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Abstract—The contemporary electric power system is highly
dependent on Information and Communication Technologies
which results in its exposure to new types of threats, such as Ad-
vanced Persistent Threats (APT) or Distributed-Denial-of-Service
(DDoS) attacks. The most exposed components are Industrial
Control Systems in substations and Distributed Control Systems
in power plants. Therefore, it is necessary to ensure the cyber
security of this critical infrastructure and develop new cyber
security technologies able to protect from advanced cyber threats.
In this paper a pioneering Situation Awareness Network for the
electric power system is presented together with a set of metrics
for its testing.

I. INTRODUCTION

M
ODERN energy infrastructures aim at reducing peak

demand, shifting usage to off-peak hours, lowering

total energy consumption and carbon dioxide footprint [1] or

enabling consumers to control their power consumption based

on local needs and real-time electricity price rates [2].

To meet these requirements it is necessary to ensure the

continuous exchange of data between all points of the network.

Although the communication infrastructure may partially exist,

it is necessary to facilitate its vast expansion by increasing

bandwidth (among the others due to the introduction of two-

way communication as an inherent component of the new en-

ergy infrastructure and smart grid) and connecting consumers

(residential, commercial, industrial, etc.). To reduce the costs

which are incurred by this process, the Internet is often used as

communication backbone for the energy management systems

[1].

However, such an approach exposes the power system to

a great security breach. Every network layer and technology

used in the new energy infrastructure represents a potential

target of a cyber-attack. This in particular refers to Industrial

Control Systems (including SCADA) in substations and Dis-

tributed Control Systems (DCS) in power plants. Moreover in
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the recent years wireless networks have been widely employed

as part of many industrial communication systems, which

exposes the entire network to even greater risk [3].

Advanced Persistent Threats (APT) are dedicated attacks

able to persistently target a specific entity and to cause an

intended effect, such as an interruption to the power supply

[4], [5]. DDoS attacks, on the other hand, attempt to delay,

block or corrupt the communication in the grid [6].

Stuxnet [7] was the first wide manifestation of malware

that was specifically designed to attack networked industrial

control systems used in the power system. Detected for the first

time in 2010, Stuxnet is a cyber worm able to infect process

servers and Programmable Logic Controllers (PLCs) and alter

physical processes. The ultimate goal of Stuxnet is to sabotage

the attacked facility by reprogramming programmable logic

controllers (PLCs) to render them operating out of their

specified boundaries. Later studies revealed that Stuxnet was

not the first threat of that type. In fact that it had its precursor

called Flame that was undetected [8]. Flame is a large complex

malware designed to aggressively gather information from

its target systems. Apart of conventional information stealing

methods it is able to capture Skype calls and record audio [9].

Since the manifestation of Stuxnet both information security

experts and hackers have shown a much greater level of

interest in this area. As a result, 64 ICS vulnerabilities were

discovered in 2011 and 98 additional ones were announced

in the first eight months of 2012 alone – more than the

total number for the preceding seven years combined [10].

In parallel sophisticated attacks have been appearing – Duqu,

Red October, Gauss and Black Energy – each of them more

complex and advanced than its predecessor [9], [11]. Duqu was

designed to steal information in preparation for a Stuxnet-like

attack and it used new techniques never previously noted [9].

Red Dragon and Gauss utilise encryption in order to effectively

penetrate the infiltrated information systems [11], [9]. Black

Energy is the most recently discovered malware which aims at

Industrial Control Systems used in critical infrastructures [12].

Taking into account all these threats and the attacks already

carried out, it is necessary to take countermeasures. Standard

cyber security technologies and best practices – such as

access control, anti-malware, firewalls, intrusion detection and

prevention systems, defence in depth, and system hardening
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– are indispensable in protecting the power system. However,

they are only a partial solution [4], [13], [14], [15].

To counter the evolved, highly sophisticated threats, ad-

vanced cyber security technologies are required, such as

Security Information and Event Management (SIEM) systems,

application whitelisting, and Trusted Platform Modules (TPM)

[4], [13], [16] together with an efficient and effective risk

assessment and management [17]. Developing and deploying

Situation Awareness Networks (SANs) with SIEM software

will improve situational awareness and will allow for better

control and faster response to threats [18].

Such a Situation Awareness Network (SAN) has been

developed in the project DEnSeK (Distributed Energy

Security Knowledge) [19]. The project aimed at improving

the security and resilience of the new energy infrastructure

against cyber-threats by providing a platform for the security

knowledge exchange between companies of the European

energy sector and establishing a European Energy ISAC

(Information Sharing and Analysis Centre) which enables

interactive and real-time knowledge and information sharing

between all involved parties [19].

In this paper the SAN architecture is presented along with

the set of metrics to be used for its evaluation. To the best

of authors’ knowledge such a dedicated set of metrics for

Situation Awareness Networks (SANs) has not been proposed

so far, most probably because the concept of SAN is rela-

tively new. It must be underlined that evaluation of Situation

Awareness Networks is an area distinct from the quantitative

assessment of the level of situational awareness. For the latter

several approaches exist [20].

II. SITUATIONAL AWARENESS NETWORK ARCHITECTURE

The Situational Awareness Network encompasses and com-

bines a number of diverse network-based sensors, which

facilitate network traffic and data monitoring and detection of

various events. Collected and processed data sets are visualised

to a SAN operator who responds to emerging threats.

The need for combining together multiple sensors stems

from the observation that in the past half-decade monitoring

tools have become more specialised and now they focus on

specific threat vectors and/or analysis approaches. Hence, in

order to offer a broad overview of network activities and

potential issues, it is crucial to combine diverse monitoring

engines.

The purpose of the visualization is two-fold. First, operators

can spot anomalies that the automatic systems might not be

able to detect or might not be configured to detect. In this

case, a visualisation dashboard supports the analysis of a large

amount of data as it reduces it significantly focusing on key

parameters for detecting anomalies.

Secondly, once an event is reported by one of the automatic

systems (for instance, a malware spread is detected), operators

can leverage the visualisation dashboard to observe the way

network traffic evolves and either confirm or reject the alert

previously raised.

In the DEnSeK project a three-tier architecture of the

Situational Awareness Network, presented in Fig. 1, was

proposed. The lowest, data tier consists of sensors which

collect network data. In the logic tier, Security Information

and Event Management (SIEM) software processes data from

sensors and transmits them to the top layer. Finally in the

presentation tier, the dashboard visualises the data by a user-

friendly operator interface.

Presentation tier

Logic tier

Data tier

HIDS

NIDSmonitoring
network

SIEM

Dashboard

Fig. 1. SAN three-tier architecture

In the approach presented in this paper, SAN needs a

signature-based NIDS (such as Snort [21], [22] and Suri-

cata [23]), to detect well-known attack payloads, and several

behavioural-based engines to analyse both payloads and flows

for anomalies. As it relies on open-source/freely available

tools, currently exist few alternatives for behavioural-based

systems that can be used in production environments. One

of them is Bro [24], [25], which can be used to code any type

of algorithm on top of its protocol parsers.

On top of regular network monitoring tools and SIEMs that

are available off-the-shelf, a visualisation dashboard is located.

Its main role is to allow operators to observe the behaviour

of the underlying industrial network. The dashboard provides

several widgets, presented in Fig. 2 that can be instantiated to

present various dimensions of network traffic (IP addresses,

TCP ports, protocols, etc.) using different metrics (bytes,

packets, protocol messages, etc.).

The central SIEM node is provided with Syslog (system

logging) messages by various network-based sensors. This

is a standard practice that enables required flexibility while

providing all the necessary information. The visualisation

dashboard leverages diverse software and components in order

to deliver the extracted metadata to a central repository.

At the bottom of the architecture, a Linux-based computer

equipped with Argos (a Linux-based SCADA alternative [26])

analyses network streams and extracts relevant metadata. Such

data are sent via Apache Kafka [27] publish-subscribe messag-
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(a) Network protocols and commands used in the communication

(b) Bandwidth by protocol and destination

(c) Connections between network hosts

Fig. 2. SAN Dashboard widgets

ing service to a central repository based on Druid [28]. This

is a real-time data store that takes advantage of an in-memory

architecture to facilitate data aggregation and fast querying.

Data processed by Druid are queried via graphical web widgets

based on the D3JS framework.

The visual analytics component does not fulfil only the

task of depicting network data flows and interactions in

real-time, but can be also applied to guiding the devel-

opment of specific controls and checks. Every organisa-

tion in fact will exhibit a slightly different network lay-

out and configuration, even those within the same in-

dustrial sector and/or running the same software package.

This diversity requires a certain degree of customisation

of controls, to tackle the specificity of a certain environ-

ment.

End users can perform an assessment of their network

through the visual analytics component to baseline network

behaviour, discover misconfigurations and assess issues. After

this initial assessment, end users can select key indicators

that can point at operational issues or cybersecurity breaches.

To provide some examples, RTUs used in the field typi-

cally exchange data with the SCADA master via long-lasting

connections that could be running for weeks or months. In

case an RTU loses too often connectivity and re-establishes

connectivity frequently, this could indicate an issue with the

device itself (for instance, end of life) or with the network

infrastructure (because of a wireless link). Key indicators can

be enforced by writing a specific script in Bro, or a signature

in Snort and/or Suricata.

III. METRICS IN THE TESTING AND EVALUATION PROCESS

Testing is an integral part of software development process.

In the document „Standard Glossary of Software Engineering

Terminology” IEEE defines testing as the „process of oper-

ating a system or a component under specified conditions,

observing or recording the result and making an evaluation

of some aspect of the system or component” [29].

The goal of testing is to detect the difference between

existing and required conditions and to evaluate the features

of the software items [30]. Currently, testing is a mature

and well-defined area of software engineering. Good testing

process design should ensure the repeatability, manageability

and measurability [31].

As a part of the development of the Situational Awareness

Network for the DEnSeK project, integration tests have been

carried out. Their aim was to validate a selection of SAN

components and check their operational capability in a com-

plex test environment. During the tests appropriate interaction

between the components was verified.

The tests were performed in the cyber security laboratory of

one of the largest European electricity companies. They proved

that the architecture and system components were properly

selected and the system operates as intended [32].

Despite the positive results of the tests, the lack of quan-

titative indicators made it difficult to objectively assess the

results. It was only possible to grade binary – it works or

does not work. The extent to which the requirements are met,

however, could not be determined in a measurable way. As far

as only integration tests are concerned, this binary evaluation

is sufficient. Nevertheless the majority of evaluations require

higher precision.

Thus in order to enable objective evaluation of a software

product and its development process software metrics were

introduced. A software metric is a „quantitative measure of

the degree to which a system, component or process has given

attribute” [29]. The knowledge gathered on the basis of metrics

should lead to an improved process and products [33]. The

metrics can be divided into two groups: product metrics and

metrics for testing process [34].

Metrics from the first group are used to provide information

about the quality and maturity of the tested product. They
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facilitate early detection of product flaws and related problems

and enable their more accurate correction or elimination. In

addition, metrics provide quantitative criteria which may be

used in the process of acceptance of the final product.

The latter group contains metrics that allow for monitoring

of the progress of the testing process and its results after

the execution. They are used on one hand, to evaluate the

effectiveness of the testing process. On the other hand, they

provide test termination criteria.

The use of software metrics as objective evaluation criteria

is extremely important in the management of the software

development process [35].

Software metrics have been developed practically for all ap-

plication domains. However, to the best of authors’ knowledge

the metrics for Situational Awareness Platforms have not been

proposed so far. This is most probably due to the fact that the

concept of Situation Awareness Network and the implementing

it platforms are relatively recent.

In order to fill this gap the relevant research studies have

been investigated to provide a comprehensive set of metrics

for testing SANs. The metrics’ proposals in several fields

have been identified and analysed, including Intrusion De-

tection and Prevention Systems, Security Information and

Event Management systems as well as general domains such

as software engineering, testing or cyber security. The data

collected allowed for selecting the relevant metrics.

When choosing the metrics, the Jaquith’s [36] recommenda-

tions were taken into account. According to him, good metrics

should be [36]:

• consistently measured,

• expressed as cardinal number or percentage,

• expressed using unit of measure,

• contextually specific,

• possible to obtain at reasonable cost.

In order to design the test procedure for the SAN system,

a set of metrics was selected. Metrics described in Section

IV regard the testing process. They facilitate the control and

management of the testing process, as well as deciding when

to end it.

Other metrics are related to the product. In the evaluation,

the product is understood as a complete SAN system. Given

the characteristics of the system the metrics are also divided

into two groups. In Section V cyber security metrics are

presented. They allow for evaluating the core SAN function-

ality answering the question of how the system copes with

the detection of security threats. The last group of metrics,

presented in Section VI, refer to system usability. As one of

the functions of the SAN, provided by the Dashboard, is the

visualisation of security threats to an operator, the quality of

user interface is very important.

The main criterion taken into account when selecting the

metrics was the possibility of their straightforward implemen-

tation to assess SAN platform at every stage of development.

In addition, a set of metrics was chosen to cover as widely as

possible all aspects of the testing process.

IV. METRICS FOR TESTING PROCESS

Testing metrics are widely used in the field of software

testing. Their aim is to „provide information about the testing

status of a software product” [34].

Quadri and Farooq [34] divided testing metrics into several

groups. First of all they highlighted the metrics related to mea-

suring time, such as time required to run a test, time interval

between failures or number of failures in specific time interval.

After that the metrics for evaluating test efficiency, source code

coverage and quality were described. Finally metrics related

to defect identification and fixing were presented.

Chen et al. [37] conducted an in-depth analysis of software

metrics, examining the effectiveness of a set of complementary

metrics for cost, time, and quality to measure the quality of test

process. Based on the result they proposed four new testing

metrics: two related to product improvements and two related

to costs.

Kaur et al. [35] surveyed, classified and systematically

analysed the metrics proposed in the previous decades. They

discussed advantages or disadvantages for each product metric

along with its need and purpose. The suitability, effect, data

calibration and interpretation of metrics was also evaluated.

Based on the studies as well as the specificity of the

DEnSeK project four testing metrics were selected.

A. Source code coverage

The source code coverage metric enables evaluating the

confidence in the effectiveness of a test suite. The metric is

defined as follows:

SC =
Stt

St
(1)

where:

• SC – source code coverage,

• Stt – number of statements of a source code covered by

test suite

• St – number of statements of a source code,

The metric shows what part of the source code has been

covered with tests. If the value is too low, there should be

written additional test cases for uncovered source code.

B. Test case defect density

Test case defect density metric indicates whether the test

cases are effective and efficient in their ability to detect a

larger number of defects. It is defined as:

DD =
F

TE
× 100% (2)

where:

• DD – test case defect density,

• F – failures detected,

• TE – number of executed test cases.
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C. Failures detection rate

Failures detection rate metric test indicates whether the

prepared tests are time effective in terms of the number of

detected defects per unit time. The metric is defined by the

following formula:

FD =
FT

T
(3)

where:

• FD – failures detection rate

• FT – failures detected in T time

• T – number of business days used for testing

D. Test improvement in product quality

Test improvement in product quality metric shows the

relation between the number of weighted defects detected and

the size of the product release. It is defined as:

TI =
Wp

KCSI
(4)

where:

• TI – test improvement in product quality,

• Wp – number of weighted defects found in one specific

test phase,

• KCSI – number of new or changed source lines of code

in thousands.

The higher this number, the higher is the improvement of

the quality of the product contributed during this test phase.

V. CYBER SECURITY METRICS

Cyber security metrics are strictly related to the functional

operation of the Situational Awareness Network. The selection

was made among the metrics defined for security systems such

as Intrusion Detection Systems. One of the main problems that

SAN operators would face is the reliability of the threats detec-

tion. There are two main aspects to be taken into consideration:

false positives and true negatives. [38]

A true positive is when SAN informs about threat that really

exists. This is the desired situation. A false positive takes place

when SAN informs about threat that does not occur. A true

negative refers to the situation when SAN does not inform

about threat that really occurs.

Using these terms three metrics have been defined. Addi-

tionally two metrics based on the research conducted by Bayuk

and Mostashari [39] were proposed.

A. Accuracy

Accuracy metric describes the proportion of true results

(both true positives and true negatives) in the population of

all network events. It is defined as:

A =
TP + TN

TP + TN + FP + FN
(5)

where:

• A – detection accuracy

• TP – number of true positives

• TN – number of true negatives

• FP – number of false positives

• FN – number of false negatives

A higher value indicates a more reliable system operation.

B. Detection rate

Detection rate determines the effectiveness of threats’ de-

tection. When the metric value is closer to 1, the system is

more effective. A value of 1 means that each threat has been

detected.

DR =
TP

TP + FN
(6)

where:

• DR – detection rate

• TP – number of true positives

• FN – number of false negatives

C. False positive rate

False positives are one of SAN biggest issues. Their fre-

quent occurrence significantly undermines the effectiveness of

the SAN. Efforts should be made to the lowest value of this

indicator.

FPR =
FP

FP + TP
(7)

where:

• FPR – detection accuracy

• FP – number of false positives

• TP – number of true positives

D. Mean Time Between Failures

Mean time between failures (MTBF) is a standard metric

that describes reliability of the system. In the case of SAN

failure is defined by the occurrence of either false positive or

true negative. The metric is defined as:

MTFB =

∑NF

2
(Bn − En−1)

NF − 1
(8)

where:

• MTFB – Mean Time Between Failures

• Bn – beginning of n-th failure

• En – end of n-th failure

• NF – number of failures

E. Time To Protect

The metric is defined as the mean time between the de-

tection of the threat and noticing it by the operator. In this

way, both the effectiveness and efficiency of the system, as

well as the legibility of the information about the threat on

the dashboard, are evaluated.

TTP =

∑NT

1
(An −Dn)

NT
(9)

where:

• TTP – Time To Protect

• An – time of n-th threat notice

• Dn – time of n-th threat detection

• NT – number of threat detections
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VI. USER EXPERIENCE METRICS

In addition to testing against the above criteria, software

should be evaluated in terms of usability. This is particularly

relevant to software interface, but not exclusively. As far as

the DEnSeK SAN is concerned, the Dashboard requires special

attention in regard to usability. Based on the metrics proposed

by Tullis and Albert [40], the following metrics are proposed

for evaluation of the SAN usability.

A. Task success

This metric enables measuring the extent to which a user is

able to perform a given task. Task success can be measured

binary (succeed/failed), or as a level of success. The tasks with

a lower coefficient of success must be analysed to detect the

elements of the user interface which cause problems.

B. Time-on-task

Time-on-task allows for measuring the time required to

complete a specific task. The faster a user can complete a

task, the experience is better. In the DEnSeK project the metric

serves for evaluating the efficiency of the Dashboard.

C. Efficiency

In contrast to the previous metric, which concerned time,

the efficiency metric enables measuring the amount of work

required to complete a task. For instance such an effort can

be expressed by means of the number of mouse clicks or

keystrokes.

D. Errors

This metric allows for detecting improperly designed user

interface elements that cause users’ confusion. It is measured

as the number of user errors when performing a task. Errors

may be related to spelling, pressing a wrong key, etc.

E. Learnability

The learnability metric supports examining whether and

how user productivity increases with the better knowledge

of the system. Measuring learnability requires intense studies

spanning a long period of time. For this reason it is often left

out.

VII. CONCLUSION

The metrics described in the paper are used to evaluate

Situational Awareness Network (SAN) system developed in

the DEnSeK project. The SAN was designed as a three-tier

architecture. The lowest tier encompasses a number of sensors

for network monitoring. In the middle tier, the SIEM software

collects and processes the data from the sensors. Finally, the

dashboard on the top tier visualizes information about the

threats.
In order to select the appropriate set of metrics a thorough

literature analysis was conducted. To the best of authors’

knowledge the metrics for SAN have not been proposed so far.

Therefore software metrics developed for several related fields,

including cyber security, Intrusion Detection and Prevention

Systems, SIEM systems, software engineering and testing have
been analysed. The study made it possible to derive a set of

metrics for testing Situational Awareness Networks.

The selected metrics were divided into three groups. The

first group contains metrics related to the evaluation of the

testing process, the second – to the effectiveness of threat

detection, and the last – to the usability of the dashboard.

The metrics are used at each stage of the SAN development.

In addition they will be applied during final product evaluation

and acceptance process.
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