
Influence of Locality on the Scalability of Method-
and System-Parallel Explicit Peer Methods

Matthias Korch,
Thomas Rauber,

Matthias Stachowski
and Tim Werner

Department of Computer Science

University of Bayreuth

Email: {korch, rauber, matthias.stachowski, tim.werner}@uni-bayreuth.de

Abstract—Because the numerical solution of initial value prob-
lems (IVPs) of systems of ordinary differential equations (ODEs)
can be computationally intensive, several parallel methods have
been proposed in the past. One class of modern parallel IVP
methods are the peer methods proposed by Schmitt and Weiner,
some of which are publicly available in the software package
EPPEER released in 2012. Since they possess eight independent
stages, these methods offer natural parallelism across the method
suitable for the typical numbers of CPU cores in modern
multicore workstations. EPPEER is written in FORTRAN95 and
uses OpenMP as parallel programming model.

In this paper, we investigate the influence of the locality of
memory references on the scalability of method- and system-
parallel explicit peer methods. In particular, we investigate the
interplay between the linear combination of the stages and the
function evaluations by applying different program transforma-
tions to the loop structure and by evaluating their performance in
detailed runtime experiments. These experiments point out that
loop tiling is required to improve cache utilization while still
allowing the compiler to vectorize along the system dimension.

To show that for certain classes of right-hand-side functions
a stage-parallel execution is not optimal, and to enhance the
scalability of the peer methods to core numbers larger than the
number of stages of a method, system-parallel implementations
have been derived. Runtime experiments show that there are IVPs
for which these new implementations outperform stage-parallel
implementations on numbers of cores less than or equal to the
number of stages. Moreover, by exploiting the ability to utilize
higher core numbers, higher speedups than the number of stages
have been reached.

I. INTRODUCTION

THIS paper considers a class of parallel solution methods

for initial value problems (IVPs) of systems of ordinary

differential equations (ODEs), defined by

y′(t) = f(t,y(t)), y(t0) = y0, t ∈ [t0, te], (1)

where f : R × R
n → R

n is the right-hand-side function

defining the ODE system, t ∈ R is the independent variable,

usually denoting “time”, y : R→ R
n is the solution function

to be computed within the integration interval [t0, te] ⊂ R,

and y0 is the initial value, i.e., the value of y at time t0.

Many ODE IVPs do not have an analytical solution and

must be solved numerically. The classical numerical approach,

which is also used by the class of methods considered in

this paper, applies a time-stepping procedure that starts at

t0 and walks through the integration interval, computing a

new approximation value ym ≈ y(tm) at each time step

m = 1, 2, . . . until te is reached. A detailed treatment of the

subject can be found in [1].

Because the numerical solution of ODE IVPs often is

computationally intensive, several methods with potential for

parallelism have been proposed. Usually, these methods are

classified as exploiting parallelism across the method, par-

allelism across the system, and parallelism across time (also

called parallelism across the steps), see [2] for an overview

of classical parallel ODE methods.

This paper considers the explicit parallel two-step peer

methods provided as part of the EPPEER software package

[3]. Peer methods have been introduced by Schmitt and Weiner

in 2004 [4]. The explicit methods included in EPPEER, which

has been released in 2012, are described in [5], [6], [7].

These methods possess up to 8 independent stages, which

can be computed in parallel on different cores. Hence, they

are an example for methods providing parallelism across the

method, which can be exploited without a (possibly difficult)

parallelisation of the right-hand-side function. However, as

the authors of EPPEER note, additional parallelisation across

the system is possible for larger numbers of cores, but this

functionality is currently not part of the EPPEER package and

has not been investigated yet.

In their tests of the parallel performance of the explicit two-

step peer methods, the authors of EPPEER notice that near-

optimal speedups are possible for expensive right-hand-side

functions, while the speedups observed for cheap right-hand-

side functions were less satisfactory [6], [8]. They attribute this

behavior to a part of the time step where a linear combination

of vectors is computed [6], [8].

In this paper, we investigate the reasons for the lower

performance of cheap right-hand-side functions in detail and

identify the locality of memory references of the linear combi-

nation but also the interplay between the locality of the linear

combination and the locality of the function evaluations as

the main performance limiters. As part of this investigation,

we apply several different program transformations to the

loop structure of the peer methods and evaluate their effect

on locality and scalability using runtime experiments on two

Proceedings of the Federated Conference on Computer Science

and Information Systems pp. 685–694

DOI: 10.15439/2016F464

ACSIS, Vol. 8. ISSN 2300-5963

978-83-60810-90-3/$25.00 c©2016, IEEE 685

different hardware architectures. In particular, we make use

of loop tiling to exploit both temporal and spatial locality

while still enabling the compiler to vectorize the loops over the

system dimension. In addition to the parallelization over the

stages, we also investigate system-parallel implementations.

The goal of this is not only to enable the use of larger numbers

of processor cores, but primarily to compare the locality

behavior and the scalability of a system-parallel and a stage-

parallel execution on small numbers of cores. In particular,

we are interested in the question whether a system-parallel or

a stage-parallel execution is more efficient for IVPs with a

cheap right-hand-side function.

The rest of the paper is structured as follows: Section II

discusses related work. Section III describes the mathematical

structure of peer methods. Section IV investigates the influence

of the loop structure on locality and scalability. Section V con-

siders the interplay of the function evaluations and the system-

parallel execution. The last two sections conclude the article.

II. BACKGROUND AND RELATED WORK

A. Parallel ODE Methods

The numerical solution of ODE IVPs can be computa-

tionally intensive. Therefore, many solution methods with

potential for parallelism have been proposed. Most of the

fundamental work on parallel ODE methods dates back to the

1980s and 1990s; an overview and further references can be

found in [2].

Parallelism across time is generally difficult to obtain for

IVPs because there needs to be an information flow from

the initial value at t0 to the end of the integration interval

te. There are, however, promising approaches based on the

Picard iteration, e.g., Parareal methods [9]. Most of the parallel

ODE methods proposed concentrate on parallelism across the

method, i.e., they provide a small number of independent

coarse-grained computational tasks inherent in the compu-

tational structure of the method, for example, independent

stages. Examples are Parallel Adams–Bashforth (PAB) and

Parallel Adams–Moulton (PAM) methods [10], which belong

to the class of general linear methods [1], parallel iterated

RK (PIRK) methods [2], and extrapolation methods [1], [2].

Basically, all IVP methods possess a natural potential for par-

allelism across the ODE system, because usually the equations

of the ODE system can be distributed to different processor

cores. Of course, this approach is only feasible for reasonably

large ODE systems.

One implementation strategy aiming at parallelism across

the system is the use of parallel linear algebra operations

which are parallelized along the system dimension. The project

Odeint [11], for example, which is part of the Boost C++

library, contains several IVP methods and allows the use of

different sequential or parallel state vector types. Another

example of this type of parallelism is the PETSc library [12],

which targets partial differential equations (PDEs), but also

contains several ODE IVP solvers. One disadvantage of this

approach is that parts of the code outside the linear algebra op-

erations are not parallelized, and parallel performance tuning

cannot be applied to the IVP solver as a whole.

System-parallel implementations covering all parts of a time

step have been investigated in [13] for embedded RK methods

and in [14] for PIRK methods.

Waveform relaxation methods [2] are specially tailored for a

system-parallel execution of large ODE systems as they arise

in the simulation of electrical circuits. They use the Picard

iteration to decouple the equations of the ODE system and

thus avoid synchronization and communication between cores.

However, similar to Parareal methods, they have to deal with

a possibly slow convergence of the Picard iteration.

The subject of this paper are explicit parallel two-step

peer methods, which show similarities in their computational

structure to PIRK methods and Parallel Adams methods. It

investigates the locality and scalability of these methods when

exploiting either method or system parallelism.

B. Performance Optimization

Computer systems are becoming more and more complex

and make use of parallelism at various levels. To hide the

increasing complexity, modern CPUs and compilers contain

many mechanisms and techniques that aim at providing most

of the available performance of the hardware in a transpar-

ent way to the application programmer. For example, CPUs

contain multiple execution units, which can work in parallel,

and they use dynamic instruction scheduling and simultane-

ous multithreading (SMT) to increase the utilization of the

execution units. Modern compilers try to automatically unroll

and vectorize loops to make use of SIMD (single instruction

multiple data) extensions such as SSE and AVX [15].

Practically all modern CPUs used in high-performance

computing possess a deep memory hierarchy with usually two

or three levels of cache to temporarily store and reuse data

read from or written to the external, slower main memory, thus

hiding most part of the latency time that would otherwise be

needed to access the main memory. In multi-core CPUs, the

higher cache levels are often shared between several cores. To

obtain maximum performance on a hardware platform with

memory hierarchy, it is crucial to optimize the locality of

memory references.

In the field of compiler design, efficient use of the memory

hierarchy is tried to be achieved by reordering compute

intensive loops in the source code. Loop tiling is considered as

one of the most successful techniques. An important analytical

model are cache miss equations [16], which can be used to

estimate the effects of loop transformations. To analyze the

dependencies of loops and to perform loop transformations,

often the polyhedral model is used, e.g., [17]. A simple,

but insightful visual model for the performance of computer

programs on modern multi-core architectures is the roofline

model [18]. A generalization of the roofline model to cover

deep memory hierarchies is the execution cache memory

(ECM) model [19].

To overcome the limits of static code analysis, some

compiler-based approaches introduce source code annotations

686 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

[15] or propose domain specific languages (DSLs), which are

then extended by autotuning techniques, e.g., [20]. Autotuning

tries to determine the best configuration from a search space

of possible code variants and parameters (e.g., block sizes

for loop tiling, loop unroll factors, or number of threads). In

[21], an online autotuning approach for system-parallel PIRK

methods has been investigated.

III. EXPLICIT PARALLEL PEER METHODS IN EPPEER

In this section, we will explain the computational structure

of the explicit parallel two-step peer methods and describe

their implementation in EPPEER. Then, we will investigate

locality and scalability of the unmodified EPPEER code by

several runtime experiments.

A. Computational Structure

Similar to classical RK methods, the explicit two-step peer

methods in EPPEER use a time-stepping procedure to solve

the IVP and compute s stages Ym,i, i = 1, . . . , s, at each

time step from tm−1 to tm with tm = tm−1 +hm−1 for m =
1, 2, . . . [7]. However, in contrast to classical RK methods, all

s stages have the same accuracy and stability properties and,

to compute the stages, the s stages and the s function values

of the previous time step are used:

Ym,i =
s∑

j=1

bijYm−1,j

︸ ︷︷ ︸

SY

+hm

s∑

j=1

aijf(tm−1,j ,Ym−1,j)

︸ ︷︷ ︸

Sf

, (2)

where tm−1,j = tm−1 + hm−1cj for j = 1, . . . , s, and aij ,

bij , and cj , i, j = 1, . . . , s with cs = 1 are the coefficients

of the particular peer method. Therefore, these methods are a

subclass of general linear methods (GLMs) [1].

Because only values from the previous time step are used,

the s stages of the current time step do not depend on each

other and can be computed in parallel on different cores, thus

exhibiting parallelism across the method. In EPPEER, three

methods with s = 4, 6, 8 are included which can use up

to s cores. These methods have been introduced in [6]. In

addition, four FSAL methods (first same as last: last stage of

the previous time step is reused as the first stage of the current

time step) with s = 3, 5, 7, 9, which have been introduced in

[5], are included, which can use up to s− 1 cores.

Since all s stages have the same properties, in particular

the same order O(hs
m), there is no determined value for

ym ≈ y(tm). Instead, any stage value can be used as new

approximation to the solution function.

Due to the two-step character, a starting procedure is

required to generate s−1 stages in addition to the initial value

y0 before the first time step can be performed with the peer

method to compute Y1,i. Currently, EPPEER uses an explicit

RK method (DOPRI 5(4)) to compute the start values. How-

ever, a parallel starting procedure has been proposed in [22].

!$OMP PARALLEL DEFAULT(SHARED)

!$OMP DO PRIVATE(stg,ic) SCHEDULE(STATIC)

do stg = ist1,stages

pyy(:,idx(new+stg)) = 0.D0

do ic = 1,stages

pyy(:,idx(new+stg)) = pyy(:,idx(new+stg))+

& pa(stg,ic)*ff(:,idx(ic))

end do

end do

!$OMP END DO

!$OMP DO PRIVATE(stg,ic) SCHEDULE(STATIC)

do stg = ist1,stages

do ic = 1,stages

pyy(:,idx(new+stg)) = pyy(:,idx(new+stg))+

& pb(stg,ic)*pyy(:,idx(ic))

end do

end do

!$OMP END DO

!$OMP DO SCHEDULE(STATIC)

do stg = ist1,stages

call fcn(t+phs*pc(stg),pyy(:,idx(new+stg)),

&ff(:,idx(new+stg)),cpar)

end do

!$OMP END DO

!$OMP END PARALLEL

Listing 1. Ver-0: loop structure used in EPPEER.

B. Implementation

The following section introduces the implementation of the

original EPPEER package. The source code of this implemen-

tation can be seen in Listing 1. Each time step of a peer method

consists of two basic parts: The linear combination and the

function evaluation.

EPPEER implements those two basic parts by three consec-

utive loop nests: The first and the second loop nest perform

the linear combination. For this purpose the first loop nest

initializes an s × n accumulation matrix for the computation

of Ym,i with zeroes, i.e.,

for i = 1, . . . , s: Ym,i ← 0 (3)

and uses this matrix to accumulate and add the second sum

of Eq. (2), Sf :

for i = 1, . . . , s: Ym,i ← Ym,i + hm

s∑

j=1

aijFm−1,j

︸ ︷︷ ︸

Sf

, (4)

where

Fm−1,j = f(tm−1,j ,Ym−1,j) (5)

are stored function values computed in the previous time step.

After that the second loop nest accumulates and adds the first

sum of Eq. (2), SY:

for i = 1, . . . , s: Ym,i ← Ym,i + SY. (6)

The third and final loop nest performs the function evaluation

to compute Fm,j , needed in the next time step, using Eq. (5).

The outermost loop of each loop nest iterates over the stages

of the peer method, where the ith iteration of the outer loop

computes the argument vector Ym,i for stage i. Thus, we will

refer to these loops as “stage loops”. The iterations of the stage

loops are independent of each other. That is why the stages

MATTHIAS KORCH ET AL.: INFLUENCE OF LOCALITY ON THE SCALABILITY OF METHOD-AND SYSTEM-PARALLEL EXPLICIT PEER METHODS 687

can be computed in parallel for each loop nest. This is a major

advantage of the peer methods. The EPPEER package takes

this advantage by parallelizing each stage loop with OpenMP.

The stage loops of the first and the second loop nest contain

inner loops, which also iterate over the stages in order to

compute the linear combinations Sf and SY, respectively, for

the stage i corresponding to the current iteration of the outer

stage loop. Thus, we will refer to these loops as “combination

loops”.

The combination loops perform operations on vectors of

dimension n and, thus, contain an innermost loop, which

iterates over the system dimension and which we therefore call

“system loop”. Instead of explicitly implementing these system

loops as FORTRAN do loops, EPPEER uses the FORTRAN

vector notation, thus making it easy for the compiler to

generate vectorized code for these loops.

C. Performance

In this section, we use the results of runtime experiments

to analyze the scalability of the original EPPEER package

with the number of cores. The first target system for these

experiments is an 8 core Intel Xeon E5-2630V3 (Haswell-

EP) CPU. However, the Haswell-EP CPU has two features

which might alter the scalability in an unexpected way: Turbo

Boost (on-demand increase of clock frequency) and Hyper

Threading (2-way simultaneous multithreading (SMT) per

core). To avoid potential negative influences of these features

on our measurement results, we disabled both features for all

measurements. Our second target system is an Intel Xeon Phi

31S1 coprocessor. The Xeon Phi does not have a turbo mode,

but it provides 4-way SMT per core, which cannot be disabled.

However, to ensure that each thread runs on a separate physical

core, we make use of the OpenMP runtime environment

to distribute the threads evenly among the cores until the

number of threads exceeds the total number of cores. On

both target systems, the Intel FORTRAN compiler in version

16.0.2 was used with optimization level 2 (-O2) to compile

the EPPEER package. All computations were performed using

double precision. For profiling purposes we use PAPI in

Version 5.4.1. PAPI is a powerful profiling library, which can

read the values of CPU-internal performance counters, which

can count, for example, the number of cache misses or the

number of load/store operations.

We chose two different ODE systems as test problems: The

first one is the 2D Brusselator brus. It models an oscillating

chemical reaction-diffusion system using a two dimensional

grid as spatial discretization. The resulting access pattern to

the grid points is a five-point 2D stencil. Therefore, brus is a

sparse problem and its right-hand-side function f has a time

complexity of Θ(n). For all measurements with brus, we chose

a vector size of 500 000 elements, where each vector element is

a double precision floating point number, requiring 8 bytes of

storage space. Thus, a vector corresponds to a grid of 500×500
cells, where each cell contains two double values, so that one

vector requires 3.81 MB of storage space. The second test

problem is the N -body problem mbod, which is also known

TABLE I
SPEEDUPS MEASURED WITH THE EPPEER PACKAGE.

Speedups for different #threads
Hardware Problem 1 2 3 4 8
Haswell-EP brus 1 1.839 2.006 2.232 2.311
Haswell-EP mbod 1 1.961 2.582 3.779 7.047
Xeon Phi brus 1 1.941 2.619 3.609 6.702
Xeon Phi mbod 1 1.966 2.594 3.804 7.133

as the many body problem. It simulates the movement of

particles, which interact with each other by the gravitational

force. Since the gravitational field of a particle influences every

other particle, the N -body problem is a dense problem and its

right-hand-side function f has a time complexity of Θ(n2).
To obtain the experimental results shown in the following,

a scene consisting of 2000 particles was used, where each

particle added 6 equations to the ODE system, resulting in a

vector size of 12 000 elements (93.75 KB). Table I shows the

speedups observed in our experiments.

Similar to the authors of the EPPEER package, our

measurements with the mbod problem show a very good

scalability. The use of 8 threads yields an almost ideal

speedup of 7.0 on Haswell-EP and a speedup of 7.1 on the

Xeon Phi. In contrast, the best speedups measured for the

brus problem are only 2.3 and 6.7 on the Haswell-EP and

the Xeon Phi, respectively (on both systems obtained using 8

threads). Thus, obviously, the scalability of the peer methods

is influenced by the IVP to be solved.

Interestingly, Table I shows a smaller efficiency when 3

threads are used, which is caused by the following: It is not

possible to distribute s equally sized tasks among p threads

evenly if s mod p 6= 0. In our case it is impossible to distribute

the 8 stages equally among 3, 5, 6 and 7 threads. This load

imbalance forces some of the threads to idle while all other

threads complete their last remaining task.

One apparent difference between the two test prob-

lems is the access pattern of the right-hand-side function

f(tm,j ,Ym,j) to the argument vector Ym,j and the resulting

time complexity. While the dense mbod problem has a time

complexity of Θ(n2), the time complexity of the sparse brus

problem is only Θ(n). We can therefore expect that for brus

the time needed to perform the function evaluations constitutes

a smaller fraction of the runtime of a time step than for the

mbod. In fact, further measurements (Figure 1) have shown

that on average evaluating the right hand side of mbod takes

about 97 % of the total runtime of a time step, whereas the

linear combination only takes the remaining 1 to 2 %. In

contrast, for brus, less than 18 % of the total runtime of a

time step is required to compute the function evaluations, but

nearly 75 % are needed to perform the linear combination to

compute the argument vectors Ym,j .

In total, the results of the runtime experiments show that

the scalability depends on the IVP to be solved. For sparse

and computationally inexpensive systems like brus, computing

the linear combinations takes a major part of the runtime

(see Figure 1 (b)) and can therefore be expected to have

688 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

(a)

lin0.7%
fcn

97%

other
2.1%

(b)

lin

74.9%

fcn

17.7%
other

7.4%

Fig. 1. Average runtime fractions of the linear combination (lin), the function
evaluation (fcn) and other parts of the code for (a) mbod and (b) brus.

a significant influence on scalability. Since the arithmetic

intensity, i.e., the ratio of the number of arithmetic instructions

to the number of memory instructions, of this part of the

time step is low, we can expect the performance of the linear

combination to be bound by the performance of the cache and

memory subsystem. Moreover, the working set of one time

step, i.e., the amount of data accessed in a time step, amounts

to four s×n matrices, which corresponds to 122.1 MB in our

experiments and, thus, is significantly larger than the cache

size of typical workstations today. We can therefore expect

that many expensive accesses to the main memory are required

in the experiments with brus.

However, for dense and computationally intensive systems

like mbod, the evaluation of the right-hand-side function of

the ODE system dominates the runtime. Since the function

evaluations are independent of each other, this leads to the

high scalability observed. For the problem size we used, the

working set of one time step amounts to 2.92 MB, that means

all data accessed during one time step fits completely in the

20 MB L3 cache of the Haswell-EP. The 512 KB L2 cache

of a Xeon Phi core can not store the whole working set

of a time step, but, to perform the stage-parallel function

evaluation efficiently, it is only important that it can store two

n-vectors (93.75 KB each) to hold the argument of the function

evaluation and its result. The reason for this is that to compute

the gravitational force acting on one body the interacting

forces with all other N − 1 bodies are accumulated. Thus,

to compute all entries of the function result f(tm,j ,Ym,j),
half of the argument vector Ym,j is read n/2 times.1 Since

all important data fits in the cache and the arithmetic intensity

is higher than that of brus, we can expect the performance of

the mbod problem to be bound by the compute performance

of the processor used. Therefore, improving the locality of

memory references further would probably not improve the

already high scalability.

In the following, we therefore focus on the sparse case,

where an improvement of the scalability is more important

and where we can expect to be able to improve the scalability

by an improvement of the locality behavior. As test problem

we consider only brus from now on.

1mbod is a first order system derived from a second order system by
substitution.

IV. LOOP STRUCTURE OF THE LINEAR COMBINATION

A. Variants of the Loop Structure

After the identification of the linear combination as the

major fraction of the runtime for sparse ODE systems in the

previous section, this section focuses solely on the improve-

ment of the loop structure of the linear combination, possible

loop transformations, and their influence on the resulting

locality and scalability. The interplay with the evaluation of

the right-hand-side function (the third loop nest in the original

EPPEER package) will be considered afterwards in Section V.

The data access pattern of the original stage-parallel

EPPEER loop structure (referred to as “Ver-0” in the follow-

ing) is illustrated in Figure 2 for a method with 8 stages and

one thread per stage. Only the first two threads are shown,

because the data access pattern is similar for all threads: to

compute the argument vector Ym,i of their stage i, the whole

two s× n matrices Ym−1 and Fm−1 are read, and after each

loop nest the result of the computations within the loop nest

are written back to memory. Hence, in total there are 2s + 1
write accesses to each element of the matrix Ym: initialization

with zero, accumulation of sum SY and accumulation of sum

SY. Though the stages are computed in parallel by different

threads, in most current shared-memory computers several

threads share parts of the memory subsystem (e.g., shared

higher level caches, main memory modules connected to a

socket) so that they compete for these limited resources and

may quickly reach their limits.

Since the system dimension is the stride-1 dimension, the

innermost loops of Ver-0 iterate over the stride-1 dimension,

which leads to high spatial locality and allows the compiler

to vectorize the loads and stores using sequential SIMD

load/store instructions.

The first improvement of the loop structure we consider

can be seen in Listing 2 and will be referred to as “Ver-1”

in the following. Ver-1 adopts the parallelization across the

stages from Ver-0, but it contains two modifications. First, it

eliminates the zero initialization of Ym by peeling off the first

iteration of the combination loop. This saves one pass over

the matrix Ym and, thus, many expensive memory accesses.

Moreover, the first and the second loop nest of Ver-0 are

fused, which both contribute to the computation of Ym,i,

to a single loop nest. This loop fusion is legal, because the

only dependencies between those two loop nests are the write

accesses to the matrix Ym accumulating the sums in Eq. 2.

That is why changing the order of the loops, and thus the

order of the accumulation, only influences the round-off error.

An advantage of this new fused loop structure is that only s
write accesses to each element of Ym are necessary.

Trying to overcome some disadvantages of Ver-0 and Ver-1,

Ver-2 (Listing 3) parallelizes the linear combinations across

the system dimension. This version is based on an earlier

version of the EPPEER package. It is obtained by inter-

changing the loops of each loop nest of Ver-0 so that the

outermost loop iterates over the system dimension and the two

inner loops iterate over the stages. To enable this interchange,

MATTHIAS KORCH ET AL.: INFLUENCE OF LOCALITY ON THE SCALABILITY OF METHOD-AND SYSTEM-PARALLEL EXPLICIT PEER METHODS 689

1 2 3 4 5 6 7 8

pyy old pyy new

Stages/Threads

S
ys

te
m

2
n

d
 l
o

o
p

 n
e

s
t

1 2 3 4 5 6 7 8

ff pyy new

1
s

t
lo

o
p

 n
e

s
t

System loop Combination loop

pyy old

ff

1 2 3 4 5 6 7 8

pyy new

1 2 3 4 5 6 7 8

pyy new

Thread 1 Thread 2

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 81 2 3 4 5 6 7 8

Fig. 2. Data access pattern of the original EPPEER package (Ver-0).

!$OMP PARALLEL DEFAULT(SHARED)

!$OMP DO PRIVATE(stg,ic) SCHEDULE(STATIC)

do stg = ist1,stages

pyy(:,idx(new+stg)) = pa(stg,1)*ff(:,idx(1)) +

& pb(stg,1)*pyy(:,idx(1))

do ic = 2,stages

pyy(:,idx(new+stg)) = pyy(:,idx(new+stg)) +

& pa(stg,ic)*ff(:,idx(ic)) + pb(stg,ic) *
& pyy(:,idx(ic))

end do

end do

!$OMP END DO

!$OMP END PARALLEL

Listing 2. Ver-1: Ver-0 improved by loop peeling and fusion.

the previously innermost system loops, which were defined

implicitly using vector notation, had to be transformed into

an explicit FORTRAN do loop. As a result, a higher temporal

locality for the write accesses to the elements of the matrix Ym

is generated. The compiler can now keep the temporary partial

sums in a register during the s2 iterations over the stages by

the inner loops of each loop nest, so that now each element

of Ym needs only be written to main memory twice.

Even more important, the amount of data accessed by each

thread is reduced significantly: While in Ver-0 and Ver-1 each

thread needs to read all elements of the matrices Ym−1 and

Fm−1 to compute the stage(s) assigned to it, in Ver-2 it reads

only the range of elements of Ym−1 and Fm−1 assigned to it

and it writes only the corresponding range of elements of Ym.

Hence, if there are p threads, each thread only reads at most

2s⌈n
p
⌉ elements and writes at most s⌈n

p
⌉ elements, whereas

in Ver-0 and Ver-1 each thread reads 2sn elements and writes

at most ⌈ s
p
⌉ elements.

While Ver-1 can use only as many threads as the peer

method used has stages, an additional benefit of the system

parallel execution is that more threads can participate in the

computation of the linear combination.

Unfortunately, the new loop structure of Ver-2 also has

disadvantages. Since the iteration over the stride-1 dimension

is performed by the outermost loop, the reads of the matrix

elements in the innermost loops have a large stride of n.

!$OMP PARALLEL DEFAULT(SHARED)

!$OMP DO PRIVATE(id,stg,ic) SCHEDULE(STATIC)

do id = 1,nprob

do stg = ist1,stages

pyy(id,idx(new+stg)) = 0.D0

do ic = 1,stages

pyy(id,idx(new+stg)) = pyy(id,idx(new+stg))+

& pa(stg,ic)*ff(id,idx(ic))

end do

end do

end do

!$OMP END DO

!$OMP DO PRIVATE(id,stg,ic) SCHEDULE(STATIC)

do id = 1,nprob

do stg = ist1,stages

do ic = 1,stages

pyy(id,idx(new+stg)) = pyy(id,idx(new+stg))+

& pb(stg,ic)*pyy(id,idx(ic))

end do

end do

end do

!$OMP END DO

!$OMP END PARALLEL

Listing 3. Ver-2: System parallel execution.

Hence, the higher temporal locality comes at the expense of

lower spatial locality. Further, the compiler cannot vectorize

the loads and stores using sequential SIMD load/store instruc-

tions. However, there are SIMD gather or scatter instructions,

which make a vectorization of strided memory accesses pos-

sible. Although all modern Intel CPUs since Haswell support

AVX2 gather instructions, our Haswell-EP still emulates those

instructions by microcode. Thus, gather instructions still have

a low throughput on Haswell-EP.

In order to derive a loop structure with high temporal as

well as spatial locality, we can make use of loop tiling (Ver-3,

Listing 4). Ver-3 also makes use of both optimizations from

Ver-1 (elimination of the zero initialization phase and loop

fusion) yielding a similar loop structure as in Ver-1. However,

in contrast to Ver-1, it has an outer parallel tile loop, which

iterates over the system dimension in larger steps dividing the

system into tiles of a user-defined size. Inside the tile loop run

the stage loop and the combination loop. The innermost loop

is the intra-tile loop, which iterates over the elements of the

690 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

!$OMP PARALLEL DEFAULT(SHARED)

!$OMP DO PRIVATE(stg,ic, idi) SCHEDULE(STATIC)

do id = 1,nprob, tile_size

do stg = ist1,stages

do idi = id, min(id+tile_size-1,nprob)

pyy(idi,idx(new+stg)) = pb(stg,1)*pyy(idi,idx(1))+

& pa(stg,1)*ff(idi,idx(1))

end do

do ic = 2,stages

do idi = id, min(id+tile_size-1,nprob)

pyy(idi,idx(new+stg)) = pyy(idi,idx(new+stg))+

& pb(stg,ic)* pyy(idi,idx(ic)) +

& pa(stg,ic) * ff(idi,idx(ic))

end do

end do

end do

end do

!$OMP END DO

!$OMP END PARALLEL

Listing 4. Ver-3: Ver-2 improved by loop peeling, fusion, and tiling.

TABLE II
RUNTIME COMPARISON FOR 100 TIME STEPS ON HASWELL-EP AND

XEON PHI WITH GRID SIZE 500× 500

Runtime for different #threads
Hardware Version 1 4 8 60 120
Haswell-EP Ver-0 10.73 4.98 5.02 - -
Haswell-EP Ver-1 8.64 4.00 3.45 - -
Haswell-EP Ver-3 2.53 0.95 0.76 - -
Xeon Phi Ver-0 50.01 13.06 6,69 - -
Xeon Phi Ver-3 19.54 4.90 2.47 0.39 0.29

corresponding tile, i.e., the stride-1 dimension. The resulting

memory access pattern is illustrated in Figure 3. Only the same

amount of data needs to be accessed as in Ver-2, but, since the

tile loop now contains the stage loop and the combination loop,

an iteration of the tile loop computes the linear combination

for one tile for all the stages. This provides a blocking effect

across the stages: Assuming the tile size is small enough so

that the data accessed in one iteration of the tile loop fits in the

cache, the final values of the elements of Ym have to be sent to

main memory only once. Since the innermost loop iterates over

the stride-1 dimension, there also is a high spatial locality, so

that cache lines can be reused once they have been loaded into

the cache, and efficient SIMD vectorization is possible. Be-

cause of that, choosing a good tile size for Ver-3 is important.

B. Performance of the Loop Structure Variants

In this section we will analyze how the different versions so

far scale with the amount of active cores. For this purpose we

have measured the runtimes of the different versions on the

Haswell-EP and on the Xeon Phi. The runtimes measured are

given in Table II. The scaling behavior is shown in Figures 4

and 6 in terms of the inverted runtime (reciprocal of the run-

time) as a function of the number of threads. As in a speedup

diagram, a linear growth of the inverted runtime corresponds

to a good scalability, but, in contrast to a speedup diagram,

there is no need to chose a sequential reference runtime.

We can divide the versions so far into two groups: The

first group consists of the original EPPEER version (Ver-0)

and Ver-1, which both only utilize stage parallelism, while the

second group consists of Ver-2 and Ver-3, which both only

utilize system parallelism for the linear combination.

Because the peer methods part of EPPEER possess at most

8 stages, the stage-parallel variants use up to 8 cores only.

Furthermore, there is a load imbalance when 3, 5, 6, or 7

threads are used. Ver-1 of the first group, which improves the

original EPPEER version by removing the zero initialization

and fusing the two loop nests, is about 1.6 times faster than

the original EPPEER version.

In contrast to the stage-parallel variants, the system-parallel

variants can potentially use more than 8 cores and are not

affected by the load imbalance. The cause of this is the system

dimension offering a higher degree of parallelism. Ver-2 uses

system parallelism without loop tiling. That is why it eventu-

ally became up to 3 times faster than the best stage-parallel

variant on the Haswell-EP. However, when Ver-2 was used on

less than 4 cores, it was slower than the stage-parallel variants.

Unlike Ver-2, Ver-3 achieves system parallelism with an ef-

ficient memory access pattern by utilizing loop tiling. Prepara-

tory runtime measurements had shown that a tile size of about

128 was best for almost all problem sizes. For the following

experiments, therefore 128 was used as tile size for Ver-3.

Figure 5 shows the normalized runtime of Ver-3 with different

tile sizes for a grid size of 500×500 and 700×700 and for one

core and eight cores on the Haswell-EP. For both problem sizes

and both core numbers there is a runtime minimum between

tile size 64 and 256.

Because of its more efficient memory access pattern, Ver-3

was about three times faster than Ver-2 running on the same

amount of cores on the Haswell-EP. Ver-3 was also about

8 times faster than the best stage-parallel variant, if both

used the same amount of cores. This suggests Ver-3 also

having a more cache friendly memory access pattern than the

stage-parallel variants.

On the Xeon Phi also Ver-3 obtains the best runtime. On

this processor we could observe a reduction of the runtime for

up to 120 threads, where for large numbers of threads Ver-3

clearly outperforms Ver-2.

To measure the locality behavior, we measure the

normalized runtime (Figures 7 and 8), i.e., the runtime per

time step divided by the number of equations, n, on the

Haswell-EP. Since the right-hand-side of brus has costs

Θ(n), an increase in the normalized runtime usually indicates

working sets falling out of a cache level. As we can see, the

normalized runtime of Ver-3 is significantly lower than that

of the other versions, and it does not increase as strongly

when the problem size exceeds a certain threshold, which

depends on the number of threads.

In addition, we measured the L3 cache misses and the

total amount of store and load operations. The measurements

confirm that Ver-3 has a smaller L3 cache miss rate in relation

to the total load/store operations than both stage-parallel

versions (see Figure 9). Furthermore, this plot shows also that

the L3 cache miss rate is much lower on small problem sizes.

MATTHIAS KORCH ET AL.: INFLUENCE OF LOCALITY ON THE SCALABILITY OF METHOD-AND SYSTEM-PARALLEL EXPLICIT PEER METHODS 691

T
ile

 3
T

ile
 2

T
ile

 1

Stages

S
ys

te
m

1 2 3 4 5 6 7 81 2 3 4 5 6 7 8

pyypyy old new

1 2 3 4 5 6 7 8

System loop

ff

Combination loop Stages loop

T
h

re
a

d
 1

T
h

re
a

d
 2T

ile
 4

Fig. 3. Data access pattern of the optimized system-parallel loop structure (Ver-3).

2 4 6 8

0

0.2

0.4

0.6

0.8

1

·10−2

Number of threads

In
v
er

te
d

ru
n

ti
m

e
in

s−
1

Ver-0 Ver-1 Ver-2 Ver-3

Fig. 4. Inverted runtime of different versions of the linear combination of
brus on Haswell-EP in seconds.

0 500 1,000 1,500 2,000
0.5

1

1.5

2

2.5

3
·10−6

Tile size

N
o

rm
al

iz
ed

ru
n

ti
m

e
in

s

500× 500, 1 thread 500× 500, 8 threads

700× 700, 1 thread 700× 700, 8 threads

Fig. 5. Normalized runtime of Ver-3 in seconds for different tile sizes (x-axis),
different grid sizes and numbers of threads on Haswell-EP.

100 101 102

0

100

200

300

Number of threads

In
v
er

te
d

ru
n

ti
m

e
in

s−
1

Ver-2 Ver-3

Fig. 6. Inverted runtime of system-parallel versions of the linear combination
of brus on Xeon Phi for one time step in seconds.

100 200 300 400 500

1

2

3

4

5

6

·10−6

Grid size

N
o

rm
al

iz
ed

ru
n

ti
m

e
in

s

Ver-0 Ver-1 Ver-2 Ver-3

Fig. 7. Normalized runtime of the linear combination of brus on Haswell-EP
in seconds for 1 thread.

V. INTERPLAY WITH THE FUNCTION EVALUATION AND

FULLY SYSTEM-PARALLEL EXECUTION

In the last section we have only focused on optimizing the

linear combination without modifying the loop nest, which

evaluates the problem function. In this section, however,

we will improve the problem function evaluation and the

692 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

100 200 300 400 500
0

0.5

1

1.5

·10−6

Grid size

N
o

rm
al

iz
ed

ru
n

ti
m

e
in

s

Ver-0 Ver-1 Ver-2 Ver-3

Fig. 8. Normalized runtime of the linear combination of brus on Haswell-EP
in seconds for 8 thread.

200 300 400 500 600 700

0

0.5

1

1.5

Grid size

R
at

io
o

f
L

3
m

is
se

s
to

#
lo

ad
/s

to
re

in
st

ru
ct

io
n

s

Ver-0 Ver-1 Ver-3

Fig. 9. Ratio of L3 misses to #load/store instructions for 8 threads and variable
grid size.

interaction of the problem function with the linear combina-

tion.

The runtime experiments of the previous section have con-

firmed that an optimized system-parallel tiled loop variant of

the linear combination such as Ver-3 outperforms stage parallel

variants, because it requires less memory references and can

efficiently exploit temporal and spatial locality. However, up

until now all implementation variants evaluated the problem

function using parallelism across the stages.

Unfortunately, combining the system-parallel linear com-

bination with a stage-parallel function evaluation has several

disadvantages: The stage-parallel function evaluation can use

as many cores as there are stages only. Furthermore both

a system parallel linear combination and method parallel

function evaluation have different memory access patterns,

which causes a data redistribution and reduces locality. That is

why we modify the loop nest containing the problem function

to adopt system parallelism. However, up to now the problem

function has been evaluated by a single function call that

computed the temporal derivatives for every element of a given

vector, which is not suited for system parallelism.

Therefore, we implemented two new versions of the brus

!$OMP PARALLEL DEFAULT(SHARED)

!$OMP DO PRIVATE(stg) SCHEDULE(STATIC)

do id = 1,nentries,tile_size

do stg = ist1,stages

do idi = id, min(id+tile_size,nentries)

call fcn(idi,t+phs*pc(stg),pyy(:,idx(new+stg)),

& ff(:,idx(new+stg)),cpar)

end do

end do

end do

!$OMP END DO

!$OMP END PARALLEL

Listing 5. Elementwise function evaluation.

do stg = ist1,stages

!$OMP PARALLEL DEFAULT(SHARED)

!$OMP DO SCHEDULE(STATIC)

do i = 1,nentries,block_size

call fcn(i,block_size,t+phs*pc(stg),

& pyy(:,idx(new+stg)), ff(:,idx(new+stg)),cpar)

end do

!$OMP END DO

!$OMP END PARALLEL

end do

Listing 6. Blockwise function evaluation.

problem with a modified signature and a modified internal

structure: The first new version (element version) calculates

the temporal derivatives for one single element of the problem

vector per call. Yet again, this design has two major disad-

vantages: The element version has to perform the boundary

checks of the stencil for each call, and the compiler is not able

to vectorize this function efficiently. Moreover the temporal

derivatives of the two substances contained in a grid cell have

some computations in common, which the element version

has to compute redundantly twice. We can avoid all those

inefficiencies if we do not call the right-hand-side function

once per element, but once for a range of elements, and

optimize the internal structure of the function accordingly. This

results in the implementation of the block version. Finally, we

have adapted the loop nest evaluating the problem functions

to the element version in Listing 5 and to the block version

in Listing 6. Since the element version cannot provide any

blocking itself, we have added a simple 1D-blocking scheme

to the loop nest.

Inverted runtimes measured for the two new variants of brus

are shown in Figures 10 and 11. Here, the grid size used

is 500 × 500, the number of stages is set to 8, and 200 is

used as block size for the block version. As expected, both

new versions introduced in this section are faster. The block

version has the best runtime. The element version first starts

slower than the original implementation, because this version

invokes the function evaluation n times, each time performing

a test whether the current index corresponds to a boundary

point or not. This leads to a high overhead. But for large

numbers of cores, the higher locality of the element version

can compensate this. In particular, it can obtain speedups

higher than the number of stages available.

Hence, all in all, the best runtime for brus is obtained by

the system-parallel linear combination with loop tiling, loop

MATTHIAS KORCH ET AL.: INFLUENCE OF LOCALITY ON THE SCALABILITY OF METHOD-AND SYSTEM-PARALLEL EXPLICIT PEER METHODS 693

2 4 6 8
0

50

100

150

200

250

Number of threads

In
v
er

te
d

ru
n

ti
m

e
fc

n
in

s−
1

original element block

Fig. 10. Inverted runtime for different function evaluations (row, element,
block) on Haswell-EP for one function invocation using Ver-3.

100 101 102

0

200

400

600

Number of threads

In
v
er

te
d

ru
n

ti
m

e
fc

n
in

s−
1

original element block

Fig. 11. Inverted runtime for different function evaluations (row, element,
block) on Xeon-Phi for one function invocation using Ver-3.

fusion and loop peeling combined with the system-parallel

blockwise function evaluation.

VI. CONCLUSIONS

In this paper, we have considered the influence of locality

on the scalability of method- and system-parallel explicit peer

methods. In particular, we have focused on improving the

scalability for large sparse ODE systems with cheap function

evaluation costs. After confirming that the linear combination

to compute the argument vectors requires the major part

of the runtime for such ODE systems, we have considered

several transformations of the loop structure, analyzed their

memory access pattern and measured the resulting runtimes

and scalability on a Haswell-EP and on a Xeon Phi processor.

As expected, the results of the runtime experiments confirmed

that a system-parallel computation of the linear combination

leads to a better performance than a stage-parallel computation

because less memory references are required and a more

cache-efficient data access pattern can be employed. A further

performance improvement is possible when also the function

evaluation can be performed in a system-parallel way, so that

no data-redistribution is necessary.

ACKNOWLEDGMENT

We would like to thank Bernhard Schmitt for providing the

EPPEER package and Simon Melzner for hardware support.

REFERENCES

[1] E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential

Equations I: Nonstiff Problems, 2nd ed. Berlin: Springer, 2000.
[2] K. Burrage, Parallel and Sequential Methods for Ordinary Differential

Equations. New York: Oxford University Press, 1995.
[3] B. A. Schmitt, “Peer methods for ordinary differential equations,” http://

www.mathematik.uni-marburg.de/∼schmitt/peer/, last checked 2015-08-
17.

[4] B. A. Schmitt and R. Weiner, “Parallel two-step W-methods with peer
variables,” SIAM J. Numer. Anal., vol. 42, no. 1, pp. 265–282, 2004.

[5] B. A. Schmitt, R. Weiner, and S. Beck, “Two-step peer methods with
continuous output,” BIT Numer. Math., vol. 53, pp. 717–739, 2013.

[6] B. A. Schmitt, R. Weiner, and S. Jebens, “Parameter optimization for
explicit parallel peer two-step methods,” Appl. Numer. Math., vol. 59,
pp. 769–782, 2009.

[7] R. Weiner, K. Biermann, B. A. Schmitt, and H. Podhaisky, “Explicit
two-step peer methods,” Comput. Math. Appl., vol. 55, no. 609–619,
2008.

[8] B. A. Schmitt and R. Weiner, Manual for explicit parallel peer code

EPPEER, Aug. 2012.
[9] Y. Maday and G. Turinici, “A parareal in time procedure for the control

of partial differential equations,” C.R.A.S. Sér. I Math, vol. 335, pp.
387–391, 2002.

[10] P. J. van der Houwen and E. Messina, “Parallel Adams methods,” J.

Comput. Appl. Math., vol. 101, pp. 153–165, Jan. 1999.
[11] K. Ahnert, D. Demidov, and M. Mulansky, “Solving ordinary differential

equations on gpus,” in Numerical Computations with GPUs, V. Kin-
dratenko, Ed. Springer, 2014, ch. 7, pp. 125–157.

[12] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, “Efficient
management of parallelism in object oriented numerical software li-
braries,” in Modern Software Tools in Scientific Computing, E. Arge,
A. M. Bruaset, and H. P. Langtangen, Eds. Birkhäuser Press, 1997,
pp. 163–202.

[13] M. Korch and T. Rauber, “Parallel low-storage Runge-Kutta solvers
for ODE systems with limited access distance,” Int. J. High

Perf. Comput. Appl., vol. 25, no. 2, pp. 236–255, 2011. doi:
10.1177/1094342010384418

[14] ——, “Locality optimized shared-memory implementations of iter-
ated Runge-Kutta methods,” in Euro-Par 2007, ser. LNCS, vol. 4641.
Springer, 2007, pp. 737–747.

[15] R. Karrenberg, “Automatic SIMD vectorization of SSA-based control
flow graphs,” Dissertation, Universität des Saarlandes, Saarbrücken, Jul.
2014.

[16] S. Ghosh, M. Martonosi, and S. Malik, “Cache miss equations: A
compiler framework for analyzing and tuning memory behavior,” ACM

Trans. Prog. Lang. Syst. (TOPLAS), vol. 21, no. 4, pp. 703–746, 1999.
[17] D. Feld, T. Soddemann, M. Jünger, and S. Mallach, “Facilitate SIMD-

Code-Generation in the Polyhedral Model by Hardware-aware Auto-
matic Code-Transformation,” in Proc. of the 3rd International Work-

shop on Polyhedral Compilation Techniques, A. Größlinger and L.-N.
Pouchet, Eds., Berlin, Germany, Jan. 2013, pp. 45–54.

[18] S. Williams, A. Waterman, and D. Patterson, “Roofline: An Insightful
Visual Performance Model for Multicore Architectures,” Commun. ACM,
vol. 52, no. 4, pp. 65–76, Apr. 2009.

[19] G. Hager, J. Treibig, J. Habich, and G. Wellein, “Exploring performance
and power properties of modern multi-core chips via simple machine
models,” Concurrency and Computation: Practice and Experience,
vol. 28, pp. 189–210, 2016.

[20] J. Ansel, “Autotuning programs with algorithmic choice,” Ph.D. dis-
sertation, Massachusetts Institute of Technology, Cambridge, MA, Feb.
2014.

[21] N. Kalinnik, M. Korch, and T. Rauber, “Online auto-tuning for the
time-step-based parallel solution of ODEs on shared-memory systems,”
Journal of Parallel and Distributed Computing, vol. 74, no. 8, pp. 2722–
2744, 2014. doi: 10.1016/j.jpdc.2014.03.006

[22] B. A. Schmitt and R. Weiner, “Parallel start for explicit parallel two-
step peer methods,” Numerical Algorithms, vol. 53, no. 2-3, pp. 363–381,
2010.

694 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

