
Abstract—This  article  describes  the  determination  of  the

quality of results obtained by various numerical methods for

BSD  (B-matrix  Spatial  Distribution).  In  order  to  verify  the

influence of the numerical error on the real data, two datasets

acquired  using  two  types  of  phantoms  (isotropic  and

anisotropic)  and  the  reference  random  data  were  analyzed.

Additionally  examined  aspect  was  the  duration  of  the

calculations. The research were carried out on six of numerical

methods  for  solving  systems  of  equations  (Gauss,  Gauss

Jordan,  LU,  Gauss  with  partial  pivoting,  LU  (numerical

recipes), Gauss-Jordan (numerical recipes)).

I. INTRODUCTION

IFFUSION Tensor  Imaging  (DTI)  is  one  the  of  the

most widely used methods of imaging the anisotropic

biological  structures  such  as  white  and  grey  matter

andskeletal muscles. DTI is an imaging technique basing on

the  phenomenon  of  nuclear  magnetic  resonance  (NMR),

which allows for measurement of diffusion coefficient and

its  direction,  expressed  in  the  form  of  diffusion  tensor.

Scientific  reports  present  a  broad  range  of  clinical

applications  of  the  described  method  e.g.  nerve  fibers

(tractography),  diagnosis  of  cerebral  ischemia,  multiple

sclerosis, epilepsy, metabolic disorders, tumors of the brain

[1-3], and studies on the brain function [4].

D

Diffusion tensor is a symmetrical 3x3 matrix containing

six  independent  elements.  To  derive  all  elements  of  the

diffusion  tensor  one  reference  and  6  diffusion  weighted

images (obtained with various non collinear orientations of a

diffusion  gradient  vector)  are  required.  The  relations

between  the  signal  and  diffusion  tensor  is  described  by

Stejskal-Tanner equation [6]:

(1)

where  Sn(b) and  S(b0) are  the  signal  intensities  with  and

without nth diffusion sensitizing gradient, respectively; bij is

a component of the diffusion gradient b matrix; Dij is a com-

ponent of the diffusion tensor  D. The colon designates the

generalized dot product. Each direction of a diffusion sensi-

tizing gradient is described by individual matrix [5].

Computations on floating-point numbers are biased with

an error resulting from numerical representation of the num-

bers. Only a finite length string of binary words can be used

for representation of a number, what in the case of irrational

values (i.e. with infinite binary expansion) such as π or Eu-

ler's number, leads to a necessary rounding and loss of the

precision.

Another type of an error is the cut-off error. It occurs dur-

ing computing as a result of decreasing the number of opera-

tions, e.g. during computing an infinite Taylor series while

calculating the value of ln, extremely important fact is that a

minor numerical error can grow during further calculations

(e.g. multiplication of small values by larger ones) and cause

a major error in the result. The aim of this work is to test the

influence  of  the numerical  error  on the  result  of  the DTI

method. The errors stemming from the fact that the measure-

ments of physical quantities can be done only with the lim-

ited accuracy are neglected here.

Several numerical methods for calculating a system of lin-

ear equations such as the method of Gauss elimination and

its  variations  (Gauss-Jordan,  Gauss  with  partial  pivoting),

LU method and Cramer's rule, were implemented. Addition-

ally the implementations of Gauss elimination method and

LU decomposition from the Numerical Recipes were added.

The  following  experimental  equipment  specification  were

used:  Processor  Intel  Core  Intel  Core  i7-4700MQ  @  2.4

GHz, 8 GB RAM.

II.  VERIFICATION OF THE METHODS

The first stage of the work was checking the correctness

of the implemented methods on random data. For this pur-

pose, each independent value of bn matrix and D tensor were

drawn from the range -1 to 1. By transforming the equation

(1) one obtains the formula expressing Sn value:

(2)

Determination of the quality of results obtained by various numerical

methods for BSD

Artur Krzyżak, Piotr Łukasik, Krzysztof Janc
AGH University of Science and Technology, Faculty of Geology,

Geophysics and Environmental Protection,

A. Mickiewicza 30, 30-059 Kraków, Poland 

Email: akrzyzak@agh.edu.pl, pioluk@student.agh.edu.pl, krzysztof.janc@gmail.com

Proceedings of the Federated Conference on Computer Science

and Information Systems pp. 955–958

DOI: 10.15439/2016F458

ACSIS, Vol. 8. ISSN 2300-5963

978-83-60810-90-3/$25.00 c©2016, IEEE 955



 

 

 

For final determination of Sn one needs a value of S0 

which is also drawn from the range [-1;1]. 

Equation (1) has the following form in the matrix 

representation: 

 
(3) 

In the case of the presented test, all values in the above 

equation are known. In DTI, the problem lies in 

determination of unknown values of the diffusion tensor D. 

To do that, a system of equations containing six unknown 

variables has to be solved. By solving the system of 

equations for randomly generated b and Sn (3), new values of 

diffusion tensor D' were determined. Comparing the values 

of initially determined tensor D with calculated D' one 

obtains the numerical error ε. 
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Fig. 1 Distribution of the numerical error ε for all elements of tensor D 

and value of the xx element of randomly generated diffusion tensor. 

 

On the basis of Fig. 1 one can conclude that the numerical 

error independently from the method chosen, is 15 orders of 

magnitude smaller than values of components of the drawn 

Tensor D, what confirms correctness of the implementation 

of the methods. 

III.  COMPARISON OF THE METHODS 

In the case of DTI data, the exact value of tensor D is 

unknown, what makes the direct determination of the 

numerical error impossible. However, the error can be 

estimated alternatively. In DTI one measures values of Sn for 

the assumed gradient bn. Solving the system of equations (3) 

for Sn and bn data the values of Tensor D (with a certain 

numerical error) are obtained. Then, using the formula (2) S'n 

values were determined. Comparing the input values Sn with 

re-calculated S'n, one obtains indirect numerical error  : 
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In order to verify the influence of the numerical error on 

the real data, two datasets acquired using two types of 

phantoms (isotropic and anisotropic) and the reference 

random data were analyzed. It is important that real data 

belong to distributions which are far from the uniform 

distribution (-1.0, 1.0). 

On the basis of Fig. 2 it can be stated that, for the 

randomly generated data, the indirect error for all numerical 

methods is 15 orders of magnitude smaller than the average 

value of the input data. But on the other hand, in the case of 

real measurements, the results for the Gauss elimination- and 

Gauss-Jordan method are different from the others. In 

theory, the difference between these methods is: If, using 

elementary row operations, the augmented matrix is reduced 

to row echelon form (REF), then the process is called 

Gaussian elimination. If the matrix is reduced to reduced row 

echelon form (RREF), the process is called Gauss-Jordan 

elimination. For these methods, a large part of the error is of 

the same order as the input values. 
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Fig. 2 Distribution of the indirect numerical error for various methods 

a) random data, b) isotropic phantom, c) anisotropic phantom. 

 

Subsequently the difference between the results obtained 

with LU method (numerical recipes) and the results obtained 

in the remaining methods and (Fig.3) were compared. On 

this basis it can be concluded that the biggest numerical error 

appears in the noise area. In the case of Gauss and Gauss-

Jordan those errors are significantly larger than in the 

phantom region. In the other methods the errors in both 

phantom and noise regions are of the same order as the 

errors in the noise area in Gauss and Gauss-Jordan methods. 
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Fig. 3 Distribution of the indirect numerical error for various methods 

  

The last examined aspect was the duration of the 

calculations. For this purpose, the averaged computing time 

was determined by repeating the calculations 1000 times for 

anisotropic phantom (64x64 image) for each of the 

implemented methods. The fastest method was the Gauss 

elimination method, the rest were 15-70% slower. From the 

previous tests it is known that Gauss method is very prone to 

numerical errors. The fastest method out of ones giving 

correct results was the LU, which was 15% slower than 

Gauss. if one takes into account the total duration of 

computing for DTI, i.e. the memory allocation, calculation of 

own values etc., then the percent difference between Gauss 

and LU decreases to 8%. 

TABLE I. 

DEFINING CHARACTERISTICS OF FIVE EARLY DIGITAL COMPUTERS 

 Time of computing 

tensor D 

Time of computing  

BSD 

Method Time [ms] Ratio to 

Gauss[%] 

Time [ms] Ratio to 

Gauss[%] 

Gauss 2.05 100.00 5.49 100.00 

Gauss-Jordan 2.88 140.48 6.38 116.21 

LU 2.36 115.12 5.95 108.37 

Gauss with 

partial pivoting 

3.49 

 

170.24 

 

7.04 

 

128.23 

 

LU (nr) 2.54 123.90 5.92 107.83 

Gauss-Jordan(nr) 3.33 162.43 6.72 122.40 
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IV. CONCLUSION

Calculating the diffusion tensor D in DTI one has to take

into account the impact of the numerical errors,  occurring

especially in the noise area. Computing time, if all aspects

such as the time taken for the allocation of the memory and

determining own values and vectors are taken into account,

is  of  minor importance.  The methods less affected by the

numerical  errors, differs in the execution time about 10%.

The optimized algorithms will be implement in the B-matrix

Spatial Distribution DTI(BSD-DTI) method using a spatial

distribution of b-matrix.
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