
Preliminary Report on Empirical Study of Repeated
Fragments in Internal Documentation

Milan Nosál’, Jaroslav Porubän
Department of Computers and Informatics,

Faculty of Electrical Engineering and Informatics,

Technical University of Košice

Letná 9, 042 00, Košice, Slovakia

Email: milan.nosal@gmail.com, jaroslav.poruban@tuke.sk

Abstract—In this paper we present preliminary results of an
empirical study, in which we used copy/paste detection (PMD
CPD implementation) to search for repeating documentation
fragments. The study was performed on 5 open source projects,
including Java 8 SDK sources. The study shows that there are
many occurrences of copy-pasting documentation fragments in
the internal documentation, e.g., copy-pasted method parameter
description. Besides these, many of the copy-pasted fragments
express some domain or design concern, e.g., that the method is
obsolete and deprecated. Therefore the study indicates that the
cross-cutting concerns are present in the internal documentation
in form of documentation phrases.

I. INTRODUCTION

P
RESERVING and comprehending developer’s concerns

(intents) in the source code is still a current challenge

in software development [1], [2], [3], [4]. In this paper we

analyze the internal documentation (source code comments,

JavaDoc, etc.) to recognize repeating documentation fragments

that document those concerns (or features [5]). Our research

question for this work is: Does internal documentation contain

significant duplication? To answer this question we performed

a copy/paste detection study, in which we analyzed JavaDoc

comments in 5 open source projects. In this report we present

preliminary results that indicate that there is a significant

duplication of text in internal documentation. These repeating

documentation fragments constitute documentation phrases

discussed in several works – e.g., our previous work [6], or the

one by Horie et al. [7]. This way the study has a potential to

highlight the importance of those works and it may stimulate

further attention to this topic.

II. DOCUMENTATION PHRASES

A documentation phrase is a set of documentation fragments

with the same or similar formulation (part of sentence, sen-

tence, a set of sentences) that can be found across the software

system or even across multiple systems. Documentation frag-

ments that represent the same documentation phrase usually

document the same domain or design property that is shared

by the documented program elements [6]. Horie et al. [7]

likened the documentation phrases to crosscutting concerns

from aspect oriented programming (AOP [8]).

As an example we can use the Swing library for component

graphical user interfaces in Java. The library is not thread

safe and therefore the programmer has to pay extra caution

when using it in multithreaded systems (she has to use Event

Dispatch Thread to safely work with the Swing components).

Swing JavaDoc documents it and for each affected class

includes a warning (see JPanel documentation in Figure 1).

Fig. 1. A NotThreadSafe documentation phrase instance in the Swing JPanel
documentation

For this warning to be included in the JavaDoc, its HTML

snippet has to be copy-pasted in the JavaDoc comment of each

affected class.

III. DOCUMENTATION COPY/PASTE STUDY

In this study we analyzed the internal documentation of

several Java frameworks and libraries to detect currently

existing documentation phrases. In order to find documentation

phrases, we performed a copy/paste detection1 on the docu-

mentation.

We have modified the PMD Copy/Paste Detection (CPD)

tool2 to support copy/paste detection on JavaDoc documenta-

tion. The tool was fed preprocessed sources of several libraries

and open source projects in Java and it analysed them to detect

duplications in documentation that would indicate the potential

1Copy/paste detection is usually used to search for code that needs to be
refactored, or to detect plagiarism [9].

2http://pmd.sourceforge.net/

Proceedings of the Federated Conference on Computer Science

and Information Systems pp. 1573–1576

DOI: 10.15439/2016F524

ACSIS, Vol. 8. ISSN 2300-5963

978-83-60810-90-3/$25.00 c©2016, IEEE 1573

Algorithm 1 JavaDoc preprocessing example – before

package org.tuke;

/**

* Dummy class.

* Created by Milan on 5.3.2016.

*/

public class DummyClass {

}

Algorithm 2 JavaDoc preprocessing example – after

_

_

_

Dummy class.

Created by Milan on 5.3.2016.

DummyClass.jdoc

.6.1394135902525.0.-2042003928.

_

_

documentation phrases. We will discuss the process phases in

more details in following sections.

A. Java Sources Preprocessing

In our experiment we used the tool to detect simple non-

parametrized documentation phrases in the JavaDoc documen-

tation. However, the PMD CPD was designed to be a code

analysis tool and as such its purpose was to detect duplica-

tion in programming languages. Documentation phrases are

fragments of documentation in a natural language.

PMD CPD tool works with language lexical tokens that it

compares to detect duplications in their usage. To reduce tok-

enization complexity we pre-processed the sources to remove

all the characters and tokens that are not the documentation.

In other words the preprocessed sources are source files with

only JavaDoc comments in their comments. Let us consider a

simple class with JavaDoc from Listing 1.

This source file would be transformed to the content pre-

sented in Listing 23

Java lexical tokens were discarded along with asterisks

indicating that following lines are part of JavaDoc (lines are

preserved for backtracking to original sources). At the end

of each JavaDoc comment we added a randomly generated

unique "anchor" (DummyClass.jdoc.6.1394135902525

.0.-2042003928. in the example) that prevented detection of

duplicates spanning multiple comments.

B. PMD CPD Modification

PMD CPD tool uses a tokenizer to read files and obtain

lexical tokens of the language. In our experiment we used

our custom tokenizer that divided the preprocessed files into

sentences. Each sentence in the file was a single token. If we

3We used underscores here to highlight empty lines.

consider the DummyClass example from section III-A, the

tokenizer would return following three tokens:

• "Dummy class."

• "Created by Milan on 5.3.2016."

• "DummyClass.jdoc.6.1394135902525.0.-2042003928."

Separators for the tokenization were characters ’.’, ’?’, and

’!’ followed by a whitespace character (therefore the date in

the second token from the example was not divided in multiple

tokens), or a new line character followed by an empty line.

C. Document Phrases Detection

For the duplication detection process we used the

standard PMD CPD implementation (according to http://

pmd.sourceforge.net/pmd-4.3.0/cpd.html they use Karp-Rabin

string matching algorithm). We registered our modification in

LanguageFactory and GUI classes and used the graphical

user interface provided by the GUI class to run the tool.

In the setup of the copy/paste detection we set the ’Report

duplicate chunks larger than:’ option to a single token. This

way PMD CPD reported even duplication of a single token –

a single line in the documentation. The results were serialized

as XML so that we could use XPath with XSLT to process

them. First post-processing removed all the results that did not

have at least 4 duplications – we considered 4 instances of a

documentation phrase a reasonable threshold for considering

it a significant documentation phrase.

IV. RESULTS

We performed the experiment on the following open source

Java projects:

• sources of Java 8 standard edition4 with 7703 source files,

• PicoContainer5 with 1067 source files,

• JasperReports library6 with 2834 source files,

• JoSQL7 (SQL for Java Objects) with 85 source files, and

• jEdit8 with 573 source files.

A. Copy/paste Detection Results

The PMD CPD tool discovered 6102 duplicated fragments

of various lengths in Java 8 source code. 2221 of them

were duplicated fragments that had 4 instances. The highest

number of instances of a single duplicated fragment was 344.

Second highest were two duplicated fragments both with 299

instances. Figure 2 shows an overview of obtained results. We

will provide a more detailed analysis of these data below.

PicoContainer contained 70 duplicated fragments ranging

from 36 duplicated fragments with 4 instances to a single

fragment duplicated 634 times. Figure 2 presents results for

PicoContainer in a simple chart. Closer inspection of the

results showed that duplicated fragments with the highest

4http://www.oracle.com/technetwork/java/javase/downloads/
java-archive-javase8-2177648.html, JDK version 8u20

5https://github.com/picocontainer/picocontainer, commit 0f8172b
6http://sourceforge.net/projects/jasperreports/files/jasperreports/, version

6.0.0
7http://sourceforge.net/projects/josql/files/josql/, version 2.2
8http://sourceforge.net/projects/jedit/files/jedit/, version 5.2.0

1574 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

0

500

1000

1500

2000

2500

0 50 100 150 200 250 300 350 400

D
u

p
li

ca
te

d
 f

ra
g

m
e

n
ts

Number of instances

Fig. 2. Duplicated fragments detected by PMD CPD in standard Java

numbers of instances were just lines consisting of asterisks

(*) probably used as a visual separator in the documentation.

0

5

10

15

20

25

30

35

40

0 100 200 300 400 500 600 700

D
u

p
li

ca
te

d
 f

ra
g

m
e

n
ts

Number of instances

Fig. 3. Duplicated fragments detected by PMD CPD in PicoContainer sources

JasperReports contained 131 duplicated fragments ranging

from 44 duplications with 4 instances to a single duplicated

fragment with 106 instances. Figure 4 presents results for

JasperReports in a simple chart. In this case the duplicated

fragment with 106 instances was a documentation phrase

reporting that the documented program elements were dep-

recated and to be removed: ’@deprecated To be removed.’.

Deprecation naturally expresses design concern – the given

program element became obsolete and should not be used

anymore.

0

5

10

15

20

25

30

35

40

45

50

0 20 40 60 80 100 120

D
u

p
li

ca
te

d
 f

ra
g

m
e

n
ts

Number of instances

Fig. 4. Duplicated fragments detected by PMD CPD in JasperReports sources

In JoSQL the PMD CPD discovered 31 duplicated frag-

ments. The most ’potent’ duplicated fragment with 54 in-

stances was a paramater description: ’@param q The Query

object.’. Parameter descriptions, especially this simple, could

hardly be considered reasonable documentation phrases. The

rest of results can be seen in Figure 5.

0

2

4

6

8

10

12

14

0 10 20 30 40 50 60

D
u

p
li

ca
te

d
 f

ra
g

m
e

n
ts

Number of instances

Fig. 5. Duplicated fragments detected by PMD CPD in JoSQL sources

jEdit project sources manifested 76 duplicated fragments

with 4 or more instances. Again, the most ’potent’ duplicated

fragment (with 78 instances) was a line of asterisks. However,

the second most ’potent’ duplicated fragment was a sentence

reporting that the documented method is thread-safe: ’This

method is thread-safe.’, thus showing that the thread-safe

documentation phrase would be useful even beyond the scope

of standard Java sources. The results overview can be seen in

Figure 6.

We can conclude that duplicated fragments (documentation

phrases) are common in practice.

V. THREATS TO VALIDITY

We should mention several threats to validity that should

to be considered for this study. First, the copy/paste detection

found all the duplicated sentences in the documentation, even

those that could hardly be assigned a concern. In those

MILAN NOSÁĽ, JAROSLAV PORUBÄN: PRELIMINARY REPORT ON EMPIRICAL STUDY OF REPEATED FRAGMENTS IN INTERNAL DOCUMENTATION 1575

0

5

10

15

20

25

30

35

40

45

0 20 40 60 80 100

D
u

p
li

ca
te

d
 f

ra
g

m
e

n
ts

Number of instances

Fig. 6. Duplicated fragments detected by PMD CPD in jEdit sources

cases using documentation weaving [7] would be impractical.

Further examination would be useful.
Second, the modified PMD CPD detected solely static

phrases – fragments of the documentation that were copy/-

pasted in documentation. Inclusion of parametrized documen-

tation phrases [6] would be welcome.

VI. RELATED WORK

Maalej et al. in [10] present a study of knowledge patterns in

API reference documentation. They define patterns as knowl-

edge types that categorize types of information expressed by

a particular documentation unit (a fragment of API documen-

tation documenting one API element). As example we can

mention types like the Functionality and Behavior knowledge

type that describes what the API does or the Code Examples

that provides a code sample showing how to use the API.
The work of Horie et al. [7] discusses documentation

phrases from the aspect-oriented viewpoint. They view docu-

mentation phrases as cross-cutting concerns. Their tool Com-

mentWeaver is able to weave documentation phrases the same

way as advices are woven in aspect-oriented programming.

Our work presented in [6] continues in their work. There we

propose using source code annotations to indicate program

elements that should be documented by a given documentation

phrase.
Shi et al. in [11] present an empirical quantitative study of

API documentation evolution. They analyze the documentation

to detect which parts of documentation are frequently revised,

how often these revisions indicate behavioral changes in API

and how often do these revisions occur. The contribution of

their work is in emphasizing the importance of API documen-

tation evolution in order to prevent defects in software using

the given API.

VII. CONCLUSION

In conclusion, the presented results underline the signifi-

cance of approaches like the one we presented in [6], or the

one by Horie et al. [7], which centralize the management of
such a documentation phrase into one place and thus ease their

maintenance and evolution.

In the future work we need to further examine the results

and confirm the significance of fragments that can be con-

sidered a concern (intent). An interesting modification of the

experiment would be inclusion of the parametrized fragments

as well.

ACKNOWLEDGMENT

This work was supported by project KEGA No. 019TUKE-

4/2014 Integration of the Basic Theories of Software Engineer-

ing into Courses for Informatics Master Study Programmes at

Technical Universities – Proposal and Implementation.

REFERENCES

[1] V. Vranić, J. Porubän, M. Bystrický, T. Frt’ala, I. Polášek, M. Nosál’,
and J. Lang, “Challenges in preserving intent comprehensibility
in software,” Acta Polytechnica Hungarica, vol. 12, no. 7, pp.
57–75, 2015. doi: 10.12700/aph.12.7.2015.7.4. [Online]. Available:
http://dx.doi.org/10.12700/aph.12.7.2015.7.4

[2] J. Kollár, M. Sičák, and M. Spišiak, “Towards Machine Mind Evolution,”
in 2015 Federated Conference on Computer Science and Information

Systems, ser. FedCSIS 2015, Sept 2015. doi: 10.15439/2015F210 pp.
985–990. [Online]. Available: http://dx.doi.org/10.15439/2015F210

[3] J. Juhár and L. Vokorokos, “A review of source code projections in
integrated development environments,” in 2015 Federated Conference

on Computer Science and Information Systems, ser. FedCSIS 2015,
Sept 2015. doi: 10.15439/2015F289 pp. 923–927. [Online]. Available:
http://dx.doi.org/10.15439/2015F289

[4] E. Pietriková and S. Chodarev, “Profile-driven source code exploration,”
in 2015 Federated Conference on Computer Science and Information

Systems, ser. FedCSIS 2015, Sept 2015. doi: 10.15439/2015F238 pp.
929–934. [Online]. Available: http://dx.doi.org/10.15439/2015F238

[5] R. Táborský and V. Vranić, “Feature Model Driven Generation of
Software Artifacts,” in 2015 Federated Conference on Computer

Science and Information Systems, ser. FedCSIS 2015, Sept 2015.
doi: 10.15439/2015F364 pp. 1007–1018. [Online]. Available: http:
//dx.doi.org/10.15439/2015F364

[6] M. Nosál’ and J. Porubän, “Reusable software documentation with
phrase annotations,” Central European Journal of Computer Science,
vol. 4, no. 4, pp. 242–258, 2014. doi: 10.2478/s13537-014-0208-3.
[Online]. Available: http://dx.doi.org/10.2478/s13537-014-0208-3

[7] M. Horie and S. Chiba, “Tool Support for Crosscutting Concerns
of API Documentation,” in Proceedings of the 9th International

Conference on Aspect-Oriented Software Development, ser. AOSD ’10.
New York, NY, USA: ACM, 2010. doi: 10.1145/1739230.1739242.
ISBN 978-1-60558-958-9 pp. 97–108. [Online]. Available: http:
//dx.doi.org/10.1145/1739230.1739242

[8] V. Vranić and B. Kuliha, “Realizing changes by aspects at the design
level,” in Proceedings of the 2015 IEEE 19th International Conference

on Intelligent Engineering Systems, ser. INES 2015, Sept 2015.
doi: 10.1109/INES.2015.7329736 pp. 369–374. [Online]. Available:
http://dx.doi.org/10.1109/INES.2015.7329736

[9] J. Genči, About One Way to Discover Formative Assessment

Cheating. Cham: Springer International Publishing, 2015, pp. 83–90.
ISBN 978-3-319-06764-3. [Online]. Available: http://dx.doi.org/10.
1007/978-3-319-06764-3_11

[10] W. Maalej and M. P. Robillard, “Patterns of Knowledge in
API Reference Documentation,” IEEE Transactions on Software

Engineering, vol. 39, no. 9, pp. 1264–1282, Sept 2013. doi:
10.1109/TSE.2013.12. [Online]. Available: http://dx.doi.org/10.1109/
TSE.2013.12

[11] L. Shi, H. Zhong, T. Xie, and M. Li, “An Empirical Study
on Evolution of API Documentation,” in Proceedings of the 14th

International Conference on Fundamental Approaches to Software

Engineering: Part of the Joint European Conferences on Theory and

Practice of Software, ser. FASE’11/ETAPS’11. Berlin, Heidelberg:
Springer-Verlag, 2011. doi: 10.1007/978-3-642-19811-3_29. ISBN 978-
3-642-19810-6 pp. 416–431. [Online]. Available: http://dx.doi.org/10.
1007/978-3-642-19811-3_29

1576 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

