
Java-HCT: An approach to increase MC/DC using
Hybrid Concolic Testing for Java programs

Sangharatna Godboley1, Arpita Dutta2, Durga Prasad Mohapatra3

National Institute of Technology Rourkela

Odisha, India

Email: sanghu1790@gmail.com1, arpitad10j@gmail.com2, durga@nitrkl.ac.in3

Abstract—Modified Condition / Decision Coverage (MC/DC)
is the second strongest coverage criterion in white-box testing.
According to DO178C/RTCA criterion it is mandatory to achieve
Level A certification for MC/DC. Concolic testing is the combi-
nation of Concrete and Symbolic execution. It is a systematic
technique that performs symbolic execution but uses randomly-
generated test inputs to initialize the search and to allow the
tool to execute programs when symbolic execution fails. In this
paper, we extend concolic testing by computing MC/DC using the
automatically generated test cases. On the other hand Feedback-
Directed Random Test Generation builds inputs incrementally by
randomly selecting a method call to apply and find arguments
from among previously-constructed inputs. As soon as the input
is built, it is executed and checked against a set of contracts and
filters.

In our proposed work, we combine feedback-directed test
cases generation with concolic testing to form Java-Hybrid
Concolic Testing (Java-HCT). Java-HCT generates more number
of test cases since it combines the features of both Feedback-
Directed Random Test and Concolic Testing. Hence, through
Java-HCT, we achieve high MC/DC. Combinations of approaches
represent different tradeoffs of completeness and scalability. We
develop Java-HCT using RANDOOP, jCUTE, and COPECA.
Combination of RANDOOP and jCUTE creates more test cases.
COPECA is used to measure MC/DC% using the generated test
cases. Experimental study shows that Java-HCT produces better
MC/DC% than individual testing techniques(feedback-directed
random testing and concolic testing). We have improved MC/DC
by ×1.62 and by ×1.26 for feedback-directed random testing and
concolic testing respectively.

I. INTRODUCTION

S
OFTWARE Testing is the technique to detect bugs in

software. Manual software testing accounts for 50-80% of

the cost of software development. Manually created test cases

are expensive, error-prone, and generally not exhaustive [2].

Therefore, automated software testing techniques have been

discovered [3], [4].

There exists some controversy regarding the relative advan-

tages of random testing and systematic testing. Some work [5],

[6] suggest that random testing is same effective as systematic

testing techniques. Existing work [7] found that random test

case generation achieves less code coverage than systematic

generation techniques. These systematic generation techniques

include chaining, exhaustive generation, model checking, and

symbolic execution.

Pacheco et al. [8] proposed Feedback-Directed Random

testing. They have addressed random generation of unit tests

for object-oriented programs. Their proposed work indicates

that feedback-directed random generation retains the benefits

of random testing (scalability, simplicity of implementation),

and avoids redundant test cases.
Concolic testing is a systematic technique that performs

symbolic execution. Concolic testing uses randomly generated

test cases to start the search and to allow the tool to make

progress when symbolic execution fails due to limitation of

the symbolic technique (e.g. native calls) [9].

MC/DC is a criterion for code coverage and was introduced

by the RTCA DO-178B standard [10]. MC/DC must satisfy

the following criteria [11]:

• All the entry and exit points of the input programs must

be invoked at least once.

• All possible outcomes of a decision must be affected by

the changes made to each condition.

• All possible outcomes of every decision must execute.

• All the conditions in a decision must execute.

According to Majumdar et al. [2], in hybrid concolic testing,

the concolic testing phase is initiated whenever random testing

saturates, i.e, does not find new coverage points even after

running a predetermined number of steps. Majumdar et al. [2]

observed that CUTE and jCUTE tools have ultimately run up

against path explosion. Concolic testing can only cover a small

fraction of branches, those that can be reached using “short"

executions from the initial state of the program. Therefore

concolic testing requires “deep" program status to be explored.

We have implemented Java-Hybrid Concolic Testing us-

ing RANDOOP, jCUTE, and COPECA, and applied it to

achieve high Modified Condition/Decision Coverage for Java

programs.

The rest of the article is organized as follows: Section 2

presents the background concepts. Section 3 presents the pro-

posed approach Java-HCT. Section 4 shows the experimental

study. Section 5 compares the proposed approach with some

of the existing approaches. Section 6 concludes the paper and

suggests some future work.

II. BACKGROUND CONCEPTS

In this section we discuss some important background

concepts, which are required to understand our work.
Definition 1: Feedback-Directed Random Testing: “It is a

combination of random and systematic approach that results

a test suite consisting of unit tests for the classes under

test. Systematic approach deals with Feedback-Directed, i.e

Proceedings of the Federated Conference on Computer Science

and Information Systems pp. 1709–1713

DOI: 10.15439/2016F289

ACSIS, Vol. 8. ISSN 2300-5963

978-83-60810-90-3/$25.00 c©2016, IEEE 1709

as soon as an input value is built, it is executed and checked

against a set of contacts and filters. The result of the execution

determines whether the input is redundant, illegal or useful for

generation of more input [8].”

There is a tool available for Feedback-Directed Random

Testing called RANDOOP1. RANDOOP stands for Random

Tester for object-Oriented Programs. It is a fully automatic

tool and requires no input from the user, and scales to realize

applications with hundreds of classes.

Definition 2: Concolic Testing: “Concolic testing is defined

as a variant of symbolic execution where symbolic execution is

run simultaneously with concrete executions, i.e., the program

is simultaneously executed on concrete and symbolic values,

and symbolic constraints generated along the path are simpli-

fied using the corresponding concrete values. The symbolic

constraints are then used to incrementally generate test inputs

for better coverage by combining symbolic constraints for a

prefix of the path with the negation of a conditional taken by

the execution [9], [15].”

JCUTE2 is a Java concolic unit test engine based on

concolic testing to execute Java programs.

Definition 3: Java-HCT: “Java-Hybrid Concolic Testing is

the combination of Feedback-Directed Random Testing and

Concolic testing for Java programs to result high MC/DC

coverage.”

Java-HCT is implemented using RANDOOP, jCUTE, and

COPECA. RANDOOP and jCUTE are open source testing

tools and used performing Random testing and Concolic

testing respectively. We have developed the tool COPECA

(COverage PErcentage CAlculator), which is plugged into

RANDOOP and jCUTE to measure MC/DC%, using the

generated test cases. COPECA is based on Extended Truth

Table.

Definition 4: Modified Decision / Condition Coverage:

“MC/DC is some kind of Predicate Coverage technique, where

condition is a leaf level Boolean expression and decision

controls the program flow. MC/DC% is defined as the total

number of independently affected conditions (I) out of total

conditions (C) present in a program [11] mathematically.”

MCDC% =
|I|

|C|
∗ 100% (1)

III. PROPOSED APPROACH: JAVA-HCT

In this section, we discuss the detailed and algorithmic

description of Java-HCT followed by the proposed steps of

the technique.

A. Overview

Our proposed technique Java-HCT consists of seven mod-

ules. These are i) Syntax_Converter, ii) RANDOOP, iii)

jCUTE, iv) TCs Extractor, v) TCs Combiner, vi) TCs Min-

imizer, and vii) COPECA. These modules are shown in Fig.

1. Java-HCT accepts a Java program and produces MC/DC%.

1https://github.com/randoop/randoop-eclipse-plugin
2http://osl.cs.illinois.edu/software/jcute/

TABLE I
CHARACTERISTICS OF DIFFERENT TARGET PROGRAMS

Sl. Program LOC # of # of # of
No. Name Predicates Conditions Variables
1 SwitchTest 84 1 2 2
2 StringBuffer 1369 5 10 3
3 ScopeCheck 148 8 18 8
4 MyQuickSort 87 1 2 3
5 MathCall1 190 13 26 4
6 MyInsertionSort 70 2 6 4
7 Condition 60 4 9 3
8 FruitSales 267 23 69 4
9 InsertionSort 163 7 14 6

10 Comparison1 128 17 43 4
11 DSort1 136 10 20 2
12 GradeCalculation 103 6 12 1
13 MarketSales1 179 8 17 4

14 FruitBasket1 209 12 38 2
15 BSTree 307 6 13 3
16 SwitchTest2 104 6 16 5
17 AssertTest 75 3 7 3
18 BubbleSort 142 6 14 7
19 DSort_BST 305 3 7 3
20 CAssume 63 3 7 3
21 Demo1 76 3 8 2
22 MarketSales2 230 24 49 7
23 MathCall2 160 7 14 4
24 Selection_Sort 163 7 14 6
25 Sorting_algo 336 25 50 9
26 SwitchTest3 80 2 2 1
27 StringBuffer1 485 5 15 4
28 StudentGrades 67 5 10 1
29 Testy 53 3 6 1
30 Weight 39 1 3 3
31 Weight_Exp1 114 10 22 3
32 Weight_Exp2 77 5 13 3
33 Wildlife1 17 9 28 3
34 Wildlife2 199 13 40 3
35 Zodiac 104 18 84 10
36 WBS 321 5 10 3
37 AssertTest2 91 7 21 7

38 HelloWorld 44 2 4 2
39 IFExample 82 2 4 2
40 IFSample 95 6 12 3

Fig. 1. Schematic representation of Java-HCT

1710 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

Basically Java-HCT is the combination of RANDOOP and

jCUTE which produce test cases combining. These tools

RANDOOP and jCUTE are plugged into COPECA so that,

the hybrid tool will be capable of computing MC/DC%. Our

proposed technique provides deep as well as wide exploration

of concolic execution.

B. Detailed Description

Java-Hybrid Concolic Testing is the best combination to

achieve better MC/DC, and is the hybrid combination of

Feedback-Directed Random testing and Java Concolic Testing.

We have inspired from the core-idea proposed by Majumdar

et al.[2]. They proposed a Hybrid Concolic Testing algorithm,

that interleaves random testing with concolic execution to

obtain both a deep and a wide exploration of program state

space. They have implemented their algorithm on top of con-

colic tester (CUTE) and experimented to obtain high branch

coverage for two large programs;VIM 5.7 and Red black

tree. Similarly, we extend the work of Majumdar et al.[2] by

measuring MC/DC and that too for Java programs. Majumdar

et al.[2] implemented their algorithm using undirected random

testing and concolic testing, whereas we propose an efficient

hybrid concolic testing for Java programs i.e. Feedback-

Directed Random testing with concolic testing to obtain high

MC/DC.

Fig. 1 shows the proposed tool for Java-Hybrid Concolic

Testing (Java-HCT)3. Java-HCT is developed by integrating

seven modules. The process starts by supplying a Java pro-

gram. From Fig. 1 we can observe that, this Java program is

converted into two different syntaxes using Syntax_converter.

Since, we supply this Java program into both RANDOOP

and jCUTE, it is essential to convert the original Java pro-

gram into respective tool syntaxes. Now, the Java program in

RANDOOP syntax is supplied to Random tester for Object-

Oriented Programs (RANDOOP) to generate TCs_R automati-

cally. Similarly, the Java program in jCUTE syntax is supplied

to Java Concolic Unit Testing Engine (jCUTE) to generate

TCs_J automatically. Unfortunately, TCs_R and TCs_J are not

in same syntax. Therefore, TCs Extractor module is uses both

the test suites to extract the input values those are present in

TCs_R and TCs_J as described in Fig. 1. Then all extracted

input values are supplied to TCs Combiner to produce Total

test cases. Since, these test cases may be redundant and useless

for MC/DC, therefore we have developed TCs Minimizer that

accepts all the input values and checks which are essential

to compute MC/DC percentage and removes rest of the those

non-essential test cases. Now, the minimized test cases are

supplied to COverage PErcenatge CAlculator (COPECA).

Since, we focus to increase MC/DC percentage, so we have

developed this COPECA to measaure MC/DC percentage.

COPECA accepts the minimized test cases along with the

original Java program to produce MC/DC%.

3https://sourceforge.net/projects/java-hct/

C. Algorithmic Description

Algorithm 1 deals with the pseudocode of Java-Hybrid

Concolic Testing (Java-HCT). We supply a Java program to

our algorithm. Java-HCT to produce MC/DC%.

Algorithm 1 Java-HCT

Input: J (Java Program)

Output: MC/DC%

1: JR, JJ ← Syntax_Converter(J)
2: TCs_R← RANDOOP (JR)
3: TCs_J ← jCUTE(JJ)
4: Input_values← TCs_Extractor(TCs_R, TCs_J)
5: Total_TCs← TCs_Combiner(Input_values)
6: Minimized_TCs← TCs_Minimizer(Total_TCs)
7: MC/DC%← COPECA(J,Minimized_TCs)
8: return MC/DC%

In Line 1 of Algorithm 1, the Syntax_Converter takes

a Java program as input and produces a Java program in

RANDOOP syntax (JR) and a Java program in jCUTE syntax

(JJ) as outputs. Line 2 shows the execution of RANDOOP

tool. RANDOOP takes JR as input and generates test cases

(TCs_R) as output. Line 3 shows the execution of jCUTE

tool. JJ as input and generates test cases (TCs_J) from

jCUTE as output. Now, these two generated test case sets

(TCs_R, TCs_J) are forwarded to Test Cases Extractor (TCs

Extractor) modules to separate each input values as presented

in Line 4.

Line 5 shows the execution of Test cases Combiner (TCs

Combiner). This Combiner module collects all the input values

created from TCs Extractor and generate a single set called

Total Test Cases (Total TCs). Line 6 shows minimization of

the test cases generated through Test Cases Minimizer (TCs

Minimizer). This module produces the Minimized Test Cases

(Minimized TCs).

Line 7 deals with the computation of MC/DC% through

COPECA. COPECA takes the original Java program along

with the Minimized TCs as input. Line 8 returns the final

MC/DC% as output.

IV. EXPERIMENTAL STUDY

In this section we discuss our experimental setup, the result

analysis, and threats to validity.

A. Setup

The experimental programs are ran on a computer system

with 4GB of memory (RAM) Intel(R) Core(TM)i5 CPU 650

@ 3.20 GHz 3.19 GHz and 32-bit operating system.

B. Result Analysis

Table I deals with the characteristics of forty input Java pro-

grams. Column 3 shows the size of programs in Lines of codes

(LOCs). Columns 4,5,6, show the Predicates, Conditions, and

Variables respectively.

Table II presents the generated test cases and MC/DC%

for RANDOOP, jCUTE, and Java-HCT. Column 3 shows the

SANGHARATNA GODBOLEY ET AL.: JAVA-HCT: AN APPROACH TO INCREASE MC/DC USING HYBRID CONCOLIC TESTING FOR JAVA PROGRAMS 1711

TABLE II
RESULTS ON EXECUTION OF COPECA

Sl. No. Program Name RANDOOP TCs jCUTE TCs Total TCs Minimized TCs MC/DC_1% MC/DC_2% MC/DC_3% Inc_1 Inc_2
1 SwitchTest 20 8 28 4 50 50 100 50 50
2 StringBuffer 12 9 21 20 40 50 80 40 30
3 ScopeCheck 20 25 45 30 77.77 83.33 100 23.23 16.67
4 MyQuickSort 5 5 10 3 100 100 100 0 0
5 MathCall1 70 10 80 45 16.66 46.15 69.23 52.57 23.08
6 MyInsertionSort 13 6 19 11 0 50 83.33 83.33 33.33
7 Condition 26 7 33 15 44.44 66.67 88.88 44.44 22.21
8 FruitSales 114 12 126 112 31.88 42.02 56.52 24.64 14.5
9 InsertionSort 28 10 38 20 71.42 78.57 85.71 14.29 7.14
10 Comparison1 93 27 120 81 27.90 41.86 58.13 30.23 16.27
11 DSort1 39 4 43 28 50 75 85 35 10
12 GradeCalculation 23 5 28 18 33.33 50 75 16.7 25
13 MarketSales1 43 8 51 23 52.94 64.70 88.23 35.29 23.53

14 FruitBasket1 271 8 279 59 39.47 50 60.52 21.05 10.52
15 BSTree 86 5 91 24 23.07 69.23 84.61 61.54 15.38
16 SwitchTest2 29 14 42 30 12.5 18.75 31.25 18.75 12.5
17 AssertTest 31 7 38 9 57.14 57.14 100 42.86 42.86
18 BubbleSort 43 8 56 21 35.71 42.85 64.28 28.57 21.43
19 DSort_BST 36 8 44 9 42.85 28.57 57.14 14.29 28.57
20 CAssume 73 6 79 10 71.42 85.71 100 28.58 14.29
21 Demo1 44 4 48 12 62.5 75 87.5 25 12.5
22 MarketSales2 313 11 324 78 69.38 73.46 73.46 4.08 0
23 MathCall2 38 11 49 20 57.14 64.28 71.42 14.28 7.14
24 Selection_Sort 53 9 62 18 35.71 42.85 50 14.29 7.15
25 Sorting_algo 343 9 352 73 28 50 70 42 20
26 SwitchTest3 5 11 16 4 50 100 100 50 0
27 StringBuffer1 15 7 22 23 86.66 86.66 100 13.34 13.34
28 StudentGrades 103 8 111 20 30 50 80 50 30
29 Testy 19 3 22 11 50 66.66 83.33 33.33 16.67
30 Weight 10 4 14 5 33.33 33.33 66.66 33.33 33.33
31 Weight_Exp1 25 10 35 33 95.45 95.45 95.45 0 0
32 Weight_Exp2 26 8 34 18 100 100 100 0 0
33 Wildlife1 40 6 46 32 7.14 17.85 53.57 46.43 35.72
34 Wildlife2 50 10 60 59 10 40 50 40 10
35 Zodiac 190 63 253 131 5.95 16.66 27.86 21.91 11.2
36 WBS 20 7 27 18 0 20 30 30 10
37 AssertTest2 42 13 55 40 38.09 66.67 76.19 38.1 9.52

38 HelloWorld 10 5 15 5 100 100 100 0 0
39 IFExample 12 7 19 7 50 100 100 50 0
40 IFSample 24 13 37 5 75 83.33 100 25 16.67

test cases generated by Feedback-Directed Random Tetsing.

RANDOOP is the tool that generates these test cases. Column

4 presents the test cases generated by Java Concolic Unit

Testing Engine (jCUTE). Column 5 shows the total test cases

of RANDOOP and jCUTE. TCs Minimizer accepts these total

test cases and only selects essential test cases according to

MC/DC criterion. Column 6 presents the number of minimized

test cases. Columns 7,8,9 deal with the MC/DC percentages

achieved by RANDOOP, jCUTE, and Java-HCT respectively.

These percentages are defined below:
Definition 5: MC/DC_1%: This MC/DC percentage is com-

puted through RANDOOP and COPECA.
Definition 6: MC/DC_2%: This MC/DC percentage is com-

puted through jCUTE and COPECA.
Definition 7: MC/DC_3%: This MC/DC percentage is com-

puted through RANDOOP, jCUTE and COPECA or Java-

HCT.
Column 10 and 11 deal with the increase in MC/DC. Column

10 is named as Inc_1 and shows the difference between

MC/DC_1% and MC/DC_3% using Eq.2, whereas Column

11 named as Inc_2 shows the difference between MC/DC_2%

and MC/DC_3% using in Eq.3.

Inc_1 = MC/DC_3% - MC/DC_1% (2)

Inc_2 = MC/DC_3% - MC/DC_2% (3)

We have experimented forty Java programs. We computed

the values of Inc_1 and Inc_2 for these programs which are

29.91% and 16.26% (on average) respectively. According to

the observation of our experimental study, Java-HCT achieved

better MC/DC by × 1.62 as compared to RANDOOP and by

× 1.26 as compared to jCUTE.

V. COMPARISON WITH RELATED WORK

Majumdar et al. [2] presented a hybrid concolic testing for

C programs. They have proposed an algorithm that interleaved

random testing with concolic testing to achieve both a deep

and a wide exploration of program state space. They had

implemented their algorithm on top of CUTE tool and applied

it to achieve better branch coverage for two large C based

applications. For the same testing budget, almost they obtained

4× branch coverage and 2× branch coverage of random

testing and concolic testing, respectively. We inspired from

Majumdar et al. [2]’s core idea and proposed a new technique

called Java-Hybrid Concolic Testing, which is implemented

in Java language. Java-HCT is the combination of Feedback-

Directed Random Testing and Java Concolic Testing.

Ganai et al. [12] and Ho et al. [13] proposed a technique

of VLSI design validation where a combination of formal

(symbolic execution or BDD based reachability) and random

simulation engines were used to improve the design coverage

1712 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

for big scale designs. Our proposed approach combines the

Feedback-Directed Random Testing and Java Concolic Testing

for Java programs to obtain better MC/DC.

Pacheco et al. [14], [8] presented a technique that improved

random test generation by incorporating feedback obtained

from executing test cases as they were created. Their proposed

approach produced a test suite consisting of Java unit tests

for the classes to be tested. Their experimental study showed

that, use of feedback-directed random test generation was far

better than systematic and undirected random test generation

in term of coverage and error detection. In our approach, we

used this improved random testing with the combination of

Java concolic testing to obtain high MC/DC.

Sen et al. [9] proposed concolic testing in Java version

called jCUTE and it is available online. jCUTE automatically

selects the input values both symbolically and concretely, si-

multaneously. In our proposed work, we used this jCUTE tool

to form Java-Hybrid Concolic Testing and obtained increased

MC/DC.

Godefroid et al. [15] proposed an improved random testing

technique by providing Directed fashion (Systematic way)

combined with symbolic execution to generate test input

values. In our proposed work, we used feedback-directed

random testing instead of only directed because feedback-

directed provides better code coverage. According to Pacheco

et al. [8] RANDOOP is better in completeness and scalability,

as compare to other approaches like DART. So, we have

chosen feedback-directed technique to use.

Godboley et al. [16] proposed an approach to improve

distributed concolic testing. They have proposed an approach

for code transformation that supported to enhance MC/DC

by generating extra test cases for C programs. Godboley et

al. [17], [18], [19] has also developed transformation tech-

niques for object oriented Java programs. They have also

proposed green computation of testing tools.

VI. CONCLUSION AND FUTURE WORK

To improve existing concolic testing and obtain high Mod-

ified Condition/Decision Coverage (MC/DC), we proposed a

novel technique called Java-Hybrid Concolic Testing (Java-

HCT). This technique is called as hybrid because it is the com-

bination of two testing techniques Feedback-Directed Random

Test and Concolic Testing. We experimented Java-HCT for

forty Java programs and found there is an increase of 29.91%

and 16.26% (on average), when compared to feedback-directed

random testing and concolic testing respectively. We have

improved MC/DC by ×1.62 and by ×1.26 in comparison

to feedback-directed random testing and concolic testing,

respectively.

In our future work, we will extend the proposed work by

plugging with some transformation techniques to obtain better

results.

REFERENCES

[1] Csallner C, and Yannis S. 2004. JCrasher: an automatic robustness

tester for Java, Software: Practice and Experience, Volume(34), Num-
ber(11), 10.1002/spe.602 pages 1025–1050.

[2] Majumdar R, and Sen K, May 2007. “Hybrid concolic testing,” In
proceedings of 29th International Conference on Software Engineering

2007, doi: 10.1109/ICSE.2007.41. ISSN 0270-5257 pages. 416–426.
[3] Bird D.L., and Munoz C.U., 1983.“Automatic generation of random self-

checking test cases,” IBM Systems Journal, vol. 22, no. 3, pages. 229–245.
doi:10.1147/sj.223.0229. 1983.

[4] Gupta N, Mathur A.P., and Soffa M.L., 1998. “Automated test data
generation using an iterative relaxation method,” In Proceedings of the

6th ACM SIGSOFT International Symposium on Foundations of Software

Engineering, New York, NY, USA: ACM, doi: 10.1145/288195.288321.
ISBN 1-58113-108-9 pages. 231–244. [Online]. Available: http://doi.acm.
org/10.1145/288195.288321

[5] Xia S, Vito B.D., and Muñoz C., 2005.“Automated test generation
for engineering applications,” In Proceedings of the 20th IEEE/ACM

International Conference on Automated Software Engineering, New York,
NY, USA: ACM. doi: 10.1145/1101908.1101951. ISBN 1-58113-993-4,
pages. 283–286. [Online]. Available: http://doi.acm.org/10.1145/1101908.
1101951

[6] Xie T., Notkin D., and Marinov D, 2004. “Rostra: a framework for
detecting redundant object-oriented unit tests,” In Proceedings of the
19th International Conference on Automated Software Engineering. doi:
10.1109/ASE.2004.1342737. ISSN 1938-4300, pages. 196–205.

[7] Visser W, Pǎsǎreanu C.S., and Khurshid S.,2004. “Test input generation
with java pathfinder,” In Proceedings of the 2004 ACM SIGSOFT Inter-

national Symposium on Software Testing and Analysis, New York, NY,
USA: ACM, doi: 10.1145/1007512.1007526. ISBN 1-58113-820-2 pages.
97–107. [Online]. Available: http://doi.acm.org/10.1145/1007512.1007526

[8] Pacheco C., Lahiri S.K., Ernst M.D., and Ball T,2007. “Feedback-directed
random test generation,” In 29th International Conference on Software

Engineering. ICSE 2007.. doi: 10.1109/ICSE.2007.37. ISSN 0270-5257,
pages. 75–84.

[9] Sen K., and Agha G,2006. “CUTE and jCUTE: Concolic Unit Testing and
Explicit Path Model-Checking Tools," Computer Aided Verification: 18th

International Conference, CAV 2006, Seattle, WA, USA. Berlin, Heidelberg:

Springer Berlin Heidelberg, pages. 419–423. ISBN 978-3-540-37411-4.
[Online]. Available: http://dx.doi.org/10.1007/11817963_38

[10] Ammann P, Offutt J, and Huang H, 2003.“Coverage criteria for logical
expressions,” In Proceedings of the 14th International Symposium on

Software Reliability Engineering, ISSRE ’03. Washington, DC, USA: IEEE
Computer Society. ISBN 0-7695-2007-3. pages. 99–108.

[11] Kelly H.J., Dan V.S., John C.J., Leanna R.K., 2001. “A practical tutorial
on modified condition/decision coverage,” Tech. Rep. Nasa.

[12] Ganai M.K., Aziz A., and Kuehlmann A.,1999. “Enhancing simulation
with bdds and atpg,” In Proceedings of the 36th Annual ACM/IEEE Design

Automation Conference. DAC ’99. New York, NY, USA: ACM. doi:
10.1145/309847.309965. ISBN 1-58113-109-7 pages. 385–390. [Online].
Available: http://doi.acm.org/10.1145/309847.309965

[13] Ho P.H., Shiple T., Harer K., Kukula J., Damiano R., Bertacco V,
Taylor J, and Long J, 2000. “Smart simulation using collaborative formal
and simulation engines,” In Int. Conf. on Computer Aided Design (ICCAD),
pages. 120–126.

[14] Pacheco C., Lahiri S.K., Ernst M.D., and Ball T, 2006. “Feedback-
directed random test generation,” In Technical Report MSR-TR-2006-125,

Microsoft Research,, pages. 75–84.
[15] Godefroid P., Klarlund N., and Sen K., 2005. “Dart: Directed automated

random testing,” In Proceedings of the 2005 ACM SIGPLAN Conference

on Programming Language Design and Implementation. PLDI ’05. New
York, NY, USA: ACM, 2005. doi:10.1145/1065010.1065036. ISBN 1-
59593-056-6 pp. 213–223. [Online]. Available: http://doi.acm.org/10.1145/
1065010.1065036

[16] Godboley S., Mohapatra D.P., Das A., and Mall R., 2016.“An Improved
Distributed Concolic Testing", Software: Practices and Experiences, DOI:
10.1002/spe.2405

[17] Godboley S., Dutta A., Mohapatra D.P., Das A. and Mall R., 2016.“Mak-
ing a concolic tester achieve increased MC/DC.,” Innovations in Systems
and Software Engineering, pp.1-14, DOI:10.1007/s11334-016-0284-8 .

[18] Godboley S., Panda S., Dutta A. and Mohapatra D.P., 2016.“An Auto-
mated Analysis of the Branch Coverage and Energy Consumption Using
Concolic Testing.,” Arabian Journal for Science and Engineering, pp.1-19,
DOI:10.1007/s13369-016-2284-2.

[19] Godboley S., Dutta A., Besra B. and Mohapatra D.P., 2015, October.
“Green-JEXJ: A new tool to measure energy consumption of improved
concolic testing.,” In proceedings of Green Computing and Internet of

Things (ICGCIoT),IEEE, pp. 36-41,DOI: 10.1109/ICGCIoT.2015.7380424.

SANGHARATNA GODBOLEY ET AL.: JAVA-HCT: AN APPROACH TO INCREASE MC/DC USING HYBRID CONCOLIC TESTING FOR JAVA PROGRAMS 1713

