

฀
Abstract—An important phase of a data-oriented software

system reengineering is a database reengineering process and,
in particular, its subprocess – a database reverse engineering
process. In this paper we present one of the model-to-model
transformations from a chain of transformations aimed at
transformation of a generic relational database schema into a
form type data model. The transformation is a step of the data
structure conceptualization phase of a model-driven database
reverse engineering process that is implemented in IIS*Studio
development environment.

I. INTRODUCTION
MODEL-DRIVEN (MD) approach to information
system (IS) and software (re)engineering addresses

complexity through abstraction. A complex system consists
of several interrelated models organized through different
levels of abstraction and platform specificity. Through a
forward engineering process models need to be refined and
integrated and used to produce code and therefore they
would undergo a series of transformations. Each
transformation adds levels of specificity and detail. A chain
of model-to-model (M2M) transformations is completed
starting from an initial model at the highest level of
abstraction (Platform Independent Model, PIM), through the
less abstract models, with different levels of platform
specificity (Platform Specific Models, PSMs), and resulting
in an executable program code that represents a model at the
lowest level of abstraction (fully PSM). Conversely, in a
reverse engineering process, the abstraction level of models
and degree of platform independency are increasing
throughout the chain of transformations.

Through a number of research projects on MD intelligent
systems for IS development, maintenance and evolution, we
have developed the IIS*Studio development environment. It
is aimed to provide the IS design, generating executable
application prototypes and IS reverse engineering. Our
approach is mainly based on the MD information system and
software engineering [1] and domain specific language
(DSL) paradigms ([2], [3]). In [4] we discuss the importance
of meta-modeling in the context of database reverse

฀ Research presented in this paper was supported by Ministry of

Education, Science and Technological Development of Republic of Serbia,
Grant III-44010, Title: Intelligent Systems for Software Product
Development and Business Support based on Models.

engineering and review different database meta-models
(MM) that are used in the database reengineering process
applied in IIS*Studio. In [5] we propose an MD approach to
data structure conceptualization phase of database reverse
engineering process that is conducted through a chain of
M2M transformations. In this paper we present the final step
of the conceptualization phasethe M2M transformation of
a generic relational database schema into a form type model.

The form type concept and the IIS*Studio architecture are
given in Section 2. Classifications of form types and relation
schemes are described in Section 3. The transformation of a
generic relational database schema into a form type data
model is presented in Section 4 and related work is
discussed in Section 5.

II. FORM TYPE CONCEPT
A form type is central IIS*Studio PIM concept, used to

model the structure and constraints of various business
forms that are broadly used in organizations to conduct daily
operations and to communicate with their affiliated entities.
They are a source for eliciting user information requirements
and for designing and developing user-oriented information
systems. Initially, each form type (FT) is an abstraction of a
business form. However, it may be enriched by additional
specifications like specifications of: key and unique
constraints; check constraints; allowed database CRUD
(Create, Retrieve, Update and Delete) operations applied by
means of screen computerized forms to manipulate data of
an IS; functionalities concerning relationships between
generated screen forms, i.e. transaction programs. The
business form Donation Agreement (DA-bf) is presented on
the left-hand side of Fig. 1. It is business form used in the
Safe House Center (SHC) that provides support for those
children impacted by domestic violence. The SHC is in a
great extent based on donations and SHC IS has to support
donation process. One of the activities is keeping track about
the donation agreements. The business form Donation
Agreement may be modeled by the form type Donation
Agreement (DA-ft). The simplified representation of the
structure of the DA-ft, which generalizes the DA-bf, is
presented on the right-hand side of Fig. 1. A form type is a
hierarchical structure of form type components. The form
type Donation Agreement (Fig. 1) has two component types:
Agreement Heading and Donated Items.

A

A Model-to-Model Transformation of a Generic Relational Database
Schema into a Form Type Data Model

Sonja Ristić, Slavica Kordić, Milan Čeliković, Vladimir Dimitrieski, Ivan Luković
University of Novi Sad,

Faculty of Technical Sciences,
Trg D. Obradovića 6, 21000 Novi Sad, Serbia

Email: {sdristic, slavica, milancel, dimitrieski, ivan}@uns.ac.rs

Proceedings of the Federated Conference on Computer Science

and Information Systems pp. 1577–1580

DOI: 10.15439/2016F408

ACSIS, Vol. 8. ISSN 2300-5963

978-83-60810-90-3/$25.00 c©2016, IEEE 1577

Fig. 1 The business form Donation Agreement and its form type

A form type in IS design by means of IIS*Studio has a
dual role. On the one hand it provides an important input
data for database design, and on the other hand it is a source
for the generation of a sole transaction program and its
screen or report form. IIS*Studio introduces FT data model
based on FT concept [6] aimed at conceptual database
design.

IIS*Studio comprises: IIS*Case, IIS*UIModeler, and
IIS*Ree tools that communicate by means of shared
repository aimed at storing project specifications. The
IIS*Case tool supports IS forward engineering process. The
IIS*UIModeler is aimed at modeling of graphic user
interface (GUI) static aspects via UI templates. The IIS*Ree
tool enable reverse engineering (RE) of relational databases
to conceptual data models. The RE process is implemented
by means of a series of M2M transformations between
database models (database model transformations) based on
meta-models that are conformed by the source and target
database models. A blueprint of IIS*Studio database RE
process is presented in [5]. Here we present one step of that
process aimed at transformation of a generic relational
database schema into a form type data model.

III. CLASSIFICATIONS OF FORM TYPES AND RELATION
SCHEMES

A form type F is a named tree structure, whose nodes are
called component types (CTs). Let C(F) denotes a set of
CTs making up the form type F . Each CT is identified by
its name within the scope of a FT, and has nonempty sets of
attributes and keys, and a possibly empty set of unique
constraints. Formally, a CT is a named pair N(Q, O), where
N denotes name of the CT, Q is the set of CT attributes
Q={A1, .., An} and O is a set of CT constraints. O is a union
of: a set of key constraints, a set of unique constraints and a
singleton containing a tuple constraint. The tuple constraint
of a CT refers to a set of attribute-based constraints (attribute
data type specification and not-null constraint) paired with a
tuple-based constraint (constraint on tuple value).

Let C(F) = {Ni(Qi, Oi)  i = 1, ... m}. W(F) denotes a set
of the form type attributes that satisfies (1) and (2).

 
m

i
iQ

1
 W(F) and (1)

 (Ni, NjC(F))(i ≠jQi ∩ Qj = ). (2)
Three categories of FTs can be identified: F _Basican

elementary form type containing only one root component
type (Fig. 2); F _Tree2a form type containing a root
component type with only one child component type

(Fig. 3); and F _Treena form type that apart from a root
component type contains an arbitrary number of child
component types (Fig. 4).

Fig. 2 An example of F _Basic form type

Fig. 3 An example of F _Tree2 form type

Fig. 4 An example of F _Treen form type
Hammer et al. [7] have proposed a classification of

relation schemes in the context of the transformation of a
relational database schema into Entity-Relationship (ER)
database schema. Here we present a classification that is
adapted according to the target FT data model. There are
three kinds of relation schemes: basic (BR); weak (WR); and
all keys (AK) relation scheme. A BR relation scheme is a
relation scheme whose PK does not properly contain a key
attribute of any other relation. A WR relation scheme N
satisfies the following three conditions: i) a proper subset of
its PK contains key attributes of other basic or weak relation
schemas; ii) the remaining attributes of its PK do not contain
key attributes of any other relation scheme; and iii) it has an
identifying parent relation scheme and properly contains the
PK of its parent relation scheme. An AK relation scheme
contains only key attributes of other relation schemes, and
does not contain any other self-inherent attributes.

A graphic representation of a relational database schema
is presented in Fig. 5. Underlined attributes belong to a key
of a relation scheme. If a relation scheme has two candidate
keys their attributes are underlined with different lines. The
relation schemes University and Project are BR relation
schemes. Faculty, Department (first version), Employee, the
second version of Department relation schema (below the
first version) and relation scheme Lecturer are WR relation
schemes. The relation scheme WorkOn is an example of AK
relation scheme.

1578 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

Fig. 5 An example of a relational database schema

IV. TRANSFORMATION OF A GENERIC DATABASE SCHEMA
INTO A FORM TYPE DATA MODEL

The transformation of a model conformant with generic
relational database meta-model into a model conformant
with FT meta-model is PSM2PIM transformation. It
generates all relevant combinations of form types. It is a user
who chooses form types to be introduced in the form type
data model. The remaining form types are deleted. The
proposed transformation is carried out in three steps. In the
first step, a F _Basic form type is created for each relation
scheme from a relational database schema. The input
parameters for this transformation are:
 S = i(Ri, ORS

i)  i = 1,.., nand (3)
 ORS = KRS  UQRS  CHRS, (4)
where S is a set of the relation schemes i(Ri, ORS

i). i is
relation scheme name, Ri is nonempty set of its attributes
and ORS

i (4) is a union of three sets containing: key
constraints, unique constraints, and tuple constraints.

In Fig. 6 parts of generic relational schema MM and FT
meta-model are presented in the first row. In the next raw
ATL rules are presented that specify a mapping between the
concepts of these MMs alongside with five lazy rules aimed
at mapping: optional and mandatory relation scheme
attributes to optional and mandatory CT attributes; and
relation scheme key, unique and tuple constraints to CT key,
unique and tuple constraints, respectively.

In the next step of the transformation a F _Tree2 form
type is generated for each referential integrity constraint,
having WR relation scheme on the left-hand side. The set of
input parameters in addition to (3) and (4) contains a set of
referential integrity constraints of a relational database
schema (5):

 RIC = rici: NlLHS  NrRHS  i = 1,.., m (5)
where Nl and Nr are relation schemes, LHS and RHS are
subsets of attribute sets Rl and Rr of relation schemes Nl and
Nr, respectively. For each rici from RIC, with Nl that is WR
relation scheme, a F _Tree2 FT is created.

In the last step of the transformation an F _Treen form
type is created for each relation scheme that is referenced by
at least two WR relation schemes. Besides, an F _Treen
form type is created for each relation scheme that is
referenced by at list one WR relation scheme that is
referenced by some WR relation scheme, too.

V. RELATED WORK
Hainaut et al. in [8] describe main steps of database RE.

Vendor-specific physical or standard relational meta-model
mainly are found on the source side of RE transformations.
On the other side, ER [9], object-oriented [9]–[11],
standard/vendor-specific relational [12] or object-relational
[13] MMs occur on the target side. There are various
research works about the use of forms in different contexts:
Tsichritzis [14] introduces the concepts of form type, Shu
[15] proposed using forms to specify system requirements,
in [16] is presented a usage of business forms as input data
for the process of database schema design. A form-based
approach for reverse engineering of relational databases is
proposed in [17].

VI. CONCLUSION
The main reason to develop our IIS*Ree reverse

engineering tool was to take advantage of our approach to
database schema generation during: the integration of
independently designed ISs, legacy database schema
restructuring and improvement of empirically designed
database schemas. FT specification models system as-is in a
platform independent way. At the same time, the
specification is platform independent prescription model of
future screen and report forms and input for series of M2M
transformations that ends up with M2T transformation
generating application prototype. The MMs and models that
we use in our approach are intensional data models. System
evolution can be supported by automatic MD data migration
and extensional database MMs could play important role in
its implementation. Our future research has to consider
extensional database MMs and possible usage of category
theory [18] for PIM specification of model transformations
in order to automate the process of database model
transformations generation.

REFERENCES
[1] J.M Favre, “ Foundations of Model (Driven) (Reverse) Engineering:

Models.”, Dagstahl Seminar Proceedings, 2005.
[2] T. Kosar, N. Oliveira, M. Mernik, V. J. M. Pereira, M. Črepinšek, C.

D. Da, and R. P. Henriques, “Comparing general-purpose and domain-
specific languages: An empirical study,” Computer Science and
Information Systems, vol. 7 (2), pp. 247–264, 2010. DOI:
10.2298/CSIS1002247K

SONJA RISTIĆ ET AL.: A MODEL-TO-MODEL TRANSFORMATION OF A GENERIC RELATIONAL DATABASE SCHEMA 1579

A part of generic relational dbS MM A part of IIS*Case PIM (FT) meta-model

rule RelationScheme2ComponentType{
from
rs:RM!RelationScheme
to
ft: IISCase!FormTypeProgram(
Name <- 'FormType_' + rs.Name,
Title <- 'FormType_' + rs.Name,
ConsideredINDBSchDesign <- true,
Frequency <- 1,
ResponseTime <- 1,
RootComponentType <- ct
),
ctr: IISCase!ComponentTypeRoot(
Name <- 'ComponentType_' + rs.Name,
Title <- 'ComponentType_' + rs.Name,
ComponentTypeAttributes <- rs.RSAttributes->collect(e|
 if (e.oclIsTypeOf(RM!NotNullAttr)) then

thisModule.RSAttributes2NotNullCompTypeAttribute(e) else
 thisModule.RSAttributes2NullCompTypeAttribute(e)
endif),
ComponentTypeKeys <- (rs.EquivalentKey->collect(e|
 thisModule.EquivalentKey2CompTypeKey(e))).append(
 thisModule.EquivalentKey2CompTypeKey(rs.PrimaryKey)),
ComponentTypeUniques <- rs.UQConstraints->collect(e|
 thisModule.UniqueCon2ComponentTypeUnique(e,rs)),
ComponentTypeCheck <-
thisModule.TupleConstraints2ComponentTypeCheckCon(rs.TupleCons
traint),
 Query <- true,
 Delete <- false,
 Insert <- false,
 Update <- false
)
do{
thisModule.attributes <- Sequence{}; }}

lazy rule RSAttributes2NotNullCompTypeAttribute{
from a:RM!NotNullAttr
to cta:IISCase!ComponentTypeAttribute(
 Title <- a.AttributeName.Name,
 ComponentTypeAttributeName <- a.AttributeName,
 Mandatory <- true,
 DeafultValue <- a.DefaultValue)
 do{thisModule.attributes <-
 thisModule.attributes.append(cta);}}}
lazy rule RSAttributes2NullCompTypeAttribute{
from a:RM!NullAttr
to cta:IISCase!ComponentTypeAttribute(
 Title <- a.AttributeName.Name,
 ComponentTypeAttributeName <- a.AttributeName,
 Mandatory <- false,
 DeafultValue <- a.DefaultValue)
 do{thisModule.attributes <-
 thisModule.attributes.append(cta);}}
lazy rule EquivalentKey2CompTypeKey{
from ek:RM!KeyCon
to out:IISCase!ComponentTypeKey(
 Name <- ek.Name,
 Global <- true)
 do{out.ComponentTypeKeyAttributes <-
 thisModule.getKeyAttributes(ek);}}
lazy rule UniqueCon2ComponentTypeUnique{
from uq:RM!UniqueCon
to out:IISCase!ComponentTypeUnique(
 Name <- uq.Name)
 do{out.ComponentTypeUniqueAttributes <-
 thisModule.getUniqueAttributes(uq);}}
lazy rule TupleConstraints2ComponentTypeCheckCon{
from ch: RM!TupleCon
to out: IISCase!ComponentTypeCheck(
 Name <- ch.Name,
 CheckCondition <- ch.ExpresionTP)}

ATL rule for RelationScheme2FormType mapping Lazy rules invoked from rule RelationScheme2ComponentType

Fig. 6 Relation scheme – to – F _Basic Form Type transformation
[3] I. Dejanović, G. Milosavljević, B. Perišić, M. Tumbas, “A Domain-

Specific Language for Defining Static Structure of Database
Applications”, Computer Science and Information Systems,
(ComSIS), ISSN:1820-0214, Vol. 7, No. 3, pp 409-440. 2010.

[4] S. Ristić, S. Aleksić, M. Čeliković, V. Dimitrieski, and I. Luković,
“Database reverse engineering based on meta-models,” Central
European Journal on Computer Science, vol. 4(3), pp: 150–159, 2014.
DOI: 10.2478/s13537-014-0218-1

[5] S. Ristić, S. Kordić, M. Čeliković, V. Dimitrieski, I. Luković, “A
Model-driven Approach to Data Structure Conceptualization” in
Proceedings of the 2015 FEDCSIS,, Vol. 5, DOI:
http://dx.doi.org/10.15439/ 978-83-60810-66-8, pp. 977–984. 2015.

[6] I. Luković, P. Mogin, J. Pavićević, and S. Ristić, “An approach to
developing complex database schemas using form types,” Software:
Practice and Experience, vol. 37 (15), pp. 1621–1656, 2007.
doi: 10.1002/spe.820

[7] M. Hammer, M. Schmalz, W. O’Brien, S. Shekar, N. Haldevnekar,
Knowledge Extraction in the SEEK Project Part I, Tecnical Report
TR-02-008, July 2002.

[8] J-L. Hainaut, J. Henrard, V. Englebert, D. Roland, J-M. Hick J-M,
“Database Reverse Engineering”, In: Encyclopedia of Database
Systems, L. Liu and Özsu, T. (ed), Springer-Verlag, 2009.

[9] M. Gogolla, A. Lindow, M. Richters, and P. Ziemann, “Meta-model
transformation of data models”, WISME at the UML, 2002.

[10] J. Perez, I. Ramos, and V. Anaya, “Data reverse engineering of legacy
databases to object oriented conceptual schemas,” Electronic Notes in
Theoretical Computer Science, vol. 74(4), pp. 1–13, 2002.

[11] A. Boronat, J. Perez, J. A. Cars, and I. Ramos., “Two Experiences in
Software Dynamics,” Journal of Universal Computer Science, vol.
10(4), pp. 428–453, 2004.

[12] Beggar O. E., Bousetta B., Gadi T., Getting Relational Database from
Legacy Data-MDRE Approach, Computer Engineering and Intelligent
Systems ISSN 2222-1719 Vol 4, No.4, 2013.

[13] J. Vara, B. Vela, V.A. Bollati E. Marcos, “Supporting model-driven
development of object-relational database schemas: a case study”, in:
Theory and Practice of Model Transformations, R. Paige (Ed.),
Heidelberg, Springer Berlin, 2009. pp. 181–196.

[14] D. Tsichritzis, “Form management”,. Communications of the ACM 25
(5), pp. 453–478. 1982.

[15] N.C. Shu “FORMAL: a form-oriented, visual-directed application
development system”, Computer, pp 38– 49. 1985.

[16] J. Choobineh, S.S. Venkatraman, “A methodology and tools for
derivation of functional dependencies from business form”,
Information Systems 17 (3), pp 269–282. 1992.

[17] M. Malki, A. Flory, and M. K. Rahmouni, “Extraction of Object-
oriented Schemas from Existing Relational Databases: a Form-driven
Approach,” INFORMATICA, vol. 13(1), pp. 47–72, 2002.

[18] W. Steingartner, and D. Radaković, “Categorical structures as expressing tool
for differential calculus”, In: Proceedings of: The 12th Conference
Informatics’2013 Technical University of Kosice, Slovakia, pp. 77–82, 2013.

1580 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

