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Abstract—The paper addresses the problem of uncertainty
in the greenhouse gas emission inventories, by proposing an
alternative method for assessing uncertainty and its evolution
over time. To estimate the inventory accuracy, the revisions
published in consecutive years are used. These revisions are
considered nonstationary time series. We describe evolution by
time-dependent models, used to analyze data from the National
Inventory Reports published annually up to 2015, for selected
EU countries. We present a parametric model and a procedure
for estimating parameters, along with the results obtained.

I. INTRODUCTION

A
CCORDING to the United Nations Framework Con-

vention on Climate Change (UNFCCC) and its Kyoto

Protocol, each of the cosignatories is obliged to provide

annual data on greenhouse gas (GHG) inventory. These data

are given in the National Inventory Reports (NIR), prepared

either according to the 2000 IPCC report ’Good Practice

Guidance and Uncertainty Management in National Green-

house Inventories’[1], or later to the 2006 ’IPCC Guidelines

for National Greenhouse Gas Inventories’ [2], describing in

detail how uncertainty analysis should be conducted. Each NIR

report contains data from a given year and revisions of past

data. Data for previous years are revised given more precise

information. This means that, revisions made in different years

use different knowledge, and hence uncertainties in different

revisions change.

In general, uncertainty associated with GHG inventory can

be classified as scientific uncertainty (when the the actual

emission and/or removal process is insufficiently understood)

and estimation uncertainty (mostly structural, connected with

activity data, emission factors, and other parameters), present

whether GHG emissions are quantified. Three tier’s are de-

scribed for categorizing both emissions factors and activity

data. A tier represents a level of methodological complexity.

Tier 1 is the basic method, while Tier’s 2 and 3 are each more

demanding in terms of complexity and data requirements. Two

of these approaches i.e. the error propagation (Tier 1) and the

Monte Carlo approach (Tier 2) are recommended to assess

uncertainty. The first one is much easier to calculate, while

the second is considered more accurate. Since the use of the

given approach is only suggested, most countries use only

one of these approaches, or change the method of uncertainty

assessment in consecutive reports, which makes it difficult to

compare the estimates and its changes over time. In particular,

it may happen that the alleged reduction in uncertainty is in

fact connected with the different method of its assessment.

The goal of this paper is to present an alternative, data-driven

method of uncertainty assessment.

The problem of uncertainty analysis from the report data is

not new, and has been dealt with for several years. Various

databases were analyzed, including the IPCC data from the

National Inventory Reports, but in most papers, all revision

data were studied independently, e.g. in [3]. The question of

how to analyze temporal evolution of the accuracy of emission

inventories from several revisions was first formulated in [5],

where uncertainty estimates were calculated for Austria using

an algebraic approach, based on available data from different

revisions year by year. Some conclusions from the results

obtained there, were also presented in [4]. A similar year by

year approach was presented in [8], using the Austrian NIR

data as well.

This paper presents a different, revisions oriented analysis.

We are interested in all consecutive yearly revisions, and

differences between them, rather than in examining each of

them separately. Intuitively this means that, by analyzing

consecutive revisions and therefore errors and inaccuracies

associated with them, which are different for each revision,

we want to capture the structure of the uncertainty and

its evolution over time. The method proposed combines a

nonparametric regression technique using smoothing splines,

as presented in [3], with a parametric model. This two-step

semiparametric approach enables prior preparation of the data

to which the model is fitted. Using the spline, is aimed at

smoothing the data, i.e. at de-trending of the time series

reported, and this in turn results in much better modelling.
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This paper continues considerations outlined in [6] and

carried out in [7], where we discussed some parametric model,

applied to the NIR data published up to the year 2007. With

the analysis carried out on longer samples, i.e. based on the

NIR data published up to 2015, we managed to significantly

improve the model, and get more representative results.

In Section II we present the idea of interpreting the data

and propose a parametric model, that describes the uncertainty

structure. Section III contains the results of fitting the model

to the data on CO2 emission from the National Inventory

Reports for selected EU countries, along with the uncertainty

assessment. Conclusions are given in Section IV.

II. DATA AND MODEL

We analyze data from the National Inventory Reports for

selected EU countries. To consider a model, the data must

first be interpreted in a manner which allows the extraction of

uncertainty.

A. Data interpretation

Let En
yj ,i

denote the inventory data for the country i, in the

year n, n = 1, . . . , Nj , revised in the year yj , j = 1, . . . , J ,

where yJ is the last year, when the last revision was made.

The index j enumerates the revisions. For a given country i,

all the inventory data form a table (Table I), in which each row

contains revision data reported in the year yj i.e. a time series

indexed by n, and each column contains emission inventory

for the year n, recalculated in consecutive yearly revisions

up to n, (a time series indexed by yj). The analysis will be

conducted for rows of that table, i.e. investigating emission

inventories from consecutive yearly revisions.

For a given country i, we model any revision data to be

composed of the ’real’ emission, which we call the ‘deter-

ministic’ fraction and the ’stochastic’ fraction, related to our

lack of knowledge and imprecision of observation of the real

emission. We assume that the uncertainty is related to the

stochastic part of the model.

For the most recently revised data, there is

En
yJ ,i

= Dn
yJ ,i

+ Sn
yJ ,i

, Sn
yJ ,i

∼ N (0, σyJ ,i),

where E stands for the emission inventory, D for its deter-

ministic fraction, S for the stochastic fraction, and n is the

year, for which the revised data were recalculated.

Now, the data revised in the year yj , where j = 1, . . . , J−1
are modeled as having the same deterministic fraction. Thus

they follow the same type of decomposition

En
yj ,i

= Dn
yJ ,i

+ Sn
yj ,i

, with Sn
yj,i

∼ N
(
0, σn

yj,i

)
, (1)

where the standard deviations σn
yj ,i

are of the form

σn
yj ,i

=
√

σ2
yJ ,i

+ αj,i (yJ − yj)2, αj,i > 0. (2)

Parameters αj,i, associated with the stochastic fraction

Sn
yj ,i

, can be estimated from the data together with σ2
yJ ,i

.

They describe a shift of the precision level and depend on

the difference between the revision year yj , j = 1, . . . , J − 1
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and the most recent revision year yJ , due to the learning. The

deterministic fraction Dn
yJ ,i

is found, using smoothing spline,

as presented in [3]. Applying this nonparametric approach

to the most recently revised data En
yJ ,i

, gives not only the

estimate of the deterministic fraction, but also an estimate of

the variance σ2
yJ ,i

. Considering dependence of the obtained

results on spline determination, all results given in the paper

are conditioned on the splines, though it is not additionally

stressed in the sequel.

B. Model and Parameters

Given the smoothing spline SpyJ ,i
, we consider it the

estimate of Dn
yJ ,i

and use it, along with the emission data

En
yj ,i

, for j = 1, . . . , J − 1 to estimate uncertainty described

by Sn
yJ ,i

. The method is based on analysis of the differences

between the revisions En
yj ,i

, and the smoothing spline SpyJ ,i

vnyj ,i
= En

yj ,i
− SpyJ ,i

,

where j = 1, . . . , J − 1, n = 1, . . . , Nj . Following (1) – (2),

we assume that, for a fixed country i

vnyj
∼ N

(
0, σn

yj

)
, (3)

where differences vnyj
are independent and

σn
yj

=
√
σ2
yJ

+ αj(yJ − yj)2 (4)

Parameters αj in (4) can be obtained as Maximum Likeli-

hood estimators. Due to (3) the log-likelihood function, with

parameter σn
yj

is of the form

lnL(σn
yj
) = −Nj ln

√
2π− 1

2
Nj ln(σ

n
yj
)− 1

2(σn
yj
)2

∑
(vnyj

)2

Substituting (4), gives

lnL(αj) =−Nj ln
√
2π − 1

2
Nj ln((σ

n
yJ
)2 + αj(yJ − yj)

2)

−
∑

(vnyj
)2

2((σn
yJ
)2 + αj(yJ − yj)2)

Then

d lnL(αj)

dαj

=− Nj(yJ − yj)
2

2((σn
yJ
)2 + αj(yJ − yj)2)

+
1

2

∑
(vnyj

)2
(yJ − yj)

2

((σn
yJ
)2 + αj(yJ − yj)2)2
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Applying the necessary condition of extreme, we get the ML

estimator of αj , j = 1, . . . , J − 1

α̂j =
1

(yJ − yj)2

(
1

NJ

∑
(vnyj

)2 − (σn
yJ
)2
)
. (5)

Having obtained (5), we take

αj = β(yJ − yj)
γ , where αj > 0 (6)

which leads us to the following model

vnyj
∼ N

(
0, σn

yj

)
, where σn

yj
=

√
σ2
yJ

+ β(yJ − yj)γ+2.

(7)

Parameters β and γ in (7) are to be estimated by the Least

Squares method, fitting (6) to the sequence α̂j . We put

α̃j = ln α̂j , and β̃ = lnβ, which brings (6) to the following

regression model

α̃j = β̃ + γ ln(yJ − yj). (8)

Parameters σn
yj

, j = 1, . . . , J − 1 are now obtained from (7).

Dividing σn
yj

by the smoothing spline SpyJ
gives the relative

uncertainty estimates of the form

ûj =
σn
yj

SpyJ

, j = 1, . . . , J − 1. (9)

The procedure for a fixed country i, consists of two steps.

Procedure 2.1: Assessing uncertainty.

Step 1 For the most recently revised data En
yJ

• find the smoothing spline SpyJ

• estimate the variance σ2
yJ

• calculate the differences

vnyj
= En

yj
− SpyJ

, j = 1, . . . , J − 1.

Step 2 To fit the parameters in model (3) – (4)

• find α̂j , j = 1, . . . , J − 1, using (5)

• estimate β̃ and γ in regression model (8)

• find σn
yj

, j = 1, . . . , J − 1, due to (7)

• find relative uncertainty estimates ûj , j = 1, . . . , J − 1,

using (9).

III. UNCERTAINTY ASSESSMENT

We analyze UNFCCC data on CO2 emission (in Gg)

without land-use, land-use change and forestry (LULUCF),

published yearly in the National Inventory Reports up to the

year 2015 [9]. Calculation of emission estimates based on the

measurements collected takes approximately two years, so the

data reported in 2015 originate from the year 2013.

To illustrate various features of uncertainty structure we

consider the data for six EU countries: Austria, Belgium,

UK, Denmark, Ireland, and Finland. Each of them started to

report data on GHG emission before the agreed year 2003

(on yJ=2001), conducting a test phase and providing data on

emission since 1999 (Austria, UK, Ireland, and Finland) and

since 2000 (Belgium and Denmark). This means we analyze

the data on CO2 emission excluding LULUCF for the year

yJ = 2013, and all the earlier revisions, down to 1999 or

2000.

The smoothing splines SpyJ
, built for the most recently

revised data, i.e. a time series En
yJ

, where n = 1990, . . . , 2013,

for each of the countries considered are depicted in Fig. 1.

They clearly evidence sudden year-to-year changes in the

inventories that are interpreted as results of errors with respect

to the curves obtained by smoothing.

One can notice that, the spline fit is not the same for all

countries. It seems to be much better for countries whose

emissions are depicted in figures in the left-hand column of

Fig. 1. Since the purpose of the spline was to extract data on

the ’real’ emission, this can be explained by different levels of

uncertainty, reported by these countries for the year 2013. Total

uncertainty, reported for 2013 in the Austrian NIR was equal

4.27%, the one for the UK 4%, and 3.45% for Ireland. In the

case of Belgium and Denmark the spline obtained significantly

smooths the data reported, which can be interpreted in terms of

higher uncertainty – the total uncertainty reported for 2013 was

equal 5.53% and 5.2% for Belgium and Denmark respectively.

Fig. 1(d) can be considered a good example illustrating the

problem of uncertainty assessment. Finnish total uncertainty

reported for 2013 is the highest of them, estimated for 6%,

although the fit may suggest much lower value. This is

connected with the fact, that the uncertainty assessment in

the Finnish NIR was obtained using Tier 2 (Monte Carlo

approach), while the remaining ones are calculated using Tier

1. Just like in this case, the results obtained through different

approaches are often difficult to compare.

Fig. 1 demonstrates also some similarities in the monotonic

behaviour of emissions for the countries analyzed. It’s easy

to see a decreasing trend starting from 2005 (it is visible

even in the case of oscillating Belgian and Danish emissions,

heavily smoothed by the spline). More interesting, however,

is a significant drop in emissions in 2009, associated with the

economic crisis.

The estimates for variances σ2
yJ

, where yJ = 2013,

calculated when building the smoothing spline are equal

2715127.62, 8091277.78, 121449538.0, 15182144.8,

650202.035, and 5940914.85 for Austria, Belgium, UK,

Denmark, Ireland, and Finland respectively.

Having built the smoothing spline for yJ = 2013, we

subtracted it from all the earlier revisions En
yj

, where yj =
1999, . . . , 2012 in the case of Austria, the UK, Ireland, and

Finland, and yj = 2000, . . . , 2012 for Belgium and Denmark.

In each case, the revision data represented a time series En
yj

,

for n = 1990, . . . , yj .

The assumptions in model (7) were checked, by performing

statistical tests. The differences obtained, were tested for

normality using the Shapiro-Wilk test (considered the most

reliable normality test). Since in some cases we had to

deal with small samples, the results were confirmed by the

Lilliefors test (modification of the Kolmogorov-Smirnov test

with unknown parameters). Moreover the differences were

tested for significance of true population mean, using two-

sided t-test, and taking significance level 0.05.
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Fig. 1. Smoothing spline built for the most recent NIR data (yJ = 2013) on CO2 emission [Gg CO2], published in 2015

.

In most cases, there was no statistical evidence against the

null hypothesis on normality of the data analyzed, and hence

the alternative hypothesis was clearly rejected. The test failed

in the case of the most initial revisions, in particular those

provided in the test phase, i.e. concerning emission data on

the years 1999 – 2000, which can partly be explained by

the fact that the method of calculating emission revisions

was being developed at that time. The t-tests performed on

these differences, for which the normality assumption was met,

showed that in most cases true population mean, is statistically

insignificant and can be assumed zero. This means that, the

assumptions taken in the model considered, were reasonable.

Following procedure 2.1, we found coefficients αj , as

ML estimators (5) and fitted parameters in regression model

(8). The model fitted has been verified. All the parameters

estimated turned out to be significant – the null hypotheses

considering them insignificant were rejected, since p-values in

the case of β̃ ranged from exp(−7) to exp(−13) and for γ

from exp(−4) to exp(−8), the same as p-values in the F -test.

Coefficient of determination R2, indicating the goodness of

fit of the model considered, was equal 84% for Austria, 77%
for Belgium, 86% for the UK, 94% for Denmark, 81% for

Ireland, and 97% for Finland.

The estimates of γ + 2 and β̃ are given in Table II, along
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with the results of model (8) validation.

The main result of the paper – relative uncertainties uj ,

calculated due to (9) based on σn
yj

, j = 1, . . . , J − 1 in (7)

for each of the six countries considered, are given in Table III

and depicted in Fig. 3.

The temporal evolution of standard deviations σn
yj

, j =
1, . . . , J − 1 in (7), for all countries analyzed is shown in

Fig. 2. It can be observed that, they are decreasing rather

slowly in time. In turn, the corresponding relative uncertainty

estimates ûj , j = 1, . . . , J − 1, presented in Fig. 3, for some

countries, like Austria, Uk, and Ireland decrease, some others,

like those for Denmark or Belgium increase slowly until 2004

– 2005. An exception is Finland, for which nonmonotonic and

slightly oscillating values of uj are shown. However, it can be

observed that the uncertatinty estimates for all of the countries

analyzed in the paper grow quite rapidly in later years (in

particular those for Denmark and Ireland). This is connected

with noticeable decrease of emissions for all countries in the

years 2005 – 2012, much quicker than the slow decrease of

standard deviations σn
yj

. Note that the values of σn
yj

estimated

for the UK, are much higher than for other countries, due to

much higher emissions. This did not prevent us, however, in

getting a good uncertainty assessment, also for that country.

It is worth stressing that, the uncertainty estimates obtained

due to (9) agree quite well with the official uncertainty assess-

ments provided in the National Inventory Reports (see Fig.4).

Uncertainty assessments have become part of the 2000 IPCC

Good Practice Guidance [1]. Next to the emission data, parties

are expected to provide assessment of total uncertainty level of

reported emission and trend uncertainty, using Tier 1 analysis

(error propagation), along with the uncertainty assessment for

each greenhouse gas, and each of the key IPCC categories. It

is also suggested to give the results at the Tier 2 level (Monte

Carlo simulation), if available. The advantage of using Tier 2

methodology is that uncertainties are taken into account and

the ranking shows where uncertainties can be reduced. In the

2006 IPCC guidelines [2] it is suggested that, good practice

reporting should include analysis of both Tier 1 and Tier 2.

2000 2004 2008 2012

0
1
0
0
0
0

year_j

s
ig

m
a
_
j.

Austria
Belgium
UK
Denmark
Ireland
Finland

Fig. 2. Estimates of standard deviations σn
yj

in model (7), for Austria,

Belgium, UK, Denmark, Ireland, and Finland.

Since applying given approach is only suggested, most

countries use only one of them, i.e. Tier 1, which is easier

to calculate, although considered to be less accurate. Tier 2

approach is used by Austria (starting with 2005), for Finland

(for the years 2001-2005 Tier 1 analysis was not conducted,

the uncertainty assessments published in the National Inven-

tory Reports was based on Tier 2), and the UK (2003), while

Belgium provides the uncertainty assessments obtained using

Monte Carlo approach only for Flanders.

We compared the resulting uncertainty estimates ûj , with

the reported Tier 1 trend uncertainty, and the uncertainty of

CO2 (Fig. 4). In the case of Finland, the trend uncertainty

reported for 2001-2005 and 2011-2012 was calculated using

Tier 2 approach, therefore in Fig. 4 both methods are consid-

ered. For the convenience of the reader, we set the same range

on the vertical axis for all figures in Fig. 4, which allows for

better comparison of the estimated uncertainties.

It can be seen that, the proposed uncertainty estimates

correspond to those reported in the National Inventory Reports.

In the case of Austria and the UK, they almost coincide with

the official CO2 uncertainty assessments, but after 2006, you

may notice a slight difference in both ratings – the relative

uncertainties uj are then slightly higher than the reported

ones. For Belgium and Denmark the values of uj are pretty

close to the uncertainty assessments for CO2 and show similar

monotonic behaviour. The estimates obtained for Ireland and

Finland agree rather with the CO2 uncertainty assessment,

however the general monotonic behaviour is comparable with

the trend uncertainty reported.

Assessments of trend uncertainty, reported since 2003 and

2004, are somewhat higher than the determined values of uj ,

which may be partly explained by the fact that, they relate to

total GHG emission.

The results obtained using the method proposed can there-

fore be considered independent confirmation of the official

uncertainty estimates calculated according to [1] and [2].
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0
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Finland

Fig. 3. Uncertainty assessment by means of ûj , for Austria, Belgium, UK,
Denmark, Ireland, and Finland.
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TABLE II
ESTIMATES OF γ + 2 AND β̃ IN (8).

Model Austria Belgium UK Denmark Ireland Finland
γ + 2 0.60 0.91 0.59 0.62 0.48 1.02

H0 : γ = 0

against
H1 : γ 6= 0

p-value
8.48e− 05 7.35e− 05 6.33e− 07 4.78e− 08 7.75e− 05 4.93e− 11

reject H0; γ significant

β̃ 7.63 7.50 8.08 8.40 6.74 7.67

H0 : β̃ = 0

against

H1 : β̃ 6= 0

p-value
1.53e− 09 1.60e− 10 0.00078 1.60e− 13 2.24e− 08 < 2e− 16

reject H0; β̃ significant
F -test 8.48e− 05 7.35e− 05 0.00078 4.78e− 08 7.747e− 05 4.926e− 11

R2 0.843 0.773 0.856 0.933 0.814 0.968

Fig. 4. Uncertainty assessment by means of relative values ûj compared with the NIR uncertainty reported.
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TABLE III
UNCERTAINTY ESTIMATES.

yj 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
Austria 0.0249 0.0247 0.0237 0.0225 0.0215 0.0209 0.0209 0.0214 0.0221 0.0228 0.0232 0.0234 0.0235 0.0239

Belgium - 0.0224 0.0224 0.0225 0.0226 0.0228 0.0231 0.0234 0.0239 0.0244 0.0250 0.0257 0.0265 0.0275
UK 0.0197 0.0197 0.0196 0.0195 0.0195 0.0194 0.0195 0.0198 0.0202 0.0208 0.0215 0.0222 0.0228 0.0232

Denmark - 0.0317 0.0324 0.0329 0.0333 0.0336 0.0339 0.0344 0.0351 0.0360 0.0373 0.0390 0.0411 0.0436
Ireland 0.0188 0.0179 0.0175 0.0174 0.0175 0.0173 0.0171 0.0169 0.0170 0.0175 0.0186 0.0197 0.0208 0.0215
Finland 0.0420 0.0421 0.0398 0.0368 0.0340 0.0363 0.0407 0.0369 0.0366 0.0417 0.0428 0.0395 0.0423 0.0477

IV. CONCLUSIONS

The paper deals with estimating uncertainty of the GHG

inventory prepared by the countries within the Kyoto Protocol

from the reported data. As opposed to conventional way

of calculation of inventory error variance by processing the

estimates of the activity and emission coefficients of all atom

emission sources, recommended in the guidelines, the method

presented uses solely official inventory data, submitted by

parties to IPCC, according to common inventory protocol. The

uncertainty estimates are obtained under very mild assump-

tions on smoothness of consecutive in time emission values for

a given party. A simple model of uncertainty evolution in time

is assumed. The statistical methods are used to estimate model

parameters and then to calculate the uncertainty estimates.

Hence, the results are obtained regardless of estimates given

by parties and confirm independently the values calculated

according to the methods recommended by IPCC.
The method gives quite smooth temporary curves for un-

certainty estimates evolution. This effect can be induced by

a model structure which was designed to catch the main

directions of uncertainty evolution rather than very accurate

estimation of local changes. An advantage of such model

is, that the estimates obtained from our statistical estimation

resemble the uncertainty estimates reported by countries as to

the similar smoothness of both kinds of curves. They are also

close in values to the estimates reported by countries.
The method presented is general enough to be applied to

inventory data provided by other countries. Being a statistical

method, its accuracy depends a lot on the number of available

data points. The six countries analyzed in this paper were

chosen due to their relatively long inventory sequences. It is

intended to extend the calculation for other countries. Studying

common properties of these models hopefully enables obtain-

ing reliable results also for countries with shorter reported

samples.
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