
Abstract—Computer-aided  schizophrenia  diagnosis  is  a
difficult task that has been developing for last decades. Since
traditional classifiers have not reached sufficient sensitivity and
specificity, another possible way is combining the classifiers in
ensembles.  In  this  paper,  we  take  advantage  of  random
subspace  ensemble  method  and  combine  it  with  multi-layer
perceptron (MLP) and support  vector machines (SVM). Our
experiment  employs voxel-based morphometry  to extract  the
grey  matter  densities  from  52  images  of  first-episode
schizophrenia patients and 52 healthy controls. MLP and SVM
are adapted on random feature vectors taken from predefined
feature pool  and the classification results  are based on their
voting. Random feature ensemble method improved prediction
of schizophrenia when short input feature vector (100 features)
was  used,  however  the  performance  was  comparable  with
single classifiers based on bigger input feature vector (1000 and
10000 features).

I. INTRODUCTION

HIZOPHRENIA  (SZ)  is  a  severe  and  chronic

neurodevelopmental  disorder  with  unknown  etiology.

Patient’s response  to  the  treatment  is  uncertain  and  early

diagnosis could increase the probability of remission. Since

nowadays the diagnostics is based on interview, self-report

and psychiatrist’s observation, there are efforts to develop a

diagnostic tool that could support establishing diagnosis of

the first episode of schizophrenia in a more objective way.

S

Involvement  of  modern  imaging  methods  in  the  last

decades has opened up new possibilities in brain research.

These  methods  include  for  instance,  magnetic  resonance

imaging (MRI), computed tomography or positron emission

tomography. Especially MRI techniques offer good contrast

and  spatial  resolution.  Thus,  morphological  abnormalities

and relations between brain structures and functions can be

studied with the use of imaging data. Since the differences

between schizophrenia  patients  and  healthy controls  (HC)

have  been  already  found  with  the  use  of  manual

segmentation  of  region  of  interests  [1]  or  automated

morphometry  methods  such  as  voxel-based  morphometry

[2] or deformation-based morphometry [3], many scientists

have  been  recently  trying  to  create  computer-aided

diagnostic tools based on neuroimaging data. The outcomes

of  such  tools  have  not  reached  sufficient  sensitivity  and

specificity  for  implementation  into  the  psychiatric  clinical

practice  yet,  and  hence  the  demand  still  persists.  The

application  of  classification  methods  with  self-adapting

strategies known as machine learning is a challenging task

in the schizophrenia research.

Artificial  neural  network (ANN) is a model inspired by

how the brain works. Since the backpropagation algorithm

[4]  was  invented  as  a  technique  for  learning  ANNs,  they

have  been  used  widely  in  many  applications  and  have

achieved  success  at  least  in  two  areas  of  brain  image

processing: segmentation [5], [6] and classification [7]–[11].

Those  results have shown that  ANNs deserve attention of

neuroimaging  community  investigating  how  to  recognize

mental diseases in imaging data.

Several  authors  have  already  tried  to  classify

schizophrenia  based  on  diffusion  tensor  data  [7]  using

several  types  of  neural  networks:  backpropagation  neural

networks,  radial  basis  function  networks,  learning  vector

quantization  neural  networks  and  probabilistic  neural

networks.  Other  studies  [8],  [12]  used  backpropagation

neural  network  on functional  magnetic resonance imaging

(fMRI)  data or resting-state fMRI.  Other papers discussed

the  use  of  ANN  for  classification  of  other  brain  diseases

such as Alzheimer’s disease [9], [10] or brain cancer [11] –

based on structural MRI data.

The power of such single models can be further improved

by the means of ensemble learning. This approach employs

set of classifiers to determine the object’s class by voting. To

ensure a necessary assumption, which is the disparity among

the  classifiers,  variability  in  the  training  process  must  be

somehow acquired. Many methods have been invented for

this  purpose,  such  as  random  subspace  ensemble  [13],

random forests [14], bagging [15], boosting (e.g. AdaBoost

[16]),  rotation  forests  [17]  and  others.  The  first  one  is

explored in this paper in combination with ANNs. Several

ensemble methods were applied to investigate neuroimaging

problems.  For  instance,  Yang  et  al.  [18]  classified

schizophrenia using ensembles of support  vector machines

(SVM) trained by modified AdaBoost algorithm that besides

boosting performed also simultaneous feature selection from
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fMRI  and  single  nucleotide  polymorphism  data.  They

reached  an  overall  accuracy  of  87% when  both  data  sets

were combined. Janousova et al. [19] based their ensemble

for  schizophrenia  prediction  on  different  image  features

extracted  from  MRI  data  (MR  intensities,  grey  matter

densities and local deformations) and on three various types

of classifiers, and achieved the accuracy of 81.6%. Lebedev

et al. [20] used random forests for Alzheimer’s disease (AD)

detection and achieved overall accuracy of 91%. Liu et al.

[21] proposed local patch-based subspace ensemble method

combined with a classifier based on sparse representation of

data  and  improved  the  performance  of  classification

performance of AD and mild cognitive impairment up to 3%

compared to the use of a single classifier.

To the best of our knowledge, this is the first time that

random  subspace  ensemble  ANNs  are  used  for

schizophrenia  classification  based  on  the  structural  MRI

data. The paper is organized as follows: Section II outlines

the  basics  of  ANNs  and  random subspace  ensemble.  The

experiment and results of classification are summarized in

section III. Section IV discuss the results and concludes the

paper.

II.METHODS

A. Dataset and Image Processing

We used the same dataset as in [22]. It consisted of MRI

data  of  52  schizophrenia  patients  and  52  age-  and  sex-

matched (only men) healthy control subjects without family

history or personal history of axis I psychiatric conditions.

Patients’ and healthy controls’ median age was 22.9 years

(range 17-40 years) and 23.0 years (range 18.2-37.8 years)

respectively. Images of all subjects were acquired on 1.5 T

magnetic resonance imaging machine Siemens Symphony at

University  Hospital  Brno,  using  a  3-D  acquisition  with

IR/GR sequence, TR 1700 ms, TE 3.93 ms, TI 1100 ms, flip

angle 15°,  160 slices,  voxel size 1.17 × 0.48 × 0.48 mm,

FOV 246 × 246 mm, and matrix size 512 × 512 voxels .

Gray  matter  tissue  segments  were  obtained  from  all

images after a correction of bias-field inhomogeneity, spatial

normalization,  segmentation,  modulation  and  Gaussian

smoothing.  All  the  steps  followed  the  pipeline  of  the

optimized  voxel-based  morphometry  [23].  The  last  step  -

smoothing  the  gray  matter  segments  with  an  isotropic

Gaussian kernel - spreads the information to the neighboring

voxels  and  compensates  the  inexact  nature  of  the  spatial

normalization  step  [24].  Furthermore  it  ensures  more

normally  distributed  data  for  further  parametric  statistical

analyses  used  for  feature  selection  [25].  After  this  image

preprocessing,  a binary mask of a brain normalized to the

stereotactic space was used to erase the voxels representing

extracerebral tissues.

B. Feature Pool Preparation

Before applying the classifiers, it was necessary to select

only  those  features  -  gray  matter  density  voxels  -  which

represented the information useful to discriminate between

the  two  classes,  and  conversely  to  exclude  those  voxels

without any helpful information, and thus to improve signal-

to-noise ratio and create more accurate classifier. The feature

selection step is also important to tackle the problem of the

curse  of  dimensionality  –  well-known  in  neuroimaging

community [26].

Voxel-wise  two-sample  t-tests  were  the  instrument  for

feature  selection.  This  method  selected  only  those  voxels

which showed significant differences in gray matter density

between the groups. Such a very naïve approach might be

less prone to overfitting than selection the features with the

highest discrimination power derived from correlation with

the classification outcome. In  addition, it is important that

the  whole  volume  of  gray  matter  was  explored  with  no

arbitrarily predefined regions of interests, as morphological

abnormalities in schizophrenics’ brains have been uncovered

with  automated  brain  morphometry  methods  in  many

different brain regions [2].

C. Multi-layer Perceptron

Multi-layer perceptron (MLP) is the most traditional type

of  ANN.  It  maps  relations  between  inputs  and  desired

outputs.  MLP consists  of  three  or  more layers  formed by

neurons - basic computational units - and are adapted in a

supervised  learning  manner  using  the  backpropagation

algorithm. The information is passed through the layers in

input-output direction. The equation of a neuron is:

y= ϕ (w
0
+∑

i=1

n

wi x i) (1)

where  y  is the output,  wi  are weights,  x
i  are inputs,

n  is  the  number  of  neuron  inputs,  ϕ  is  the  activation

function –  hyperbolic tangent for hidden layers  and linear

functions in the output layer.

The output layer comprises two neurons; each represents

one  class,  so  the  subject  is  classified  according  to  the

comparison of their values after the excitation. Furthermore,

the softmax function is applied on these two neurons:

y
i
= e

ξ
i

∑
j=1

n

e
ξ

j

, (2)

where  n  is the number of outputs,  ξi  and  ξ j  are net

activations  of  i−th  and  j−th  output  neurons.  This

function ensures that the outputs are non-negative and their

sum  is  equal  to  1.  Such  results  can  be  interpreted  as

posterior probabilities [27].

In this project, the MLPs are trained by minimization of

cross-entropy  using  the  scaled  conjugate  gradient

backpropagation algorithm that has been found to be fast in

preliminary  experimentation.  Since  neural  networks  have

many parameters  to  be  predefined  -  both  for  architecture

creation and for adaption - it is difficult to set them to the

optimal  configuration.  We  kept  the  implicit  learning

parameters  i.e.  learning  rate  0.01,  maximal  number  of

epochs  1000,  minimum  gradient  10-6 and  regarding

architecture and we used two-layer network with 10 hidden

neurons,  which  achieved  a  good  performance  during

experimentation.  Since  the  weights  were  initialized
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randomly, adaptation of the network was repeated 11 times

and the classification  of  the testing subject  was  based  on

voting.

The  Neural  Network  Toolbox  for  Matlab  R2014b  (The

MathWorks,  Inc.)  was  used  here  for  all  the  described

experiments.

D. Random Subspace Ensemble Principle

The datasets  in  neuropsychiatric  research  usually suffer

from small sample size while their dimensionality is huge -

often hundreds of thousands or even millions of voxels are

used to describe each of subjects in the dataset. Hence, it is a

hardly feasible task to avoid overfitting on a validation set

by  termination  of  neural  network  adaptation.  Ensemble

methods  help  to  tackle  overfitting  and  to  improve  the

generalization ability.

In random subspace ensemble method, the variability is

reached by a random selection of features from the set of all

preselected  features  –  a  feature  pool  (FP).  Each  single

classifier is adapted on one subset of feature which is less

dimensional than the original feature space.

E. Validation and Evaluation

In order to report unbiased results, we used leave-one-out

cross-validation strategy:  one subject  was left  as  a testing

subject and the rest subjects composed a training set. This

process was repeated n times, where n was the sample size.

Since  even  only  one  testing  subject  withdrawn  from  the

feature selection might have influenced the result, especially

when the sample size was small, it was necessary to validate

both features selection and classification.

For  evaluation  of  the  classification  results,  we  used

overall  accuracy,  sensitivity  and  specificity.  The  overall

accuracy refers  what  proportion of  subjects  was classified

correctly, whereas  sensitivity and  specificity  say what  the

ability of  diagnostic  test  is  to reveal  diseased and healthy

person respectively.

III. EXPERIMENT AND RESULTS

The experiment was configured with many parameters –

particularly  size  of  the  feature  pool,  number  of  chosen

features and ensemble size. In order to achieve a reasonable

computation time, we investigated only several  predefined

configurations. First, we defined a size of the feature pool as

the  10000,  20000,  50000  and  100000  most  significant

voxels  based  on  two-sample  t-test  criterion.  This  FP was

used  as  the  bag  from  which  the  features  were  chosen

randomly.

The second parameter was a number of features used for

the adaptation of the classifiers. We trained both MLP and

SVM  classifier  on  the  different  number  of  the  most

significant  features  -  as  shown  in  Fig.  1  -  to  find  the

optimum. The best performance was reached with the use of

MLP on 1000 features  and  with the use of  SVM on 100

features. Adding more features to the models did not reveal

any trend in the classification performance - increasing or

decreasing - so we later experimented with 3 options - 100,

1000 and 10000 - in order  to explore  both small  and  big

dimensionality  of  the  feature  space.  The  MLP  revealed

higher  accuracies  compared  to  the  SVM  in  most

configurations.

The last investigated parameter was the number of voting

classifiers  in  ensemble,  which  was  set  to  31.  This  odd

number ensures that the subject is always assigned to one of

the classes – SZ or HC.

Since outcomes from the whole ensemble were available,

i.e. 31 units, we could use for evaluation any combination of

1,  3,  5  etc.  classifiers  from  this  ensemble.  Hence,  we

computed  performance  measures  on  all,  but  maximally

10000  combinations  in  order  to  gain  nonrandom  and

computationally  accessible  outcomes.  Furthermore,  the

subsets of features  were chosen randomly, all experiments

were  repeated  10  times  and  the  measures  of  the

classification performances were averaged.

Figures 2-5 show the experimental results. In each figure,

the outcomes computed on the different size of the feature

pool are displayed.

Fig.  1 The overall accuracy of the MLP and SVM dependent on the
number of the most significant features selected with voxel-wise two-

sample t-tests.

Fig.  2 Results of ensemble voting based on the feature pool with the
size of 10000 selected features.
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Fig.  3 Results of ensemble voting based on the feature pool with the
size of 20000 selected features.

Fig.  4 Results of ensemble voting based on the feature pool with the
size of 50000 selected features.

Fig.  5 Results of ensemble voting based on the feature pool with the
size of 100000 selected features.

IV. DISCUSSION AND CONCLUSIONS

In  this paper, we explored  the random subset  ensemble

method  for  first-episode  schizophrenia  classification  with

the  use  of  multi-layer  perceptron  and  performed  a

comparison to ensembles of SVM classifiers.

We selected the features with a naïve approach based on

voxel-wise  two-sampled  t-tests.  We  believe  that  this

approach may be less prone to overfitting than other more

complex methods. More  sophisticated  and  often

computationally  more  time-consuming  methods  such  as

sequential  forward/backward  feature  selection  or

multivariate  extraction  methods  are  left  for  our  future

research.

Since the neighboring voxels could have been correlated

due to the smoothing in the image preprocessing phase, we

assumed that higher amount of features in the feature pool

enabled  to  capture  the discriminative information in more

parts of the brain, and therefore improved the classification

performance. This improvement is observable when the Fig.

2 and 4 are compared.

Multi-layer  perceptron was more effective when smaller

feature pool was used. With the use of bigger feature pools,

both classification methods yielded more similar outcomes.

Increasing  the  number  of  voting  classifiers  surprisingly

improved the classification accuracy only in case of small

number  of  input  features.  The  increasing  trend  in  the

accuracy reached a level similar to as the models with more

inputs and the increasing trend did not continue. The SVM

with 100 features adapted on FP with 100000 features was

improved by 6.88% and MLP with the same number of input

features adapted on FP of size 50000 achieved improvement

of  4.33%  when  compared  to  single  variants  of  the

classification methods.

The best outcomes were revealed with the use of MLP on

100000 input features and 29 voting classifiers that have the

highest overall accuracy of 68% (sensitivity 67%, specificity

69%).

Finally,  we  compare  our  results  of  schizophrenia

prediction to other  studies dealing with MLP or ensemble

learning. Jafri and Calhoun [8] achieved 75.6% with MLP

based  on  fMRI  data  (38  SZ  +  31  HC).  Savio  et  al.  [7]

reached 100% on diffusion imaging data containing 20 male

subjects using both neural networks and SVM. Yang et al.

[18] also reached much higher overall accuracy 87% with

SVM classifier  ensemble based  on  AdaBoost,  but  besides

small sample size (20 SZ + 20 HC) they admit the patients

were chronic and under an antipsychotic medication. These

studies  could suffer  from small  sample size,  since models

tend  to  reach  more  variable  outcomes  and  therefore  it  is

easier  to  reach  good  (as  well  as  poor)  classification

performance [28]. Since Janousova et al. [19] exceeded 81%

with  a  similar  number  of  subjects,  we  propose  that  an

involvement  of  other  classifiers  and  various  feature

extraction methods may be helpful in our framework too.

We conclude that the random feature ensemble method in

combination  with  MLP and  SVM improved  prediction  of

schizophrenia from MRI data only in case of short feature

vectors (100 features) – when compared to the use of single

MLP  or  SVM  classifiers.  The  classification  accuracy

achieved with the ensembles was not much different from
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the accuracy of the single classifiers with feature vectors of

higher dimensionality (1000 and 10000 features).
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