
Abstract—The paper presents a framework that implements
our original algorithm of automatic mapping a MySQL
relational database to a MongoDB NoSQL database. The
algorithm uses the metadata stored in the MySQL system
tables. It takes into consideration the concepts from Entity-
Relationship (ER) model: entity type represented by a relation
in the Relational Model (RM), 1:1 and 1:M relationship type
represented with Foreign Keys (FK) in the RM and N:M
relationship type represented in RM with a join table that
contains the Primary Keys (PK) from the original tables, each
representing a FK and two 1:M relationships between the
original tables and the join table. The initial results of our
algorithm that was tested on small size databases (10-15 tables
with many relationships and 100 records/ table) are presented
in this paper.

I. INTRODUCTION

ELATIONAL Database Management Systems

(RDBMS) have became the first choice for the storage

of information in databases mostly used for financial

records, manufacturing information, staff and salary data,

and so on starting with 1980. RDBMSs are based on the re-

lational model defined by a schema. This model uses two

concepts: table and relationship. A relational table represents

a well defined collection of rows and columns and the rela-

tionship is established between the rows of the tables. Rela-

tional data can be queried and manipulated using SQL query

language [8].

R

In practice, there are situations in which storing data in

the form of a table is inconvenient, or there are other kinds

of relationships between records, or there is the necessity to

quickly access the data. In order to solve such problems a

new type of NoSQL has been created. A NoSQL or Not

Only SQL database provides a mechanism for storage and

retrieval of data that is different from the typical relational

model.

Another issue that NoSQL solves is the mismatch

between relational databases and object-oriented

programming. It is known that SQL queries are not well

suited for the object oriented data structures that are used in

most applications now [8].

Another closely related issue is storing or retrieving an

object along with all relevant data. Some operations require

multiple and complex queries. In this case, data mapping

and query generation complexity rise too much and becomes

difficult to be maintained on the application side [8].

Some of these problems have found their answer both in

Object-relational mapping (ORM) frameworks, even though

it still requires a lot of development effort and also in Ob-

ject-Oriented Database Management Systems (OODBMS).

The down side in this last alternative is the fact that it did

not gain much popularity in replacing relational databases.

However, most object oriented databases may be considered

NoSQL solutions as well [8].

Another problem that relational databases cannot handle

is related to an exponentially increasing amount of data. The

direct consequence is the so-called big data problem. This

problem arises when standard SQL query operations do not

have acceptable performances, especially when transactions

are involved [8].

As a result, the subject of developing an automatic map-

ping instrument has been brought up. This instrument will

be able to represent the existing relational databases, already

populated with a large number of records, as NoSQL data-

bases. A significant amount of time and human effort is

spared this way, which would have otherwise been needed to

create and populate the NoSQL database from scratch.

This paper proposes a framework which implements an

algorithm for automatic mapping of MySQL relational data-

bases to MongoDB.

The paper is organized in the following way: Section II

presents the main concepts used by MongoDB, one of the

most used NoSQL database, Section III presents general

principles of mapping relational databases to MongoDB

considering the main concepts from ER model and RM.

Section IV presents in detail our proposed algorithm for

automatic mapping of a MySQL database to MongoDB and

also an example of application of this algorithm.

Conclusions and future work are shown in Section V.

II.MONGODB

MongoDB is a cross-platform, document oriented

database that provides high performance, high availability

and easy scalability. The main concepts in MongoDB are

collection and document. Database is a physical container

for collections. Each database receives its own set of files on

Automatic Mapping of MySQL Databases to NoSQL MongoDB

Liana Stanescu
University of Craiova Faculty of

Automation, Computers and
Electronics Bvd. Decebal 106

Craiova, Romania
Email: stanescu@software.ucv.ro

Marius Brezovan
University of Craiova Faculty of

Automation, Computers and
Electronics Bvd. Decebal 106

Craiova, Romania
Email:

mbrezovan@software.ucv.ro

Dumitru Dan Burdescu
University of Craiova Faculty of

Automation, Computers and
Electronics Bvd. Decebal 106

Craiova, Romania
Email: dburdescu@yahoo.com

Proceedings of the Federated Conference on Computer Science

and Information Systems pp. 837–840

DOI: 10.15439/2016F45

ACSIS, Vol. 8. ISSN 2300-5963

978-83-60810-90-3/$25.00 c©2016, IEEE 837

the file system. A single MongoDB server typically manages

multiple databases [2], [3], [4], [5].

The collection is a group of MongoDB documents. It has

as correspondent a RDBMS table. A collection exists only

within a single database.

A MongoDB document is a set of key-value pairs. The

documents do not have to necessarily respect a schema.

Typically, all documents in a collection are of similar or

have a related purpose. Dynamic schema means that

documents in the same collection do not need to have the

same set of fields or structure, and common fields in a

collection's documents may hold different types of data.

Table 1 shows the relationship of RDBMS terminology

with MongoDB [3], [4], [5].

TABLE I.

THE RELATIONSHIP OF RDBMS TERMINOLOGY WITH MONGODB

RDBMS MongoDB

Database Database

Table Collection

Tuple/Row Document

Column Field

Table Join Embedded Documents

Primary Key Primary Key (Default key _id pro-

vided by MongoDB itself)

Any relational database has a certain design schema that

shows the tables and the relationships between them. In

MongoDB there is no concept of relationship.

The advantages of MongoDB over RDBMS are [2], [3],

[4], [5]: schema-less (MongoDB is a document database in

which one collection holds different documents whose

number of fields, content and size can be different from one

document to another), structure of a single object is clear, no

complex joins, deep query-ability (MongoDB supports

dynamic queries on documents using a document-based

query language that is almost as powerful as SQL), tuning,

ease to scale-out, conversion / mapping of application

objects to database objects is not needed, uses internal

memory for storing the working set, enabling faster access

to data.

III. THE GENERAL PRINCIPLES OF MAPPING RELATIONAL
DATABASES TO MONGODB

In MongoDB the relational database remains a database.

A relational table is mapping to a MongoDB collection. The

tuples or rows become documents inside MongoDB collec-

tions [3], [4], [5].

The 1:1 relationship describes a relationship between two

entities. For example a Student has a single Address rela-

tionship. A Student lives at a single Address and an Ad-

dress only contains a single Student. The 1:1 relationship

can be modeled in two ways using MongoDB. The first is to

embed the relationship as a document and the second is as a

link to a document in a separate collection [4], [5].

In the one to one relationship embedding is the preferred

way to model the relationship as it’s more efficient to re-

trieve the document.

The 1:M relationship describes a relationship where one

side can have more than one relationship while the reverse

relationship can only be single sided.

The 1:M relationship can be modeled in several different

ways using MongoDB. The first model is embedding, the

second is linking and the third is a bucketing strategy that is

useful for cases like time series [4], [5].

A N:M relationship in the ER model is an example of a

relationship between two entity types where they both might

have many relationships between entities. An example might

be a Book that was written by many Authors. At the same

time an Author might have written many Books.

N:M relationships are modeled in the relational database

by using a join table that contains the primary keys from the

original ones, each representing a foreign key, and two 1:M

relationships.

In MongoDB we can represent this situation in many

ways. The first way is called Two Way Embedding [4], [5].

In Two Way Embedding we will include the Book foreign

keys under the book field in the author document. Mirroring

the Author document, for each Book we include the Au-

thor foreign keys under the Author field in the book docu-

ment.

Another way of modeling N:M relationships is called One

Way Embedding [4], [5].

The One Way Embedding strategy chooses to optimize

the read performance of a N:M relationship by embedding

the references in one side of the relationship. An example

might be a N:M relationship between books and categories.

The case is that several books belong to a few categories but

a couple categories can have many books. Let’s look at an

example with the categories represented into a separate doc-

ument.

An example of Category documents:

{id=1,
Cname=”Multimedia”}
{id=2,
Cname=”Databases”}

An example of a Book document with foreign keys for

Categories:

{id:1,

title”Multimedia Databases”,

categories:[1, 2],

authors:[1]}

id:2,

title”Multimedia”,

categories:[1],

authors:[1,2]}

IV. FRAMEWORK DESCRIPTION

The framework implements an algorithm of automatic

mapping of MySQL relational databases to MongoDB.

The algorithm uses the MySQL

INFORMATION_SCHEMA that provides access to

database metadata. Metadata is data about the data, such as

the name of a database or table, the data type of a column, or

access privileges. INFORMATION_SCHEMA is the

information database, the place that stores information about

838 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

all the other databases that the MySQL server maintains.

Inside INFORMATION_SCHEMA there are several read-

only tables. They are actually views, not base tables [6], [7].

For examples we use a database db1 that contains 5 tables:

Employee, Department, Project, Child and Works_on. The

relationships are 1:M between Department and Employee,

Employee and Child, Department and Project (figure 1). In

the ER model there is a N:M relationship, implemented in

the relational model by the join table Works_on and two

1:M relationship between Employee and Works_on and

Project and Works_on.

Fig. 1 A relational database

The steps of the algorithm implemented in our framework

are presented next.

1. Creating the MongoDB database
The user must specify the MySQL database that will be

represented in MongoDB. The database is created with the

following MongoDB command: use

DATABASE_NAME [5].
>use db1
switched to db db1
2. Creating tables in the new MongoDB database

The algorithm verifies for each table in what relationships

is involved, if it has foreign keys and/or is referred by other

tables.

2.1 If the table is not referred by other tables, it will be
represented by a new MongoDB collection.

2.2 If the table has not foreign keys, but is referred by
another table, it will be represented by a new
MongoDB collection.

2.3 If the table has one foreign key and is referred by
another table, it will be represented by a new
MongoDB collection. In our framework, for this
type of tables we use linking method, using the
same concept of foreign key.

2.4 If the table has one foreign key but is not referred
by another table, the proposed algorithm uses one
way embedding model. So, the table is embedded
in the collection that represents the table from the
part 1 of the relationship.

2.5 If the table has two foreign keys and is not referred
by another table, it will be represented using the
two way embedding model, described in section IV.

2.6 If the table has 3 or more foreign keys, so it is the
result of a N:M ternary, quaternary relationships,
the algorithm uses the linking model, with foreign
keys that refer all the tables initially implied in that
relationship and already represented as MongoDB

collections. The solution is good even the table is
referred or not by other tables.

In order to find the name of the tables stored in MySQL

database the next Select command is used:

Select table_name From information_schema.tables

Where table_schema=’db1’ Order By table_name;

The INFORMATION_SCHEMA.TABLES provides

information about tables in databases [6], [7].

The table TABLES_CONSTRAINTS from

INFORMATION_SCHEMA database describes which

tables have constraints [6], [7]. It must be executed a Select

command on each table in database, as in the next example:

Select constraint_type

From information_schema.tables_constraints

Where table_schema=’db1’

And table_name=’department’;

The CONSTRAINT_TYPE value can be unique, primary

key or foreign key. We are interested by primary key and

foreign key constraints [6], [7].

The table REFERENTIAL_CONSTRAINTS from the

same MySQL system database provides information about

foreign keys. The attributes constraint_schema and

constraint_name identify the foreign key. The attributes:

unique_constraint_schema, unique_constraint_name and

referenced_table_name identify the referenced key [6], [7].

With the data from these system tables: tables,

tables_constraints and referential_constraints the framework

can establish what step of the algorithm (2.1-2.6) must be

applied.

Relational tables become collections in MongoDB. The

collections are created using createCollection() method.

Basic syntax of createCollection() command is as

follows [5]:

Db.createCollection(name, options)

Where name represents the collection name and options

specify options about memory size and indexing.

For the relational database from figure the mapping

according to the presented algorithm is presented next. The

table Department has no foreign keys but is referred by other

two tables, so it becomes a MongoDB collection (step 2.2).

The table Employee has one foreign key and is referred

by the table Works_on, so it becomes a collection (step 2.3).

The table Project has one foreign key and is referred by

Works_on, so it becomes also a collection (step 2.3).

The table Works_on has two foreign keys and is not

referred by other tables, so it will be implemented using two

way embedding model (step 2.5). The projects will be

assigned to each employee and also, to each project will be

assigned the employees that work on that project.

The table Child has foreign key but is not referred by

another table, so it will be represented using one way

embedding model (step 2.4). So it will be embedded in

Employee collection.

The five relational tables will be represented by three

MongoDB collections. Next, there are some samples of the

MongoDB collections generated by the presented algorithm.

Department collection is presented in figure 2.

LIANA STANESCU, MARIUS BREZOVAN, DUMITRU DAN BURDESCU: AUTOMATIC MAPPING OF MYSQL DATABASES TO NOSQL MONGODB 839

Employee Collection that contains the document Child

and Projects is presented in figure 3.

Project collection that embeds the documents employees
that work on these projects is shown in figure 4.

V.CONCLUSION AND FUTURE WORK

The paper presents a framework that implements our

original algorithm of automatic mapping a MySQL

relational database to a MongoDB NoSQL database. The

algorithm uses the metadata stored in the MySQL system

tables. It takes into consideration the concepts from Entity-

Relationship (ER) model: entity type represented by a

relation in the Relational Model (RM), 1:1 and 1:M

relationship type represented with Foreign Keys (FK) in the

RM and N:M relationship type represented in RM with a

join table that contains the Primary Keys (PK) from the

original tables, each representing a FK and two 1:M

relationships between the original tables and the join table.

The algorithm was presented in detail, on steps. Also, the

paper contains an example of automatic mapping of a

MySQL database to MongoDB using our algorithm.

The paper also presents the initial results of our algorithm

that was tested on small size databases (10-15 tables with

many relationships and 100 records/table), the results being

encouraging.

The future work will include the next steps:

• Experiments on complex databases (many tables

and a large number of records/table)

• Taking into consideration the number of records

in the tables and the operations on the database

(insert, update, delete query) in order to

implement the more appropriate model of

mapping to MongoDB

• Modeling tree structures with parent references

• Extending the framework to execute mapping to

MongoDB of other relational databases (Oracle,

MS SQL Server and so on)

REFERENCES

[1] http://www.datastax.com/nosql-databases
[2] https://www.thoughtworks.com/insights/blog/nosql-databases-

overview
[3] https://leanpub.com/mongodbschemadesign/read
[4] http://code.tutsplus.com/articles/mapping-relational-databases-and-

sql-to-mongodb--net-35650
[5] https://docs.mongodb.org/manual/core/data-modeling-introduction/
[6] https://dev.mysql.com/doc/refman/5.0/en/information-schema.html
[7] https://dev.mysql.com/doc/refman/5.5/en/introduction.html
[8] https://www.devbridge.com/articles/benefits-of-nosql/

Fig. 2 MongoDB collection that represents the Department table

Fig. 3 MongoDB Employee collection

Fig. 4 MongoDB Project collection

840 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

