&l

Proceedings of the Federated Conference on Computer Science
and Information Systems pp. 245-248

DOI: 10.15439/2016F152
ACSIS, Vol. 8. ISSN 2300-5963

Automatic Feature Engineering for Prediction of
Dangerous Seismic Activities in Coal Mines

Eftim Zdravevski, Petre Lameski, Andrea Kulakov
Faculty of Computer Science and Engineering
Ss.Cyril and Methodius University, Skopje, Macedonia
Email: {eftim.zdravevski,petre.lameski,andrea.kulakov} @finki.ukim.mk

Abstract—In this paper we present our submission to the
AAIA’16 Data Mining Challenge, where the objective was to
predict dangerous seismic events based on hourly aggregated
readings from different sensor and recent mining expert as-
sessment of the conditions in the mine. During the course of
the competition we have exploited a framework for automatic
feature extraction from time series data that did not require
any manual tuning. Furthermore, we have analyzed the impact
of overlapping of input data on model robustness. We argue
that training an ensemble of classifiers with distinct (i.e. non-
overlapping) chronological data rather than one classifier with all
available data can produce more reliable and robust prediction
models. By doing that, we were able to avoid overfitting and
obtain the same score performance on the evaluation and test
datasets, despite the significant data drift in the datasets.

Keywords—feature engineering, feature selection, time series
classification, temporal data mining, drift detection

I. INTRODUCTION

The task in the AAIA’16 Data Mining Competition [1]
is to devise a reliable prediction model for detecting periods
of increased seismic activity that endangers miners work-
ing underground in coal mines. The data set consists of
hourly aggregated readings from seismic sensors that count
the number of seismic bumps perceived at longwalls and
measure their total energy. Data records are composed of 24
consecutive hours of such readings coupled with the most
recent assessments of the conditions at the longwalls made by
mining experts. The target attribute in the data corresponds
to information whether in a following period of 8 hours
the total energy of seismic bumps exceeds a warning level.
The full training dataset contains 133151 records with 541
columns, each corresponding to 24 hours of measurements.
The evaluation metric of the competition was Area Under the
ROC Curve (AUC).

The challenges of the competition were versatile: quite
different distribution of working sites in the training and
tests dataset that indicated of potential distribution drift in
the data; the training class distribution was imbalanced; the
final training set was 40 times larger than the test set; and
the class distribution in the test set was unknown. After the
competition ended it was disclosed that 2% of the records
in the training and 5% in the test set were warnings. These
challenges required very robust features and prediction models
that would prevent over-fitting to the training set. In this paper
we describe how our submission to the challenge addressed
these challenges.

978-83-60810-90-3/$25.00(©2016, IEEE 245

II. CROSS-VALIDATION FOR MODEL SELECTION

In order to evaluate the models and feature sets locally,
a way that will take into consideration the distribution of
working sites, classes and train/test dataset size is required.
To address this challenge, we developed a strategy that splits
the training set keeping in mind the following parameters:
general class distribution in the training set; class distribution
per working site in the training set; and ratio of unknown
versus known working sites in the test set.

Using these parameters, we tried to replicate a split of the
train set into two sets, one for training and one for local testing,
that would resemble the relation between the real training and
test sets. When splitting the training set, we iteratively choose
whether to add the working site to the train or test split based
on its working class distribution, the current and desired class
distribution in the splits, and the known vs unknown ratio in
the test split. Using this approach, we were able to get a more
realistic estimate of the feature set performance than the cross-
validation schemes. We considered cross-validation scores to
be more realistic if they resembled the leaderboard score, and
thus were lower than the ones obtained with regular cross-
validation. However, even with different feature subsets it was
always 6% greater than the leaderboard score (always over
0.98).

Even though it was promising approach, we did not have
time to develop a stratified or leave-one-subject-out cross-
validation strategy based on it, so we have eventually aban-
doned it and relied for performance estimation based on the
leaderboard score. In addition, this strategy based on the
assumption that the training and test sets have similar class
distribution, which was not specified in the task description.
After the competition ended and the test labels were disclosed,
it turned out that this assumption did not hold indeed.

III. FEATURE ENGINEERING FRAMEWORK

This competition coincided with our work on a framework
for automated feature extraction from time series data. There-
fore, it presented a good opportunity to test an early prototype
of the framework on this dataset.

A. Feature generators

Using a systematic approach, the system is able to generate
a variety of features that can robustly describe the dataset. A
recent data mining competition for posture recognition of fire-
fighters [2] inspired different feature engineering approaches

246

that are very effective [3, 4, 5]. Using the proposed approaches
there, from each series of readings the system generates the fol-
lowing types of features: basic statistics (minimum, maximum,
range, arithmetic mean, harmonic mean, geometric mean, me-
dian, mode, standard deviation, variance, skewness, kurtosis,
signal-to-noise ratio, energy, etc.); curve fitting parameters [4];
equal-width histogram features [5]; percentile based features
(first quartile, median, third quartile, inter-quartile range, am-
plitude, etc.) [3]; auto-correlation of the signal with several
types of correlations (signal processing auto-correlation and
Pearson, Spearman and Kendall correlation) [4]; and inter-
correlations between each pair of raw time series values using
the aforementioned types of correlation coefficients.

B. Time series generators

The feature extraction framework is able to generate new
time series and then based on them to extract new sets of
features, just like from an original time series. Authors of
[3, 4, 5] demonstrated that this approach can further enhance
the predictive performance of the system. Therefore, the frame-
work uses the following time series generators (TSG): first
derivatives of the original series [5]; amplitudes, frequencies
and magnitudes obtained with fast Fourier transformation [3];
delta series (the deviations of the original values from the mean
of the particular block of the time series), which can remove
the seasonality in the data; sliding window time series [6];
and combining two time series by multiplying, subtracting or
dividing their values [4].

C. Learning algorithms

For estimating the informativeness of individual features
and the predictiveness of the whole problem the framework
uses Random Forest (RF) [7] and Extremely Randomized
Trees (ERT) [8] with high number of trees. They are used
with the default parameters, as we have noticed that tuning
them does not improve the performance dramatically (unlike
with SVMs, for example). ERT models are very similar to
RF in terms of predictive performance, but quite faster. We
have noticed that when using the same number of trees ERT
is significantly faster (over 50%) than RF, especially when the
number of features is large (over 500).

D. Feature extraction and selection heuristics

Applying all possible feature transformations would gen-
erate very large number of features and would make learning
based on them practically impossible. To mitigate this, the
feature engineering and selection processes are interleaved,
so generation of new time series and features is heuristically
guided.

The algorithm for feature extraction and selection is shown
in Figure 1. After the initialization and configuration of which
features should be computed, the processing starts, one dataset
instance (record) at a time. When the features are extracted
from the whole dataset, it estimates the predictive performance
and calculates feature importances in order to prepare a base-
line for the feature selection loop that follows.

To improve the performance of the model under data drift,
the framework performs greedy wrapper feature selection,
inspired by the idea proposed in [9]. First it merges the training

PROCEEDINGS OF THE FEDCSIS. GDANSK, 2016

Score
Improvement above,
Threshold?

Initialize Scores and Feature
Engineering Configuration
Start Feature Extraction
Foreach Training Instance
in New Time Series
Generate Features and
Store Transformed Instance

N

Feature Engineering
Time Series Generation

Estimate Performance and
Feature Importances with
All Current Features

Foreach Regular and Drift
Score Threshold

Select Features within
Score Thresholds

Feature Selection

Estimate Performance and
Feature Importances with
Selected Features

Is complete?

Yes

Fig. 1. Algorithm for feature extraction and selection

and validation or test dataset and generates an artificial “drift”
class, denoting whether the instance is from the training or the
test dataset. Then it estimates the importance of each feature
when predicting the regular class (normal/warning) and the
drift class (train/test). Afterwards, it calculates a set of feature
importance thresholds for the regular class and the drift class.
Next, in a loop it evaluates the performance different sets of
features based on whether they fall within these importance
thresholds.

Next, by averaging the regular informativeness of the
retained features for a particular time series the framework
estimates which time series are informative for prediction of
the target class. Additionally, it calculates correlations between
different time series. Based on these heuristics, it identifies
candidates for new which new series should be generated.
After the new series are generated, the algorithm returns
to the feature engineering phase. The second time it only
generates features with only those transformations that resulted
in retained features in the initial run. Afterwards, it merges
the new feature set with the selected features in the previous
iteration. The feature engineering and selection loop ends when
generating new features does not improve the best performance
by a considerable margin. For this competition, the we have
only used the initial and one additional loop of generation of
features.

Given that we were not able to replicate the training/test
split for performing local evaluations, we decided to use
the leaderboard scores for selecting the feature importance
thresholds. By default, the framework uses cross-validation.

EFTIM ZDRAVEVSKI ET AL.: AUTOMATIC FEATURE ENGINEERING FOR PREDICTION OF DANGEROUS SEISMIC ACTIVITIES IN COAL MINES

IV. THE FEATURE ENGINEERING FRAMEWORK IN
PRACTICE

The framework implementation it is still not publicly
available. It has been implemented in Python on top of the
scikit-learn Library [10]. In order to use the framework, we
only need to specify the data set information: number and
indexes of nominal features and numeric features, the number
of time series and samples per series, the CSV files containing
the description of columns and series. Then the framework
takes over. It starts by calculating the basic statistics, inter-
correlations, autocorrelations, histograms and quantiles. Based
on them it evaluates which time series are informative. In this
case, it discovered that the time series can be ranked as shown
in Table I (columns IRI and IR - initial relative importance
and initial rank, respectively).

This drift detection mechanism turned out to be very
helpful for feature reduction. Namely, depending on the par-
ticular feature set size, removing the features that are good
drift predictors improved our leaderboard score by 1-3 %.
In our final solution the threshold 30 for both scores turned
out to give good results thus removing almost 60% of the
generated features. After their removal, the relative importance
of different time series changed dramatically compared to the
initial ranking, as can seen in Table I (columns IR and FR -
initial and final rank, respectively).

A. Importance of time series

Some of the time series were significantly less informative
than others, so they were discarded, keeping only the top
16 series. When evaluating the performance locally without
the leaderboard, the system was able very quickly to find a
feature set with AUC ROC score over 0.99 with stratified and
regular cross-validation. When submitting those predictions to
the public leaderboard we were able to get to a score of about
0.91. This dramatic drop of performance was a clear evidence
of drift in the training and test datasets, which was somewhat
expected due to the different mining sites.

TABLE 1. TIME SERIES IMPORTANCE BEFORE AND AFTER
IMPORTANCE EVALUATIONS. IRI=INITIAL RELATIVE IMPORTANCE,
IR=INITIAL RANK, FRI=FINAL RELATIVE IMPORTANCE, FR=FINAL

RANK

Time Series Name IRI IR FRI FR
max_gactivity 1.000 1 1.000 1
avg_difference_in_gactivity 0.998 2 0.788 9
max_difference_in_gactivity 0.962 3 0786 10
avg_difference_in_genergy 0.954 4 0771 11
max_difference_in_genergy 0.938 5 0766 12
avg_genergy 0.916 6 0.886 4
max_genergy 0.889 7 0.902 3
avg_gactivity 0.885 8 0909 2
highest_bump_energy 0.663 9 0.861 6
sum_e2 0.410 10 0.742 15
sum_e3 0.345 11 0.874 5
total_number_of_bumps 0.310 12 0.793 8
sum_e4 0.192 13 0.766 13
count_e2 0.175 14 0.646 16
count_e3 0.140 15 0.744 14
count_e4 0.116 16 0.811 7
sum_eS 0.040 17

count_e5 0.022 18

sum_e6plus 0.017 19

count_e6plus 0.013 20

number_of_distressing_blasts 0.004 21

number_of_rock_bursts 0.000 22

Final vs Leaderboard Scores

096
095
094
093
092
091
090
089
088
087
086
085
084
083

AuC

082
081
080
079
078
077
076
o7

final rank - team name - leaderboard rank

Fig. 2. Final vs. Leaderboard scores of the competitors.

As described earlier, the cross-validation scores were sig-
nificantly different the leaderboard scores. On the other hand,
different feature subsets performed similarly to each other with
cross-validation and on the leaderboard. Because of those two
reasons and the limited time we had for spending on this
competition we decided to use only the features of the original
time series and disable generation of new time series.

B. Oversampling in datasets

The fact that the size of the training set was significantly
larger than the test set, pointed out that there must be some
over-sampling in the training instances. To investigate this, we
have analyzed the training dataset comparing consecutive rows
that are for the same working site. We have discovered that
in most cases the consecutive rows are shifted by 1 hour, thus
overlapping for 23 hours. However, the test instances do not
have any overlapping (or at least it can not be discovered).
This mean that the training and test dataset are not identically
and independently distributed. That combined with the over-
sampling posed significant risk of over-fitting. In order to
alleviate that, we have split the training set into 24 folds
of instances that do not overlap. In particular, if we have
consecutive overlapping instances (1 shift, 23 hours overlap)
numbered with 1..n from the same working site, in the ¢-th fold
the following instances would be assigned: ¢,7+s,7+2X s, ...,
where s = 24 is the number of folds. Likewise, we have
tested with 12, 8, 6, 4 and 2 folds. Then, having s folds we
train a separate classifier on each fold and then average the
predictions of all s classifiers. Regardless of the feature subset
and used classifier, when using 24 folds gave best results, about
1-3% more than training one classifier on the complete training
set (i.e. only one fold). This was very peculiar discovery that
should be considered when creating batches from continuous
streams of data. A similar effect of over-sampling in datasets
was discovered and explained in [11].

C. Final submission

The predictions based on different feature subsets and
different training data subsets scored similarly on the public
leaderboard. In order to diversify the predictions and aiming

247

248

to achieve more robust prediction models, we aggregated the
results from 5 different predictions: 4 ERT models trained
with various feature subsets that had 200-900 features (various
basic statistics, histograms, percentiles, linear and quadratic fit
coefficients, correlations, etc. obtained from the 16 retained
time series listed in Table I) and 1 logistic regression model
trained with only 21 features (reduced from the larger feature
set with Correlation-based Feature Selection). This improved
our leaderboard score to 0.9276, about 1.5% better than any
the individual classifiers that were used in the ensemble.
Some classifiers (e.g. logistic regression) made predictions
close to O while all others were predicting exactly O (the
probability of warning). To leverage these properties, we
decided to determine whether the prediction is O or not with
simple majority vote. If not then the individual predictions are
averaged. Instead of averaging the predictions in such cases,
predicting 0 improved the leaderboard score by 0.5%.

As it can be seen from Figure 2, many of the teams
had dramatically over-fitted their models to the training and
leaderboard datasets, thus their performance of the final dataset
dramatically dropped. Only few teams were able to produce the
same or better score on the final dataset as on the leaderboard.

V. CONCLUSION

This competition provided an interesting and interactive
opportunity to tackle various challenges encountered in real-
world data analysis. Our initial goal was to test if automatic
feature extraction and selection from time series data would
be feasible for such problem. We were able to discover and
understand interesting patterns in the data, such as the ranking
of importance of time series or other important features like
expert seismic assessments. Additionally, we discovered the
importance of overlapping in the training dataset in relation to
over-fitting. Another interesting realization was that even sim-
ple classifiers like logistic regression with very simple features
can give leaderboard score of about 0.92. Our best leaderboard
score was average of predictions of several different classifiers
and/or different feature sets and it was about 0.928.

It is important to point out that the process of automatically
generating features did not require manual tuning. Further-
more, the framework was able to generate and recognize
informative features and time series, as well as to retain
only features that are robust to drift in the data. The only
manual work that we performed was related to the cross-
validation experiments and for submitting solutions to the com-
petition system. We consider that the obtained performance
is significant due to the automatically generated features. We
acknowledge that the framework still requires work to be done
in relation to more efficient searching of redundant features
and more optimal iterative generation of new features. Our
experiments with other datasets confirms that it is able to
match the best published performance, or in some cases to
even improve them.

REFERENCES

[1] A. Janusz, M. Sikora, £.. Wrobel, and D. Slezak, “Pre-
dicting Dangerous Seismic Events: AAIA16 Data Mining
Challenge,” in Proceedings of FedCSIS 2016. IEEE,
2016, in print September 2016.

PROCEEDINGS OF THE FEDCSIS. GDANSK, 2016

[2] M. Meina, A. Janusz, K. Rykaczewski, D. Slezak,
B. Celmer, and A. Krasuski, “Tagging firefighter activities
at the emergency scene: Summary of aaia’15 data mining
competition at knowledge pit,” in Computer Science and
Information Systems (FedCSIS), 2015 Federated Confer-
ence on, Sept 2015. doi: 10.15439/2015F426 pp. 367—
373.

[3] J. Lasek and M. Gagolewski, “The winning solution to
the aaia’15 data mining competition: Tagging firefighter
activities at a fire scene,” in Proceedings of the 2015
Federated Conference on Computer Science and Infor-
mation Systems, ser. Annals of Computer Science and
Information Systems, M. P. M. Ganzha, L. Maciaszek,
Ed., vol. 5. IEEE, 2015. doi: 10.15439/2015F418 pp.
375-380.

[4] A. Zagorecki, “A versatile approach to classification of
multivariate time series data,” in Proceedings of the 2015
Federated Conference on Computer Science and Infor-
mation Systems, ser. Annals of Computer Science and
Information Systems, M. P. M. Ganzha, L. Maciaszek,
Ed., vol. 5. IEEE, 2015. doi: 10.15439/2015F419 pp.
407-410.

[5] E. Zdravevski, P. Lameski, R. Mingov, A. Kulakov, and
D. Gjorgjevikj, “Robust histogram-based feature engi-
neering of time series data,” in Computer Science and
Information Systems (FedCSIS), 2015 Federated Confer-
ence on, ser. Annals of Computer Science and Informa-
tion Systems, M. P. M. Ganzha, L. Maciaszek, Ed., vol. 5.
IEEE, Sept 2015. doi: 10.15439/2015F420 pp. 381-388.

[6] M. Grzegorowski and S. Stawicki, “Window-based fea-
ture engineering for prediction of methane threats in coal
mines,” in Rough Sets, Fuzzy Sets, Data Mining, and
Granular Computing, ser. Lecture Notes in Computer
Science, Y. Yao, Q. Hu, H. Yu, and J. W. Grzymala-
Busse, Eds. Springer International Publishing, 2015,
vol. 9437, pp. 452-463. ISBN 978-3-319-25782-2

[7] A.Liaw and M. Wiener, “Classification and regression by
randomforest,” R news, vol. 2, no. 3, pp. 18-22, 2002.

[8] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely ran-
domized trees,” Machine Learning, vol. 63, no. 1, pp.
3-42, 2006. doi: 10.1007/s10994-006-6226-1

[9] M. Boullé, “Tagging fireworkers activities from body
sensors under distribution drift,” in Proceedings of the
2015 Federated Conference on Computer Science and
Information Systems, ser. Annals of Computer Science
and Information Systems, M. Ganzha, L. Maciaszek,
and M. Paprzycki, Eds., vol. 5. IEEE, 2015. doi:
10.15439/2015F423 pp. 389-396.

[10] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay,
“Scikit-learn: Machine learning in Python,” Journal of
Machine Learning Research, vol. 12, pp. 2825-2830,
2011.

[11] M. Boullé, Rough Sets, Fuzzy Sets, Data Mining, and
Granular Computing: 15th International Conference,
RSFDGrC 2015, Tianjin, China, November 20-23, 2015,
Proceedings. Cham: Springer International Publishing,
2015, ch. Prediction of Methane Outbreak in Coal Mines
from Historical Sensor Data under Distribution Drift, pp.
439-451. ISBN 978-3-319-25783-9

