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Abstract—The paper presents a new method of building a
hierarchical model of the state space. The model is extracted
fully automatically from game replays that store executed plan
traces. It is used by a novel approach for estimating the distance
between states in a state-space graph. The estimate is applied
in the A* algorithm as a heuristic function to reduce the search
space. The method was validated using the game Smart Blocks.
It is a testbed environment for studying methods that benefit
from game replay analysis. The proposed heuristic is dedicated to
difficult classical planning problems, for which problem-specific
or automated heuristics are difficult to obtain.

I. INTRODUCTION

F
OR A long time, AI experts have been developing new

methods of imitating intelligent behaviors that can be

observed in games. Their goal is to give the player the

impression that a computer-controlled unit is an intelligent

being. Planning plays an important role in such a task because

it enables us to solve complex problems automatically. In

classical planning, state search methods are applied to find

a sequence of actions between an initial and a goal state.

Depending on a particular application, the solution should be

optimal. However, it must be the best one that can be pro-

vided fitting in a limited computation time, because planning

problems in games are solved during play. In this work, we

propose a new and promising approach for solving difficult

problems in the field of classical planning, which is aimed at

application in games. The method introduces a novel technique

of extracting and storing information from game replays to

increase the performance of planning by providing a new

heuristic of estimating the distance to the goal.
Supporting the planning process by information extracted

from game replays is a promising direction. This is because,

for the majority of games, accumulating the recordings is

relatively easy. The data is often used for collecting statistical

information that models a player. Among many other benefits,

this enables us to analyse players’ behaviors and predict their

actions.
This work focuses on a particular aspect of the game replay

analysis that is a reduction of the search space of a state-space

search algorithm. It is assumed that the input data contains

traces of plans executed by players. The proposed method

processes observed plans to build a general model of the state

space. Then, the model is employed in the heuristic of the

A* algorithm [1]. It is used for estimating the distance to the

goal in a state-space graph. The phase of replay processing is

separate. It can be done earlier, so the planning process is not

slowed down.
In contrast to the popular planners, our method does not

require a STRIPS-like representation of a game state [2].

Instead, it operates on an abstract state-space graph, which

is representation-independent. This simplification is significant

because providing a symbolic model is time-consuming and

difficult in many cases. In comparison with other methods

that use plan traces, our approach does not require manual

annotations [3]. The proposed method is characterized by

a high level of automation. It uses a minimum amount of

knowledge about a game and its rules.
The approach is original, and its evaluation requires an

adequate testbed environment. The environment should have a

nontrivial planning problem. There are relatively few research

environments accumulating game replays. Usually, stored re-

plays enable us to reproduce a match visually. However, they

do not allow us to access full information about the game state.

Adding proper replay storing mechanisms to a complex game

is a rather large undertaking. Many of the obstacles can be

avoided by developing a new game environment that focuses

on the research aspects. Thus, we introduce the Smart Blocks

game [4]. This light-weight environment enables us to store

replays in a simple format, investigate a game state easily, and

conduct experiments quickly. It was designed for a range of

studies related to planning.
To summarize, the goal of the research was to build a

method of accelerating the planning process using information

retrieved from the plan traces provided by human players. The

original contribution of this paper is:

• the novel method of building a hierarchical model of the

state space from game replays,

• the heuristic estimate that relies on the hierarchical space

model,

• the new testbed environment designed for analysing ac-

tions of players solving difficult planning tasks.

The document is divided into eight sections. At the be-

ginning, references to the related works are provided. Next,

the Smart Blocks environment is characterized. Subsequently,

statistics of the collected replays are presented. In the follow-
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ing section, the algorithm of building a hierarchical model of

the state space is introduced. Then, application of the model as

a heuristic in A* is thoroughly discussed. In the experimental

study, the proposed method and a traditional approach are

compared. Finally, features of the approach are summarized,

and future development directions are indicated.

II. RELATED WORK

This section sets the proposed approach in the planning

context. The term of planning is used differently depending

on the application domain [5]. In control theory and especially

robotics, planning methods are usually applied for motion

and trajectory planning [6]. In video games, the topic often

refers to pathfinding algorithms [7]. In this paper, we refer to

planning as problem solving. It is a process of choosing and

organizing actions by anticipating their outcomes. The process

relies on basic concepts like states and actions. Plans come

from a decision maker, and they are executed by agents.

It is assumed that actions have deterministic effects, and

states are fully known. Therefore, we use the taxonomy

of classical planning [8]. Non-classical planning refers to

partially observable or stochastic environments.

Planning is applied in many games to solve complex tasks.

A survey of the approaches currently used in games can be

found in [9]. According to the author, STRIPS, Hierarchical

Task Networks (HTN), utility systems, and behavior trees

are applied in most cases. However, apart from STRIPS-like

planners, the discussed methods are mainly used for modelling

the reactive behavior of AI-controlled players. In these cases,

the provided model is a plan, and its execution is defined

by designers. Referring to them as planning methods, which

search for a path to a defined goal state, is misleading. Goal-

Oriented Action Planning is closer to the discussed under-

standing of planning [10]. In general, planning gives better

perception of AI players’ intelligence, but it is more complex

to apply in practice. Therefore, our research is dedicated to

increasing the applicability of planning in games.

A popular hierarchical approach is Hierarchical Pathfinding

A* (HPA*) [11]. HPA* searches for a path on terrain. A

state-space graph is represented by a mesh of nodes on the

terrain surface. The improved method HPA* clusters places

that lay in the geographical neighborhood (inside rectangles).

The method also considers graphs with different levels of

abstractions as we do in our tree. However, the cost between

groups of states cannot be easily determined if the Euclidean

distance between state variables does not reflect the transition

cost, which is the case addressed in this work. HPA* solves

problems in the geographical space while our method is

applicable for any abstract state space.

Analysis of executed plan traces is a subject that is dis-

cussed in many fields, e.g., robotics [12], business [13], and

games [14], [15]. With a few exceptions, there is not much

attention given for supporting state search in classical planning

by observed plans [16], [17]. More often the observations

are applied to plan recognition [18], [19] or player action

prediction [20], [21]. In the work of Wang [3], whose method

is old but close to our idea of solving a planning problem,

plans are learned from observation. However, the described

method is inefficient because plan traces must be examined

and annotated by experts manually. In addition, it suffers from

STRIPS negative preconditions that are generated without

limitations. Our method avoids these problems.

Another approach that is somehow related to our problem

is presented in the work of Hogg [17]. The method learns

hierarchical planning knowledge to solve tasks in HTN. It

takes as input a set of planning states and a set of semantically-

annotated tasks. Our approach is different because the knowl-

edge model does not require information about tasks and goals.

III. SMART BLOCKS

Smart Blocks is a testbed environment. It was designed to

study planning methods that can learn from player actions.

The project includes two subsystems. The first one is a video

game in which a player solves planning problems. The game

sends observed solutions to the server, where they are stored.

The second one is a simulation. It enables us to reconstruct

saved plans and test planning algorithms.

The game can be classified as a single-player logic game. Its

mechanics was inspired by Sokoban [22]. It was implemented

with Unity3D [23]. One of the priorities was to make the game

attractive to the players because the more they play, the more

data is collected. The game offers a visual interface, simple

gameplay, and easy online access1 [4].

A. Game Rules

The gameplay relies on simple box-pushing mechanics. In

the game, a player controls a team of agents, each of which

is represented by a block. The blocks are characterized by

different sizes and shapes. The main goal of the team is to

reach a golden artifact by any of the blocks. The task is

complicated by the maze of triggers and gates that block the

path. The triggers usually require different blocks working

together to open a gate. The paint of a block is also important

when matching a trigger pattern. The pattern comprises a

shape together with a colour that must be satisfied by the

blocks standing on the trigger. The paint is obtained from a

colour portal, and it mixes with the current colour of a block.

A player has to take into account an energy reserve, which

is limited and consumed in each action step. This constraint

prevents infinite game duration. Unlike the time constraint, it

does not enforce a player to act hastily. Energy consumption

depends on the size of a block, and it can be increased by

entering a ground obstacle. The energy level can be refilled

by an energy cell – it disappears once it is used. A player’s

score depends on the energy reserve at the moment of level

completion.

An example of a planning problem that involves agent

cooperation is illustrated in detail by Fig. 1. The example

shows a part of a stage that contains three user-controlled

agents: a ring, a box, and a small cylinder. Their objective

1Smart Blocks game is available at http://unity3ddev.net/smartblocks/. The
source code can be obtained by contacting the authors.
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(i) (ii)

Fig. 1. An example of a planning problem solved in Smart Blocks.

is to reach the artifact that is placed behind the wall (the goal

is marked with a cup). Initially, the path is blocked by the

closed gate (i). It can be opened by using the trigger. First,

the box agent approaches the gate avoiding the ground obstacle

and collecting one of the energy cells. Next, the small cylinder

goes to the trigger through the field where it changes a paint

colour to the one that is accepted by the trigger. Then, the

big ring collects the last energy cell, and it ends its move in

the same place. As soon as the key of the trigger is satisfied,

the gate is opened. Now, the box agent is free to reach the

goal (ii). If any of the two agents moves from the trigger, the

gate will close (unless the third agent is blocking the gate by

standing on it).

The presented scheme shows only one of many possible

tasks that can be present on a stage. The game levels were

designed to be challenging by joining chains of tasks that must

be completed before the goal can be reached.

The first version of the game includes ten levels of different

difficulty. Subsequent levels can be accessed without solving

the previous ones. However, following the order helps to

familiarize with the game rules. In the first level, a player

learns how to use a simple cooperation to open a gate and

reach the artifact. The next level gives an example of multiple

blocks interacting with a single trigger. Later, a player is

introduced to paint colours and how they mix. In level 4,

a player has to use energy cells for the first time. It is a

simpler level, but potentially more challenging for a state

search algorithm. Level 5 has an alternate route, which is

shorter but more challenging to guess. The subsequent level

contains many possible routes, and it is difficult to estimate

which one will consume the least energy. Level 7 has a long

chain of tasks that have to be executed in a certain order. In

the next level, misleading trails are present. The last two levels

are characterized by a high complexity and a very large state

space.

B. Planning Problem

There are several arguments justifying why the planning

problem in Smart Blocks is nontrivial. The first one is the

difficulty of measuring the distance to the goal. For instance,

in Sokoban, it is possible to count the number of crates on

the spots as smaller tasks [22]. It is a good heuristic for

estimating the progress of the goal accomplishment. For our

problem, the goal progress cannot be measured easily. One of

the blocks must reach the location of the artifact. It is unknown

which block, what combination of gates and trigger should be

used, or how much energy and how many actions it will take.

Sometimes it is not necessary to visit locked rooms in order to

reach the artifact. However, it may be required to save some

energy. The order of blocks in small corridors is also important

because the agents can collide with each other. The world

can be modified by agents: temporarily by opening a gate or

permanently by collecting an energy cell. Each modification

applied to the environment builds a subtree in a state search

tree (multiplies the search space).

A significant complication is the presence of energy cells.

They introduce edges with negative cost to the state-space

graph. This type of a state space requires an algorithm that

traverses every edge in the graph to ensure optimality (e.g.,

Bellman-Ford method) [24]. However, the number of states

is usually too large to perform a brute-force search. The first

three game levels have neither energy cells nor negative cycles

in their state spaces.

The problem stated in Smart Blocks is the centralized

planning of cooperation of agents with limited resources in a

mutable environment [25]. It is located in a group of planning

problems in which a heuristic estimate is difficult to provide.

An abstract version of this problem can be found in a number

of real games. Many analogies are present. However, the speci-

ficity of the problem in practical application can differ. In some

cases, the problem can be solved offline in the phase of game

design. Designers can embed a solution schema of a planning

problem in a game rigidly. In this research, we are aiming

at cases in which the problems can appear dynamically – for

instance, problems invented by players during an online game.

Therefore, we minimize the amount of predefined knowledge

and try to improve planning performance by relying on the

observations.

C. Testbed Environment

The simulation is a C# console program. Its function is

to parse the recorded plans, execute planning algorithms, and

yield the statistics. It contains the model of game rules and

a light-weight representation of a game state. Therefore, it

enables us to conduct experiments efficiently.

The fundamental motivation for building the environment

was a very small number of planning benchmarks that work

with observed plan traces. It is a common practice that game

replays store only visual effects of player actions. Therefore,

they require a lot of reverse engineering to extract actual game

states. Our game stores full-information game states in an easy

readable format.

Another argument is complexity. In Smart Blocks, planning

problems are small and flexible. It means that they are

easy to understand by players and simple to scale by the

level designer. It is easy to follow the execution of a tested

method. In environments like WarCraft (Wargus) or StarCraft

(BWAPI) game rules are complicated, and the game state

is large [26], [27]. Their state spaces are vast. For most of

the tasks, information about optimal plans is unavailable (or

practically incomputable). It is difficult to analyse recorded
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TABLE I
REPLAY DATABASE STATISTICS

Level No. 1 2 3 4 5 6 7 8 9 10

Replays 230 169 71 56 57 49 30 13 7 7

Steps

min. 23 18 57 24 40 32 69 60 246 429

avg. 39.8 34.7 64 27.3 70 58.8 82.7 75 304.6 441.6

max. 99 88 89 44 108 101 95 125 391 457

Energy

min. 3 3 2 0 3 9 19 30 152 19

avg. 180.7 121.7 49.8 9.6 70.1 130.3 133.1 124.7 343.7 101.4

max. 231 161 66 11 138 205 187 182 503 141

plans and evaluate planning algorithms. In our environment,

plans can always be compared with optimal solutions or even

evaluated visually. It should be noted that Wargus and BWAPI

lack simulation modes (iterative and game-time-independent

execution). It is crucial for testing algorithms that traverse a

state-space graph.

Finally, our project allows researchers to focus purely

on the planning procedure. In another popular environ-

ment, RoboCup, the mechanics rely on continuous state and

physics [28]. It is a good benchmark for robotic applications

because it reflects the real world. However, planners usually

work with a simplified world model. Providing the model is a

challenging task. Our environment abstracts from uncertainty

and state discretization issues. These are important problems,

but they are located in the conceptual phase of preparing an

environment for planning. Our study focuses on traversing the

state space, which is discrete by definition.

D. Data

A solution of a stage provided by a player is recorded in a

replay file, and then it is submitted to the server. Only complete

replays are stored – unfinished or partial solution sequences are

discarded. Each recorded and stored solution sequence allows

game states to be reproduced fully with no uncertainty. A

replay consists of a sequence of steps. Each step is an atomic

action committed by an agent. Steps are deterministically

ordered – simultaneous actions are not allowed. There are

no additional complications behind the described process of

collecting data. In Smart Blocks, recording the game state is

almost as simple as in chess. Actions are animated for the

purpose of the presentation, but in fact, they are discrete.

Simple statistics of replays stored in the database are given

in Table I. They include for each game level:

• the total number of collected replays,

• a number of action steps to solve a stage,

• an amount of energy at the moment of reaching the final

goal.

The statistics provide a good reference for the evaluation of

planning algorithms.

It can be seen that the largest number of replays has been

collected for the initial levels. It is because the difficulty grows

rapidly, and many players resign. The data also gives clues

how the levels differ from each other and what is the spread

of possible outcomes.

IV. HIERARCHICAL SPACE

To have a better understating of what a hierarchical division

of the state space is, we can imagine a city, its district, a

residential block placed in there, an apartment in the building,

and its room. Searching for a specified room is much easier if

we know the name and part of the city, the building address,

and the apartment number. The model of our hierarchical space

can be perceived as a map that is discovered according to

visited places. However, it is not necessary to visit every place

to outline a region on the map. The same rule applies to game

states and state subspaces.

In formal terms, a hierarchical space is a tree structure. It

divides the state space into subspaces that contain groups of

states. Subspaces on a higher level are nesting the ones on a

lower level. Organizing states as graph nodes inside this kind

of structure enables us to traverse and search in the graph more

efficiently. For instance, we can reduce the search space by

simply skipping whole groups of states that are not leading us

to the solution. This procedure can be done on different levels

of detail – starting from the most general to the most detailed.

Our approach for building the model relies on state descrip-

tors, which is a term introduced in this paper. A state descriptor

refers to a selected part or some feature of a state. It can be said

that a descriptor partially describes a game state. Formally, it

is a predicate, and it holds a rule or expression that returns

a boolean value depending on whether it is satisfied or not.

Descriptors are usually related to intermediate objectives and

goals in a game. A descriptor enables us to group a set of states

based on a defined criterion. In practice, state descriptors can

be added to the implementation easily as boolean functions

that accept a state as input. They do not impose formal

requirements on problem representation.

In Smart Blocks, state descriptors are defined by the de-

signer. They are closely related to the game rules and player’s

objectives. Therefore, they have a simple and intuitive form.

A set of descriptors is generated by descriptor classes – their

complete list is presented in Table II. They group states taking

into account, for example, the colour of an agent, its position

in a room, a gate state, or the goal accomplishment. Each game

state can be partially depicted by a subset of descriptors that

are satisfied at a given moment. For instance, a state can satisfy

a group of three descriptors: {〈agent 1 is in room 1〉,

〈agent 1 is on trigger 3〉, 〈gate 2 is open〉}.

In general, the idea that stands behind state descriptors

is to provide a degree of flexibility to the approach. A set

of descriptors can be optimized for a problem by machine

learning methods. It is the aim of the future study. However,

here we use rigidly defined descriptors to focus on the heuristic

and provide a proof-of-concept.

Each group of descriptors defines a subspace that covers a

part of the state space. The more descriptors work together, the

smaller part of the space they cover. Less detailed subspaces

nest inside more detailed subspaces. The more general a group

of descriptors is, the more children it has. However, it is

assumed that state subspaces, covered by descriptors, are not
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TABLE II
A LIST OF DESCRIPTOR CLASSES IN SMART BLOCKS

Descriptor Class Description

agent {id} in room {nr} informs whether a specified
agent is placed in a defined
area

agent {id} on colour portal {nr} true if a specified agent
stands on a defined colour
portal

agent {id} has {R|G|B}
component

checks whether a colour of a
specified agent contains one
of the base colours

agent {id} on trigger {nr} true if a specified agent
stands on a defined trigger

agents {id}, {id} . . . {id} stand
together

valid while a specified list of
agents stays on the same field

trigger {nr} is valid informs whether a pattern of
a specified trigger is satisfied

gate {nr} is open true if a specified gate is open

gate {nr} is held checks whether one or more
agents is standing on a spec-
ified gate

goal ok true if one of the agents
reached the golden artefact;
groups the goal states

required to nest each other fully, but they are allowed to

intersect. The method of handling the intersections is provided

later in the document.

Theoretical foundations and the algorithm of building a

hierarchical model of the state space using state descriptors

are presented in the following subsections.

A. Formalization

Below are the theoretical assumptions stated. They are

required to discuss optimality of the introduced heuristic.

1) State Space: A classical planning problem can be for-

mulated as finding a path between two arbitrarily specified

states in an abstract state space. Let us define a state space

as a directed graph G = 〈S,E〉, where S is a set of nodes

and E is a set of edges. Each node s ∈ S is a system state

represented by a tuple of state variables v, Eq. 1:

s = 〈v1, v2, . . .〉. (1)

Each edge e ∈ E has a transition cost c ∈ R>0 associated with

it. It is assumed that the state space is vast and the cost (or

distance) estimate function δ : S×S → R≥0 between any two

noncontiguous states is unknown or complex. Consequently,

state search in the defined space is a nontrivial problem.

2) Plan Observations: A set of executed plans is provided

by the system users. An observed plan is a sequence xi ∈ X

of state transitions, Eq. 2:

xi = 〈s1, s2, . . . , sn〉, (2)

where s1 ∈ S is an initial state, and sn ∈ S is some goal

state (s1 6= sn). Subsequent state nodes in the sequence are

connected by edges.

It is assumed that the observed plans are valid but not cost-

optimal. A set X of observations does not cover the entire

state space, but it allows us to collect information about its

structure.

3) State Descriptor: Let Si ⊆ S denote a subset of the

space states, and di : S → {0, 1} is a function that determines

membership of a state in this subset, Eq. 3:

Si = {s ∈ S : di(s)}. (3)

Then, the function di ∈ D is called a state descriptor that

classifies and groups states by their selected features. Thus,

each state sj ∈ S is assigned to a set Dj ⊆ D of descriptors

that are valid for sj , Eq. 4:

sj ⇒ Dj = {d ∈ D : d(sj)}. (4)

Based on a set SX ⊂ S of states appearing in a set X of

plan observations, a set DX of descriptor sets is extracted,

Eq. 5:

DX = {Dj ⊆ D : sj ∈ SX}. (5)

Descriptor sets enable us to discover a hierarchical structure of

the state space, and they play an analogous role as transactions

in data-mining.

4) Subspace Tree: State groups separated by descriptor sets

are used to build a tree of state subspaces. A state subspace

hk ∈ H is a pair hk = 〈Dk, pk〉 comprising a set Dk ⊆
D of state descriptors together with an index pk of a parent

subspace. The set Dk determines a set Sk of states that belong

to the subspace hk. The set Sk is the intersection of states

grouped by each dj ∈ Dk, Eq. 6:

hk = 〈Dk, pk〉 ⇒ Sk = {s ∈ S :
(

∀dj∈Dk
dj(s)

)

∨Dk = ∅}.
(6)

If a subspace hi is a parent of a subspace hk, then the set

of states covered by the child is a subset of the parent’s set,

Eq. 7:

(pk = i) ⇒ Sk ⊂ Si, (7)

which is equivalent to Eq. 8:

(pk = i) ⇒ Dk ⊃ Di. (8)

Considering the parent-child relation, it is worth noticing

that the implication operator does not have to be applicable

in the opposite direction. In other words, a set of states

representing a part of the space can be associated with more

than one subspace, and thus it has more than one possible

parent. For instance, the intersection Sk = Si∩Sj of descriptor

sets Di and Dj can be nested by hi as well as hj . The selection

of a parent subspace is disambiguated algorithmically.
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B. Algorithm

The algorithm starts from collecting a set DX of all possible

descriptor groups, which can be found in a set SX of observed

game states. Additionally, the common parts of the groups

that intersect are added to DX . The nesting relations are then

stored. Next, a tree structure is assembled by disambiguating

the parent-child relations. The result is a tree expressed by a set

H = {h1, h2, . . . } of subspaces, which models a hierarchical

structure of the state space.

The basic steps of the algorithm are expressed in pseu-

docode in Alg. 1. The algorithm accepts a set of game states

observed in a replay database as input. A state contains

complete information about a temporary situation in a game.

Global variables are declared in the context of all methods.

In the beginning, unique groups of descriptors are collected

(line 2). In the same process, relations between the groups are

determined. Next, based on these groups, a hierarchical model

of the state space is built (line 8). The sorting in line 7 will

be explained later.

Alg. 1: BuildHierarchy ( states )

Data: set of observed states
Result: hierarchical model of state space

1 global descriptorSets← ∅
2 CollectDescriptorSets ( states )
3 var root← 〈ǫ, ǫ〉
4 global subspaces← {root}
5 global usedDescSets← ∅
6 global usedStates← ∅
7 var descriptorSetsSorted← Sort ( descriptorSets )
8 foreach descSet ∈ descriptorSetsSorted do

9 BuildSubspaces ( descSet, root )

10 return root

At the beginning of the routine, unique groups of descriptors

are collected by iterating over every input state (Alg. 2). A

descriptor group consists of all the descriptors that are satisfied

by a state (line 2). Observed descriptor groups usually overlap

(as well as state subspaces). Thus, additional groups are

created by intersecting new groups with the already observed

ones (line 7), and then stored (line 9). An intersection of two

descriptor groups separates a subspace that can be nested by

the subspaces of both operands.

Alg. 2: CollectDescriptorSets ( states )

Data: set of observed states
Result: list of descriptor sets

1 foreach s ∈ states do

2 var newDescSet← DescriptorSetFromState ( s )
3 if InsertDescriptorSet ( newDescSet ) then

4 var intersections← ∅
5 foreach descSet ∈ descriptorSets do

6 if descSet 6= newDescSet then
7 intersections←

intersections ∪ {descSet ∩ newDescSet}

8 foreach descSet ∈ intersections do

9 InsertDescriptorSet ( descSet )

It can be concluded that different game states represented

by exactly the same groups of descriptors are redundant, and

they do not contribute to the model. Therefore, only one state

is sufficient for discovering a subspace. The more unique

descriptor groups are observed, the richer the structure of the

model is.
While the new descriptor groups are added to the list

(Alg. 3, line 3), parent-child relations are assigned (line 4). A

group of descriptors is a parent of another one if the first one

is a subset of the second one. In other words, all descriptors

from a parent group can be found in its child. In this relation,

a parent will always cover an equal or bigger number of states

than its child. The information about subspace nesting will be

used in the next step.

Alg. 3: InsertDescriptorSet ( newDescSet )

Data: new descriptor set
Result: stores new descriptor set and assigns parent-child links

1 if newDescSet ∈ descriptorSets then

2 return 0

3 descriptorSets← descriptorSets ∪ {newDescSet}
4 foreach descSet ∈ descriptorSets do

5 if descSet ⊂ newDescSet then

6 descSet.children← descSet.children ∪ {newDescSet}

7 else if newDescSet ⊂ descSet then

8 newDescSet.children←
newDescSet.children ∪ {descSet}

9 return 1

Having prepared such a set of descriptor groups, we can

proceed with assembling a data structure that expresses a

hierarchy of state subspaces – Alg. 4. Each state subspace

is created based on a corresponding descriptor group. State

subspaces maintain the same parent-child relation as descrip-

tor groups. At this point, the relation links are copied and

disambiguated. A descriptor group may have many possible

parents if the group is a product of the intersection operation.

However, a subspace in a tree can have only one parent, and

it can appear in the structure only once.
In the process of disambiguation, each subspace receives

one parent. The process must be performed in a certain order.

For instance, if a small subspace is attached to a big one too

early, we may lose an opportunity to add an intermediate layer.

Therefore, the procedure begins from bigger subspaces that

nest the largest number of smaller subspaces. To do so, each

time a list of descriptors is sorted descending by the number of

unassigned descendants (children, grandchildren, etc.) – line 7

in Alg. 1, and line 6 in Alg. 4.
The recursive procedure in Alg. 4 begins from the root, and

it expands the children down to the tree leafs. A subspace

can be added to the structure only if it nests (directly or

through a descendant) at least one observed state that was not

used previously (line 15). Otherwise, the subspace is discarded

(line 32). Near the end of the procedure, if there is a subspace

that holds a child subspace, and it contains any states at the

same time, an additional subspace is created inside the scope

of the current subspace to take over these states (line 21).
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Alg. 4: BuildSubspaces ( descSet, parent )

Data: descriptor set and its parent subspace
Result: subspace tree

1 if descSet ∈ usedDescSets then

2 return 0

3 usedDescSets← usedDescSets ∪ {descSet}
4 var subspace← 〈descSet, parent〉
5 var anyStateInChild← 0

6 var descriptorSetsSorted← Sort ( descSet.children )
7 foreach childDescSet ∈ descriptorSetsSorted do
8 if BuildSubspaces ( childDescSet, subspace ) then

9 anyStateInChild← 1

10 var anyStateHere← 0

11 foreach s ∈ descSet.states do

12 if s /∈ usedStates then
13 anyStateHere← 1

14 break

15 if anyStateInChild ∨ anyStateHere then
16 subspaces← subspaces ∪ {subspace}
17 parent.children← parent.children ∪ {subspace}
18 if anyStateHere then

19 var leaf ← subspace
20 if anyStateInChild then

21 leaf ← 〈descSet, subspace〉
22 subspaces← subspaces ∪ {leaf}
23 subspace.children← subspace.children ∪ {leaf}

24 foreach s ∈ descSet.states do

25 if s /∈ usedStates then
26 usedStates← usedStates ∪ {s}
27 leaf.states← leaf.states ∪ {s}
28 s.subspace← leaf
29 if IsGoal ( s ) then

30 leaf.hasGoal← 1

31 return 1

32 else

33 delete subspace
34 return 0

This action ensures that the states are placed only in leaf

subspaces. Observed states are assigned to leaf subspaces in

line 27. Finally, subspaces that contain goal states are marked

(line 29).

The next section explains how the resulting structure can be

utilized in planning.

V. HIERARCHICAL SPACE BASED ESTIMATE

In a planning task, the least expensive (shortest) path

between an initial state and any state that satisfies the goal is

being searched. In our case, the result is a sequence of actions

that solves a stage consuming the least amount of energy.

In the considered problem, the best performance can be

achieved by applying the A* algorithm [29]. However, it

requires a heuristic estimate function to approximate the

distance to the goal. Providing such an estimate is not an

easy task. In Smart Blocks, it is difficult because the progress

of solving a stage is hard to measure. The problem structure

makes relaxation heuristics futile, which was explained in

Section III.B. The goal progress could be calculated using

the designer’s knowledge about all possible solutions of a

Fig. 2. A visualization of state search supported by the hierarchical model
of the state space.

level. In this benchmark environment, a solution pattern can be

generated, but in real problems, it is an unrealistic assumption.

Our idea is to use a hierarchical state-space model to

roughly estimate how close a state is to the goal. The distance

is calculated based on the number of parent subspaces that a

state shares with the nearest goal subspace. The more mutual

nodes in a tree they have, the closer to the goal the state is.

It is an abstract measure. It supports state search by leading

it to more promising regions of the state space.

Fig. 2 provides a visual example of state search that uses

information stored in the hierarchical model of the state space.

In the picture, the state search begins in the bottom left corner

of the figure, and it ends in the top right one. The initial

state shares only one parent (the root) with the goal subspace

(marked as the bold rectangle). At this point, there are four

possible state transitions. One of the subsequent states shares

two parents with the goal subspace. This one has a higher

priority, and it should be expanded next. The procedure is

repeated until the goal subspace is reached.

The formula for calculating the proposed Hierarchical

Space Based Estimate (HSBE) is defined in Eq. 9:

∆(s) = 1−
maxi

(

∣

∣parents(s) ∩ parents(gi)
∣

∣

)

d
, (9)

where:

• s is a state,

• gi is a goal subspace (one of many),

• d is a depth of a hierarchical space tree,

• parents(·) is a function that returns a set of parent

subspaces up to the root,

• maxi(·) iterates over all goal subspaces and returns the

biggest value.

First, the method finds a parent subspace for a state. It is

a leaf subspace with the biggest number of descriptors that

match the state. Then, the method collects a set of parent
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subspaces of the state (up to the root). The set is intersected

with a chain of subspaces from the root to a goal subspace

(inclusively). The two sets are intersected to count the number

of shared subspaces. The number is divided by the tree depth

to normalize the outcome. If there is more than one goal

subspace, the most promising one is chosen. The range of ∆(·)
is in [0, 1). The normalized value can be scaled by a minimum

transition cost in a state-space graph to ensure that the heuristic

never overestimates the cost. Therefore, it is admissible. It

should be emphasized that the discussed admissibility is the

property of a heuristic that ensures optimality in a state space

that does not contain negative cycles, as it was assumed in the

formal description.

The main operation of the estimate is tree search, and

its computational complexity is logarithmic. A tree structure

enables us to quickly collect a chain of nodes between a leaf

and the root. In addition, parents of goal subspaces can be

stored before the planning phase. Finding a parent subspace

for a newly expanded state is linear in the number of leaf

subspaces. A significant impact on the computational overhead

has the operation of set intersection, which is frequently used.

Complexity of this operation depends on the implementa-

tion [30]. With some effort, it can be done efficiently.

VI. EXPERIMENTS

The goal of this study was aimed at checking whether

this early concept of a planning method is worth further

development. The proposed method is intended for problems

in which a heuristic is unavailable, ineffective, or characterized

by a high computational complexity [31]. Therefore, Dijkstra’s

algorithm was chosen as a reference [24]. The algorithm is

often used as a benchmark, because it is optimal and represents

the worst-case scenario in domain-independent planners [32].

The performance of the methods was measured by:

• the number of iterations in the main loop,

• the number of visited states,

• the maximum size of the state queue (the open set),

• the mean wall-clock execution time.

The results are presented in Table III.

The experiments were conducted on a typical hardware

setup: Win 7 x64, Intel i7 @ 3.4 GHz, 8 GB RAM. The

wall-clock times were measured for the state search procedure

in the main loop. For Dijkstra’s algorithm, the measurements

were simply averaged from 10 runs. However, HSBE relies on

a subspace tree. It can have different sizes, because it can be

built from different numbers of plan traces. Thus, the smallest

subset of the collected plan traces, which was necessary to

obtain full efficiency, was used. Usually, 10% of the set was

enough. The subset was chosen randomly, and the procedure

was repeated 10 times.

The tests were conducted for the first six game levels.

The remaining levels are more complex, their state spaces

are larger, and the number of states grows very rapidly. The

explosion of states is caused by a bigger number of dynamic

objects on the stage. The experiment could not be finished in

an acceptable time on the present hardware. However, these

levels are somewhat analogous to the preceding ones, and their

contribution should not conflict with the initial results.

As expected, the compared methods are equal in the quality

of returned solutions. For most of the levels, they provide cost-

optimal plans. The exception is level 5 and 6 (compare with the

replay statistics in Table I). A slight deviation from the optimal

paths is observed. These two levels contain energy cells, which

introduce negative-cost transitions to the state-space graph. In

this case, solution optimality is not ensured by the algorithms,

and the returned solutions may vary depending on the order

of states in the queue.

The discussion regarding the performance should begin

from comparing the execution times and the number of visited

states. In most cases, A*+HSBE is slower than Dijkstra’s

algorithm. This is caused by the fact that the researched heuris-

tic uses many operations involving complex data structures,

while Dijkstra’s algorithm is all about adding and removing an

item from a queue. On the other hand, the proposed method

is characterized by a smaller number of visited states. The

execution times include the time of visiting states and the

overhead of the method. The more expensive visiting a state

is, the lesser part the overhead in the execution time has.

For instance, let us consider level 5. Dijkstra’s algorithm is

approximately two times faster than A*+HSBE, but it also

visits twice as many states. If the cost of visiting a state

was tripled, then both algorithms would have almost the same

execution time. A*+HSBE is faster if the number of states

exceeds this threshold.

The reduction of visited states increases for the larger game

levels. The density of the state space division is constant, and

it might be too sparse in the simpler ones. If the partition of the

state space is low then the heuristic is less informative. On the

other hand, if it is too high, then the overhead is considerable.

In the final part of the study, the relation between the

number of plan traces, used for building the hierarchical

model, and the performance of the proposed method was

examined. The experiment was conducted for level 5, and

the results are shown in Fig. 3. The subsets of replays in the

database were chosen randomly, the process was repeated 10

times, and the measurements were averaged. The quality of the

returned solutions remains constant. The reduction of visited

states increases as the number of plan traces grows. It appears

that a small number of observations is sufficient to discover a

large part of the subspace tree. Similar results were observed

for the remaining game levels.

Although, the results do not show incontestable superior-

ity of the proposed heuristic over the algorithm used as a

benchmark, it should be noted that applying the method in

practice may be justified by the reduction of the search space.

The profit of employing the introduced approach depends

on the computational cost of visiting a state in a particular

system. For simple planning problems, the execution time of

a complex method can take longer than using a trivial state-

search algorithm. Smart Blocks as a testbed environment is

characterized by a medium-size state space and a very light

state so that the experiments could be conducted swiftly.
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TABLE III
COMPARISON OF DIJKSTRA AND A*+HSBE (THE LAST TWO COLUMNS CORRESPOND TO BOTH METHODS)

Level
No.

Algorithm iterations Visited states Max. queue size Avg. execution time [ms] Solution
length

Solution
energyDijkstra A* Dijkstra A* Dijkstra A* Dijkstra A*

1
164 153 180 163 13 13 0.6 1.3

23 231
(-6.71%) (-9.44%) (+0.00%) (+116.67%)

2
5 271 4 538 5 800 5 062 593 593 71.3 253.1

18 161
(-13.91%) (-12.72%) (+0.00%) (+254.98%)

3
825 193 747 690 885 508 806 562 58 866 58 874 12 616.5 13 134.5

57 66
(-9.39%) (-8.92%) (+0.01%) (+4.10%)

4
1 098 440 1 608 930 493 493 9.3 6.9

27 11
(-59.93%) (-42.16%) (+0.00%) (-25.81%)

5
32 609 15 341 38 025 17 865 35 45 2 571 491.7 976.6

42 94
(-52.95%) (-53.02%) (-27.48%) (+98.62%)

6
19 973 12 174 29 549 19 539 7 423 7 367 366.2 993.1

53 190
(-39.05%) (-33.88%) (-0.75%) (+171.19%)

A*+HSBE in relation to replay count for level 5
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Fig. 3. The set of charts shows the statistics of A*+HSBE for level 5
depending on different numbers of replays used for building a subspace tree.

However, for real planning problems, if the state space is

vast and visiting a state is expensive then the method is most

certainly worth applying.

VII. CONCLUSIONS

The original contribution of this paper is a new method of

building the hierarchical model of the state space from game

replays. Information stored in the model represents general

knowledge about the structure of the state space. The method

accepts executed plan traces as input. The observations are

not required to be annotated by experts. The model abstracts

from state representation methods. It relies on state descriptors

that refer to selected features of a state, and their form is

unrestricted. It does not oblige system designers to rewrite a

planning problem in PDDL. Instead, they can use the original

implementation of a game. It is more convenient and efficient.

The method is used for grouping states hierarchically, and it

relies on hyperspace nesting. The proposed heuristic estimates

the distance between any two states in the state space to effec-

tively guide the state search towards the goal and reduce the

search space. It is intended for difficult cases in which a heuris-

tic estimate of distance in a state-space graph cannot be easily

provided and domain-independent heuristics are inefficient.

The proof-of-concept was validated using Smart Blocks. It

is a testbed environment designed for conducting experiments

that involve game replay analysis. The game is modeled as a

variant of a multi-agent system. It enables a researcher to focus

on classical planning problems. Unlike commercial games, it

comes with tools that simplify method testing.

It should be emphasized that the approach is general.

Formal assumptions of the method, which include the planning

problem definition and the model of the hierarchical state

space, are abstract. The same rule applies to the introduced

algorithms, because they do not assume any specific properties

of the system in which a planning problem is solved. Although

the method relies on state descriptors that were implemented

according to domain-specific knowledge for this particular

study, their formal form is abstract, and it is possible to

extract them automatically (see the Future Work section).

To summarize, the approach can be applied to any classical

planning problem for which input observations are available.

VIII. FUTURE WORK

The presented results mark an important milestone in the de-

velopment of the approach. There are still many opportunities

for improvement, but their examination is a rather large under-

taking. This section outlines possible development directions.
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In the course of ongoing research, it has been discovered

that a concept (Galois) lattice is a more suitable model

for expressing relations between state subspaces [33]. In a

hierarchical structure described by the lattice, the intersection

of state subspaces has many parents, rather than a single one

like in the tree structure. Formal foundations of the Formal

Concept Analysis (FCA) are consistent with the descriptors

introduced in the discussed model of the state space. Thus,

a lattice can be built by an algorithm commonly used in

FCA [34]. Preliminary study results show a good performance

of a heuristic supported by this model. Therefore, a tree will

be replaced by a lattice in the subsequent study.

At the current stage of development, issues related to

processing a very large replay database have not been taken

into account. It is a secondary problem because the process

is separated from planning, and its execution time is accept-

able. Nonetheless, pruning methods that protect against the

overgrowth of the structure should be researched.

Reduction of the search space depends on the quality of the

state space division. The algorithm for building a hierarchical

space model ensures that the formal assumptions are satisfied.

However, the division quality is affected by state grouping,

which is handled by state descriptors. Adapting state descrip-

tors automatically can lead to better results. The research is

aimed at inventing an adaptive descriptor model that can be

tuned by machine learning methods.
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