column describes the required recall (recall 2

in this example). By default, the substate will be Entry.

For performance reasons, this file is sorted on the sixth

column. That is, the file is sorted on stimulus number and

not on state, which hampers readability.

To test the state machine, there is an automated test tool

running on a companion PC that connects to the controller of

the power control unit via Ethernet. It can inject stimuli and

ask the current state. A test case is a comma separated file.

Table II shows two lines of a test case.

1) The first column is the network command that is send

from the test tool to the power control unit (QUE injects

a stimulus into the state machine and SYST asks the

current state).

2) The second column is the expected response from the

power control unit to the test tool (“NoErr” means that

the command is successfully parsed and “3:2:2” is the

current state, with main state 3 (Operational), substate

2 (Stable), and recall 2).

3) The third column is the time (in milliseconds) that the

test tool waits before it sends the next command to the

power control unit (in this example, the test tool waits

30 seconds between the QUE and the SYST command).

4) The fourth column is a time-out (in milliseconds) on the

reply of the power control unit; within this amount of

time the power control unit should send a message to

indicate that it accepts the command.

5) The fifth column is a time-out (in milliseconds) on the

response of the power control unit (as specified in the

second column).

6) The sixth column contains comments.

A test case fails on a wrong response or on a time-out of the

accept message or the response.

Every night a test suite is executed multiple times on two

power control units with Jenkins [17] and the developers will

find the results of the test execution in their mailbox. If test

cases fail, a lot of time is spent investigating the cause and

solving it in either the software of the power control unit or

the test case. Test cases often fail because of timing issues

in which the power control unit and the test tool are out of

sync; this is almost always caused by the unreliable timing

nature of LonWorks. The solution for such timing issues is an

increase of the time bounds in the test cases. This results in

long-lasting test cases with a lot of waiting time.

Concluding, the configuration file is hard to read, to change

and to maintain, but has to be updated for every new system

release. The same holds for the test cases which typically need

to be updated manually for every new configuration file.

MATHIJS SCHUTS, JOZEF HOOMAN: USING DOMAIN SPECIFIC LANGUAGES 783

Fig. 4. Configuration DSL

III. CONFIGURATION DSL

To solve the problems mentioned above, we created a

configuration DSL for the power control unit, using Eclipse,

Xtext and Xtend [8]. This technology was chosen because the

second author was familiar with it and the availability of a

manual [18].

We explain the configuration DSL based on an instance

fragment of the language, as shown in Fig. 4. Since the main

states and their substates are always the same, there is no need

to define them explicitly. The main purpose is to define the

recalls and their transitions. To improve readability, the first

part of the DSL instance defines meaningful names for the

required status of the terminals, here called termstatus. Since

several termstatuses might correspond to the same required

settings of the terminals, the second part of the DSL groups the

termstatuses and associates a recall number with each group.

The third part defines the low-level state machine, where for

a main state, a termstatus, and a stimulus we define the next

termstatus. A transition might have a condition - indicated

by the if keyword - on the current substate. Note that each

termstatus belongs to exactly one main state, so the next

relation implicitly defines the next main state.

The grammar for this language has been expressed in Xtext;

a fragment is depicted in Fig. 5. Based on this grammar, the

Xtext framework generates an editor for the language with, for

instance, content assist. This makes it easy to define instances

of the languages, such as the instance shown in Fig. 4.

The Xtext framework also provides suitable primitives for

language validation and the generation of files from instances.

In our application, the Xtend language has been used to

generate a configuration file from language instances. This

generator produces a line in the configuration file for every

Fig. 5. Grammar of the Configuration DSL

rule in the language instance. After the generator has generated

all the rules, it sorts the lines on the value in the sixth column

before writing it to a configuration file. A fragment of a

generated configuration file is shown in Table III.

The first eight columns, till the # sign, are the same as the

manually created configuration file described in the previous

section. In the comment part, the generator writes the first

letter of the source main state, the source substate name, the

stimulus, followed by the first letter of the target main state

and the target substate name.

Additionally, we have generators that yield for every lan-

guage instance a set of UML state diagrams, at several levels

of abstraction, using PlantUML [19]. An impression of a

generated diagram is given in given in Fig. 6 (not readable

for reasons of confidentiality).

784 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

TABLE III
GENERATED CONFIGURATION FILE

6 0 0 00000000 00000000 109 19 2 # E.SystemEPO -> BUTTON_ON10SEC -> O.SystemOn
2 2 1 00000000 00000000 112 4 3 # S.SystemOff -> BUTTON_ON3SEC -> O.SystemToggleTaps
2 2 0 00000000 00000000 112 4 2 # S.SystemFseOff -> BUTTON_ON3SEC -> O.SystemOn
2 -1 1 00000000 00000000 115 6 0 # S.SystemOff -> BUTTON_OFF10SEC -> S.SystemFseOff
5 -1 2 00000000 00000000 117 21 5 # O.SystemOnError -> BUTTON_OFF -> S.ShuttingDownSystemError
3 2 2 00000000 00000000 117 5 5 # O.SystemOn -> BUTTON_OFF -> S.ShuttingDownSystem
3 2 3 00000000 00000000 134 7 2 # O.SystemToggleTaps -> TIMER_EXPIRED -> O.SystemOn

Fig. 6. State Diagram of the Configuration DSL

Fig. 7. Overview of the two DSLs

IV. TEST DSL

Given a formalized representation of the configuration files,

we investigated the possibilities to generate test cases from

this DSL. A preliminary attempt to define a generator for

test cases indicated that this was possible, but became rather

complex since it included strategies to define test cases as

well as translations to the current test format. To separate

these issues, we aimed for a more abstract representation,

related to the work described in [20] concerning a tool-

independent representation of test design techniques. In our

context, we defined a second DSL for the definition of tests

to obtain a representation of tests which is independent of the

current test techniques. Fig. 7 shows the relation between these

DSLs. Note that with the Xtext approach there is no separate

definition of the abstract grammar with meta models.

The test DSL is explained using the instance fragment

depicted in Fig. 8. Note that this instance is generated from

an instance of the configuration DSL. In the first part, for

each termstatus of the configuration instance three extended

termstatuses are generated corresponding to the three sub-

states, by adding Entry, Transitioning, and Stable behind the

Fig. 8. Test DSL

name. The string after keyword code matches the first three

columns of the VisualState configuration file; it is obtained

using the code of the main state of the termstatus, the code of

the substate, and the recall number defined in the configuration

instance.

The second part lists all possible transitions. This is used

to generate a report about coverage of termstatuses and transi-

tions and to generate additional tests for stimuli that should not

lead to a transition. In the third part, one or more trace sets

are defined. Each trace set has one or more traces. A trace

consists of an initial extended termstatus, and a number of

pairs consisting of a stimulus and a next extended termstatus.

Each trace starts and ends with the same extended termstatus,

which makes it possible to run a number of traces in one go.

Note that this requirement makes the generation of an instance

of the test DSL a bit more complicated.

The generator of the trace DSL generates a test case, as

shown in Table IV, for each trace in the language instance.

Every Transitioning and Stable termstatus will result in a line

in the test case with a SYST command that expects the string

defined after the code key word in the termstatuses part of

the instance. Since Entry substates are not observable (except

for the first one), they are omitted. A stimulus will result in a

line in the test case with a QUE command. Note that the third

column is slightly different from table II; instead of a waiting

time, now also an event can be specified. Such an event is

used to synchronize with the power control unit and avoids

long waiting times. It makes the testing process much faster.

Additionally, we used PlantUML to generate a visualization

of a test trace as a sequence diagram. An examples is depicted

in Fig. 9.

MATHIJS SCHUTS, JOZEF HOOMAN: USING DOMAIN SPECIFIC LANGUAGES 785

TABLE IV
PART OF A GENERATED TEST CASE

PDS:SYST? 6:00:00 2500 1000 2000 SystemEPOEntry
PDS:QUE9:PAR NoErr 2500 1000 2000 ButtonOn10sec
PDS:FWV? 3.0.0.0 T016_TRANS 1500 2000 SystemTransitioning
PDS:SYST? 3:01:02 1000 1000 2000 SystemOnTransitioning
PDS:FWV? 3.0.0.0 T017_STABLE 1500 2000 SystemStable
PDS:SYST? 3:02:02 1000 1000 2000 SystemOnStable

Fig. 9. Generated Sequence Diagram of a Test Case

The generator also generates a coverage file. Based on the

selected termstatuses, transitions and traces, it creates a list

of covered states, uncovered states, covered transitions and

uncovered transitions. See Fig. 10.

Typically, we create two trace sets. The first trace set covers

all transitions and is used for state and transitions coverage.

A disadvantage of this set is that it also tests Emergency

Power Off (EPO), which implies that only the controller of

the power control remains powered; the distribution panels

will lose power including the processor inside. Since this will

rarely happen during normal usage, a second set is created

with more realistic user scenarios where the distribution panels

stay powered. Jenkins is configured to run these tests every

weekend many times to test the reliability of the software

running inside the power control. Outside the weekend, the

full test set is run every night.

Fig. 10. Coverage File

In the work described above, we used our own algorithm

to generate test cases. As a next step we investigated the use

of an existing tool to generate the test cases. We selected the

SAL (Symbolic Analysis Laboratory) framework [21], [22],

[23] which includes an automated test generator. The generator

of the configuration DSL has been extended to generate two

SAL files, corresponding to the two trace sets described above.

When the test generator of SAL is supplied with a test goal - in

our case the goal is to cover all transitions - it will yield traces

that satisfies the goal. From this information, an instance of

the test DSL is generated automatically using a small script.

V. CONCLUSION

We summarize the results in Sect. V-A. The additional

generation of analysis models is described in Sect. V-B.

Sect. V-C addresses the questions of Sect. I. A brief description

is future work can be found in Sect. V-D.

A. Results

We started with the configuration DSL and generated a

configuration file for the current system release. This generated

file was successfully tested on the target hardware. Comparing

the generated file with the existing one, we found a number of

issues in the existing file. It contained a non-existing transition

and a number of transitions were missing. As a next step, we

786 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

made a DSL instance for the next system release and generated

the configuration file. The size of this new configuration file

is about twice the size of the current file, which indicates the

increasing complexity of our system releases.

With the generated test cases, approximately twice as much

transitions are covered as the manually written tests. The

manually written test cases only made transitions from the

Stable substates. The generated test cases also make transitions

from the Entry and Transitioning substates, which leads to

twice as much transition coverage.

The manually written cases were very time-dependent, with

many long waiting times. They could still fail by a slow

response of hardware, which required some analysis and

typically a further increase of the waiting times. By having

all concepts described in a clear and concise way using DSLs,

we could make the test cases much more efficient. Instead of

waiting all the time, the test tool now synchronizes with the

power control unit and immediately resumes the test case once

the power control unit has reached the desired state.

B. Analysis models

In addition to the generated configuration and test files, we

generated a number of analysis models. From the configu-

ration DSL we generated models for the simulation tooling

of POOSL [24] and the model checker mCRL2 [25]. The

generators for mCRL2 and POOSL combine the behaviour of

the high-level state machine and the low-level state behaviour

described by the (generated) configuration file, into one state

machine describing the complete system start-up and shutdown

behaviour. Implicitly, these generators define the semantics of

the DSLs. The use of multiple tools increases the confidence

in the correctness of the generators.

The advantage of having a separate test DSL is that we

can also generate tests or checks for the analysis models.

For POOSL, we generated a tester process that communicates

with the generated state machine. Every test trace results in a

method that applies stimuli to the state machine process and

checks whether the returned responses are as expected. The

results are written to a file with a test report. For mCRL2

we generated properties to express that the expected traces

occur in the generated state machine. This property can then

be checked by the mCRL2 tools.

Using POOSL and mCRL2, we detected problems in the

DSL instance, e.g., the simulation in POOSL revealed a miss-

ing condition. Moreover, we can detect whether a termstatus

occurs in multiple main states. An alternative would be to use

the validation possibilities of the Xtext/Xtend framework.

C. Evaluation

We discuss the questions listed in the introduction (Sect. I):

• How much time is needed to learn the tools and tech-

niques?

Clearly, the learning curve for new techniques depends on

previous education and knowledge. The work reported

here was mainly done by the first author who inde-

pendently learned the DSL techniques from the manual

mentioned before [18]. With a Master’s in Computer

Science, including course about grammars and formal

techniques, the basic part of the manual requires 4 hours

to install the tools and to redo the examples of the manual.

This was enough to get started with the case study.

• How much effort is needed to migrate the current legacy

component to a component which is defined by a high-

level human-usable DSL?

It took about 35 hours to create the two DSLs presented

here and to integrate them with the power control unit

and the test tool. This step was sufficient to demonstrate

the usefulness of the approach to management. In later

increments, we added the generators for the analysis

models and the use of SAL for test generation. Since

the adaptation of grammars and generators is relatively

easy and fast, the approach supports an incremental

way-of-working. The Eclipse/Xtext framework is quite

mature and provides many basic features such as syntax

highlighting, auto completion, and content assist.

• Does the DSL approach support the combination with

analysis techniques such as simulation tools and formal

model checkers?

Given earlier experience with POOSL, mCRL2, and

SAL, it was straightforward to write generators for these

languages. For each of the three languages mentioned,

this took about 5 hours. The generators to visualize the

state diagram and test traces using PlantUML requires

only a few hours of work.

• What are the benefits of introducing these new techniques

compared to the current way of working?

The complexity of our configuration files is expected to

increase quickly; as already mentioned above, the file

size almost doubled for a new product release. With

an investment of only 35 hours, we are ready to deal

with this increasing complexity. We can now create the

configuration and test cases for the power control unit in

a readable, easy to change and maintainable format. The

tests are now 3 times faster with a double coverage. It is

expected that for a new product release we need only 8

hours instead of the estimated 60 hours.

Our experience is in accordance with a recent report about

the state of practice in model-driven engineering [26]. It shows

that most successful applications of model-driven development

use small DSLs.

D. Future Work

Future work includes an extension of the configuration DSL

such that also the configuration file which contains the details

of the recalls (i.e., the required setting of the high and low

voltage terminals) can be generated. Similar to the low-level

state machine, also this configuration file is hard to read, to

change, and to maintain.

As a next step, we intend to remove the Visual State

framework, and generate the full state machine directly in

the C programming language. The generators for POOSL,

MATHIJS SCHUTS, JOZEF HOOMAN: USING DOMAIN SPECIFIC LANGUAGES 787

mCRL2, and SAL are a good indication that this will be

feasible.

ACKNOWLEDGMENT

We thank the anonymous reviewers for a number of useful

suggestions for improvement.

REFERENCES

[1] A. van Deursen, P. Klint, and J. Visser, “Domain-specific languages: An
annotated bibliography,” SIGPLAN Notices, vol. 35, no. 6, pp. 26–36,
2000. doi: http://dx.doi.org/10.1145/352029.352035

[2] M. Fowler, Domain Specific Languages. Addison-Wesley Professional,
2010.

[3] M. Voelter, S. Benz, C. Dietrich, B. Engelmann, M. Helander, L. C. L.
Kats, E. Visser, and G. Wachsmuth, DSL Engineering - Designing,

Implementing and Using Domain-Specific Languages. dslbook.org,
2013.

[4] J. Tolvanen, R. Pohjonen, and S. Kelly, “Advanced tooling for domain-
specific modeling: MetaEdit+,” in The 7th OOPSLA Workshop on

Domain-Specific Modeling, 2007.
[5] P. Klint, T. van der Storm, and J. Vinju, “EASY meta-programming with

Rascal,” in Generative and Transformational Techniques in Software

Engineering III, ser. Lecture Notes in Computer Science. Springer,
2011, vol. 6491, pp. 222–289.

[6] L. Kats and E. Visser, “The Spoofax language workbench.
rules for declarative specification of languages and IDEs,”
in The 25th Conference on Object-Oriented Programming,

Systems, Languages, and Applications, OOPSLA 2010, 2010. doi:
http://dx.doi.org/10.1145/1869459.1869497 pp. 444–463.

[7] Software Technology Group, TU Dresden, “EMFText,” http://www.
emftext.org/, 2011, version 1.4.0.

[8] L. Bettini, Implementing Domain-Specific Languages with Xtext and

Xtend. Packt Publishing Ltd, 2013.
[9] J. Kärnä, J.-P. Tolvanen, and S. Kelly, “Evaluating the use of domain-

specific modeling in practice,” in The 9th OOPSLA workshop on

Domain-Specific Modeling, 2009.
[10] I. Nagy, L. Cleophas, M. van den Brand, L. Engelen, L. Raulea, and

E. Mithun, “VPDS: A DSL for software in the loop simulations covering
material flow,” in 17th Int. Conf. on Engineering of Complex Computer

Systems (ICECCS), 2012, pp. 318–327.

[11] K. Chandrasekaran, S. Santurkar, and A. Arora, “Stormgen - a domain
specific language to create ad-hoc storm topologies,” in Proceedings of

the 2014 Federated Conference on Computer Science and Information

Systems, ser. Annals of Computer Science and Information Systems,
M. P. M. Ganzha, L. Maciaszek, Ed., vol. 2. IEEE, 2014. doi:
http://dx.doi.org/10.15439/2014F278 pp. 1621–1628.

[12] “Meta programming system (MPS),” http://jetbrains.com/mps, 2015.
[13] M. Voelter, D. Ratiu, B. Schaetz, and B. Kolb, “Mbeddr: An extensible

C-based programming language and IDE for embedded systems,” in
Proceedings of the 3rd Annual Conference on Systems, Programming,

and Applications: Software for Humanity (SPLASH ’12). ACM, 2012.
doi: http://dx.doi.org/10.1145/2384716.2384767 pp. 121–140.

[14] M. Voelter, “Generic tools, specific languages,” Ph.D. dissertation, Delft
University of Technology, 2014.

[15] “LonWorks,” http://www.echelon.com/technology/lonworks/, 2015.
[16] “VisualState,” http://www.iar.com/Products/IAR-visualSTATE/, 2015.
[17] “Jenkins,” http://jenkins-ci.org/, 2015.
[18] A. Mooij and J. Hooman, “Creating a domain specific language (dsl)

with Xtext,” http://www.cs.ru.nl/J.Hooman/DSL/, 2015.
[19] “PlantUML,” http://plantuml.sourceforge.net/, 2015.
[20] M.-F. Wendland, “Abstractions on test design techniques,” in Proceed-

ings of the 2014 Federated Conference on Computer Science and

Information Systems, ser. Annals of Computer Science and Information
Systems, M. P. M. Ganzha, L. Maciaszek, Ed., vol. 2. IEEE, 2014.
doi: http://dx.doi.org/10.15439/2014F316 pp. 1575–1584.

[21] N. Shankar, “Symbolic analysis of transition systems,” in Abstract State

Machines: Theory and Applications (ASM 2000), ser. Lecture Notes in
Computer Science, no. 1912. Springer, 2000, pp. 287–302.

[22] ——, “Combining theorem proving and model checking through
symbolic analysis,” in CONCUR’00: Concurrency Theory, ser. Lec-
ture Notes in Computer Science, no. 1877. Springer, 2000. doi:
http://dx.doi.org/10.1007/3-540-44618-4_1 pp. 1–16.

[23] G. Hamon, L. de Moura, and J. Rushby, “Automated test generation
with SAL,” SRI International, CSL Technical Note, January 2005.

[24] B. D. Theelen, O. Florescu, M. Geilen, J. Huang, P. van der Putten,
and J. Voeten, “Software/hardware engineering with the parallel object-
oriented specification language,” in Proceedings of MEMOCODE’07.
IEEE, 2007. doi: http://dx.doi.org/10.1109/MEMCOD.2007.371231 pp.
139–148.

[25] S. Cranen, J. Groote, J. Keiren, F. Stappers, E. de Vink, W. Wesselink,
and T. Willemse, “An overview of the mCRL2 toolset and its recent
advances,” in Tools and Algorithms for the Construction and Analysis

of Systems (TACAS). Springer, 2013. doi: http://dx.doi.org/10.1007/978-
3-642-36742-7_15 pp. 199–213.

[26] J. Whittle, J. Hutchinson, and M. Rouncefiled, “The state of practice
in model-driven engineering,” in IEEE Software. IEEE, 2014. doi:
http://dx.doi.org/10.1109/MS.2013.65 pp. 79–85.

788 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

