

Abstract—Web based applications penetrate into every
software domain. Even those reserved only to desktop
programs are becoming available through web browsers now.
This has brought real technical challenges to software
developers. Medical programs are not different. In this paper
we are proposing new approach to text processing for web
browser based medical applications. We are focusing on
entering text of medical interpretation which is very important
and sensitive aspect of medical report creation. A number of
products were reviewed to justify the need for research in this
area. The developed approach integrates report assembling,
presentation and diagnosis text processing in accordance with
medical data safety regulations. We prove that proposed
solution based on HTML5 Canvas can be applied to
development of the most demanding pathology reporting
applications.

I. INTRODUCTION

EVELOPMENT of web based applications for report-

ing in medicine brings variety of challenges. The need

for online access to software is unquestionable today. Initi-

ated by the American Recovery and Reinvestment Act

(ARRA) by 2009 pertained to areas like patient electronic

health record [1] or management reporting. In spite of prob-

lems [2] online access to medical software tends to cover all

areas nowadays. We will focus on challenges with porting

medical reporting systems to web based applications. For the

use of this paper we generalize medical report document

structure [3]. The reports we are considering here can be di-

vided into the following parts:

D

1. The Patient Information part containing patient de-

mographics and clinical information (medical

record number, attending doctor, etc.),

2. The Diagnostic Tests part which refers to labora-

tory testing results (including historical results) and

observations,

3. The Medical Diagnosis part which is medical inter-

pretation text entered by health care professionals

(pathologist, radiologist, medical laboratory scien-

tist, etc.) that we will refer to as diagnostician,

4. Report Header and Footer sections that usually

contains medical institution information.

This work was supported by SoftSystem Sp. z o.o.

General template for medical report and its parts is presented

in Fig. 1.

There is a wide context of medical reporting and prob-

lems we faced working with such systems. In this paper we

decided to focus on issues which are causing difficulties, es-

pecially in the web based environment.

Among the issues selected by Paul N. Valenstain, MD [4],

the following are significant ones for which a solution will

be presented in this paper:

1. When diagnostic tests are completed and report

content is presented to a diagnostician, only the In-

terpretation sections can be modified (Interpretation

can consist of multiple sections). All other sections

of the document can not be modified (Diagnostic

Tests, Patient Demographics and Report

Header/Footer). Changing diagnostic or patient in-

Fig 1. Medical report document structure

First page header

Paient Informaion

Interpretaion secion

Diagnosic Test #1 Results

Diagnosic Test #2

Results

Fist page footer

Page header

Diagnosic Test #3 Results

Page footer

Signed By Informaion

Medical reporting in web-based applications designed to meet
regulatory and industry standards

Michał Madera
Rzeszów University of Technology

al. Powstańców Warszawy 12,
35-959 Rzeszów

Poland
Email: michalmadera@gmail.com

Rafał Tomoń
SoftSystem Sp. z o.o.

ul. Leszka Czarnego 6a,
35-615 Rzeszów

Poland
Email: rtomon@softsystem.pl

Piotr Lorenc
SoftSystem Sp. z o.o.

ul. Leszka Czarnego 6a,
35-615 Rzeszów

Poland
Email: plorenc@softsystem.pl

Position Papers of the Federated Conference on Computer

Science and Information Systems pp. 151–156

DOI: 10.15439/2016F574

ACSIS, Vol. 9. ISSN 2300-5963

c©2016, PTI 151

formation would be considered as safety breach.

We will refer to a problem of editable and not ed-

itable sections.

2. Complete Report layout has to be visible during in-

terpretation entering and not changed when report is

being printed or exported to PDF document. This is

the concept of WYSIWYG (What You See Is What

You Get).

3. Document presentation should not change across

different web browsers, which is one of the most

difficult issues to solve. Covering all notable web

browsers and different release versions is one of the

main requirement. Following browsers are taken

into account: Chrome, FireFox, Opera, Safari, Inter-

net Explorer and Microsoft Edge. Evaluation of

components available on the market proved that re-

search in this area is justified. Among others, fol-

lowing products were evaluated: DevExpress Html

Editor [5], TxTextControl [6], TinyMCE [7]. All

solutions based on ActiveX and Sliverlight tech-

nologies were not taken into consideration as these

technologies are to be withdrawn.

II. SOLUTION OVERVIEW

The core of the research was to create software component

providing the ability to view and edit medical reports in web

browsers. It have to allow viewing the document in its final

shape and editing in the same time, assuring the requirements

listed in this paper’s introduction are met.

Achievement was to develop web browser component

based on HTML5 Canvas technology for text processing.

Using Canvas for text processing is not a common approach

with many obstacles that had to be overcome. We investi-

gated possibility of using Canvas custom text drawing com-

ponent in connection with innovative report merging mecha-

nism. Medical data consistency and safety is guaranteed by

presentation of not editable parts of the report as immutable

images in conjunction with editable parts completely con-

trolled by our canvas text processing editor. Immutable med-

ical data images provides safety across all types of devices,

while commonly used in web environment HTML rendering

depends strongly on web browser engine and operating sys-

tem. That may cause the content to be displayed differently

on different devices, as depicted in chapter VI of this paper.

For most of the content presented in web browsers this is not

an issue. Unpredictable change to the formatting of medical

data can lead to incorrect interpretation of the results. Using

the same report merging mechanism to generate final PDF

document and parts of the not editable report is the biggest

gain of the presented solution. Reliability of presented infor-

mation was the main goal and it was achieved.

III. DEVICE INDEPENDENT DOCUMENT RENDERING

We defined the following components in our solution:

• Reporting Engine is a high-level text processing

and reporting component for server-based applica-

tion;

• Web report – final document divided into logical

slices like header/footers, non-editable and editable

slices;

• Shark Editor – text editor developed based on open

source project named Carota.[8];

• Shark JSON – internal text editor format based on

open-standard data format JSON defined by RFC

7159 [9];

• Canvas – element of HTML5 specification that al-

lows dynamic, scriptable rendering of 2D shapes

and bitmap images [10];

• Font maps – a set of properties described fonts like

Times New Roman, Arial, Verdana, etc.

The architecture of the medical reporting system is a typi-

cal client-server architecture. System generates report on the

server and returns it to the client using TCP/IP protocol. The

client application, located on a web browser, presents the re-

port to the user and handles all user inputs. Fig. 2 and Fig. 3

show graphical representation of the system architecture.

The main element of server side application is a reporting

engine which can provide fully merged medical report. The

reporting engine was extended to provide the ability to ex-

port document in a new format – web report format. The ad-

vantage of this solution is fact that report engine is replace-

able part of architecture. System may use any reporting en-

gine available on market. Two requirements for the engine

are: 1) ability to export document as image; 2) discreet rep-

resentation of document in memory;

Fig 2. Server architecture

Shark JSON

Translator

Extended Reporting Engine

SERVER

Web

report

Export

Reporting Engine

Image

Export

PDF

Export

152 POSITION PAPERS OF THE FEDCSIS. GDAŃSK, 2016

The client application was developed using HTML5 tech-

nology. Web report is passed to client in a JSON format,

which is the most common data format used in

browser/server communication. Text Editor Engine creates a

virtual document with words, lines and sections, then mea-

sures it using provided font map, and then renders the docu-

ment on the screen. Each element (word, letter, image, etc.)

is drawn directly on the canvas that gives absolute control

over what is presented on the screen and how it reacts to user

changes.

IV. EXPORTING THE DOCUMENT

The web report is generated on server using the extended

reporting engine. When the document is fully merged, the

system is exporting it into bitmap image. Then using discreet

data it is searching for logical slices: headers/footers, non-

editable document content (diagnostic tests) and editable

medical diagnoses.

The main attribute of logical slice is area boundary. This

is a value calculated from the discreet representation of data.

This attribute is used by server component to cut the image

document exported earlier. Some of slices may occur on ev-

ery page (like headers or footers) and to improve perfor-

mance of exporting, the system cuts it only once. Cut slices

are sorted in the order they occurred on the merged docu-

ment. The generated web report contains information about

whole document but it is divided into logical slices sorted

chronologically.

Non-editable slices like headers/footers and diagnostic

tests are exported as image fragments, but editable medical

diagnoses are exported as RTF (Rich Text Format). System

uses RTF, because RTF is a common format for text repre-

sentation in medical software [11]. Diagnostic tests sections

exported as image guarantee that the laboratory testing re-

sults will be modified neither by end user nor by malicious

software.

The web report format may be used in text editors devel-

oped in other technologies like (X)HTML, WPF, Swing,

WinForms. In our approach we use web report format to dis-

play it on canvas item and translate it to JSON format.

V. CANVAS AND DOCUMENT STRUCTURE

Web Report in JSON format consists primarily of an ar-

ray of JSON objects, called runs. They are parts of text with

consistent formatting as well as some special elements

(markups, images, etc). This format supports most com-

monly used properties, like font sizes and styles, colors and

alignment. A sample text: “Plasma glucose is about 12%

greater than...” is presented in JSON as follows:

[
 { "text": "Plasma glucose is " },
 { "text": "about 12% greater",
 "bold": true },
 { "text": " than..." }
]

Elements in curly brackets are called runs and text from

the sample is represented by three runs. Besides such simple

objects, document structure also supports two complex types

of runs. The first of them is also text based, but provides

custom behavior on user input, e.g. could be modified only

using drop-down or editor pop-up. It can be used to merge

and maintain always up to date patient details, or provide

some predefined values. This element contains extra at-

tributes like type and fielddata. Below is an example of such

item in JSON format.

{ "text": " Patient Last Name",
 "type": "TEXTFIELD",
 "fielddata": {
 "type": "MERGEDFIELD",
 "source": "PatientLastName" } }

The second type of run is not printed directly on the

screen, but provides logical division of the document and

ability to assign custom behavior. Used mostly to define

read-only/editable items or distinct different parts of the re-

port:

{ "text": { "$": "sectionStart" },
 "code": "_SEC_GROSS_DESC" },
{ "text": "Interpretation text" },
{ "text": { "$": "sectionEnd" } }

While the document loads, collection of runs is trans-

formed into virtual structure of characters, words and lines

which are stored in memory, to improve rendering perfor-

mance. Each of these items have measured their own bound-

aries using a provided font map with ascent/descent values as

well as width/height dimensions (Fig. 4). They are deter-

mined by the size of nested objects, so height of a word

comes from the height of its letters, and the width is a sum of

Fig 3. Web Client architecture

Canvas

Spellchecker

Text editor engine

Font maps

Web browser application

Runs

Parts

Words

Lines

Frames

MICHAŁ MADERA ET AL.: MEDICAL REPORTING IN WEB-BASED APPLICATIONS DESIGNED TO MEET REGULATORY 153

letters widths. Line dimensions are determined by the nested

words, documents by nested lines.

Using font map not only speed up building of document

structure, but also improve matching between canvas docu-

ment and final PDF report.

JSON data also contains information about document

layout, like paper size and margins, used to split content into

words, lines and pages in the same manner, as in Reporting

Engine. When the document structure is ready, visible part of

the report (based on scroll position and window size) is

drawn on the canvas, using its native methods like fillText or

drawImage with measured sizes. Whole process starts from

the document objects, that initiate drawing its lines and lines

draws its words, etc. When the user is typing, entered text is

first handled by hidden HTML text area component, which

triggers document update – current word is immediately

measured and the whole structure is updated.

Wrapping content and text between pages is divided into

two steps, to maintain the best fit with final report. First, con-

tent is wrapped dynamically based only on current editor

state (page size, line height, left space). This is fast, but can

sometimes lead to unexpected results, such as splitting of

non-editable, but consistent content, that should be moved as

a whole to the next page. Fig. 5 demonstrate this situation.

When the user stops typing for a moment, a synchroniza-

tion mechanism is triggered, as second step of this process. It

requests the current pages split points from the PDF engine,

compares them with current state and perform some minor

additional adjustments, if needed. Fig. 6 demonstrate the re-

sult document after the synchronization. This mechanism

guarantees that one of the postulates is met – “What You See

Is What You Get”.

VI. EVALUATION

Evaluation of other components proved our solution to

be superior. Taking leading product, Microsoft Word Online

as an example, we prepared document with tabular data and

opened in Internet Explorer browser Fig. 7. Difference in

display when opened in Google Chrome is clearly visible in

Fig. 8. Presented example demonstrates very dangerous

change is data presentation. Due to different interpretation of

HTML table size by web browser engine, numbers were con-

Fig 4. Font map to measure text size

Fig 5. Page split while typing

Fig 6. Page split resynchronized

154 POSITION PAPERS OF THE FEDCSIS. GDAŃSK, 2016

solidated in one line causing error prone situation. As pre-

sented in Fig. 9 the same document exported to PDF can

change even more.

Such behavior is not acceptable for medical reporting. De-

scribed example would be classified as Risk to Health inci-

dent. Document processing we are presenting in our solution

is designed to eliminate similar danger. Presenting of diag-

nostic data as images makes it platform independent.

VII. RESULTS AND FUTURE WORK

In this paper, a Report Editor Component for medical web

applications was presented. We implemented the prototype

and evaluated it in terms of useability. The component is

fully functional with a satisfactory user experience. Compari-

son to Microsoft Word Online [12] and Google Documents

[13] was done as these were considered to be a reference im-

plementation of online text processing solutions. When edit-

ing large documents the response time has been evaluated as

one of the most important aspect of usability. Significant per-

formance improvement was achieved by the novel font map-

ping mechanism we developed. Support of medical dictio-

naries is added with “spell as you type” functionality. Initial

evaluation of dictation was done but further work is neces-

sary in this area. Still the main advantage of proposed solu-

tion is the safety of processed medical information. Design

of the component provides extensible base for building so-

phisticated reporting software for medical industry.

One of the biggest challenges we have to face is table sup-

port. Handling tables, nested tables and table cells merging

may be one of the most difficult task to complete. At this

stage the component we designed can be provided to medical

personnel for evaluation and suggestions. Feedback from

pathologists would drive further work on this solution.

Fig 7. Document presented in Internet Explorer browser

Fig 8. Document presented in Chrome browser

Fig 9. Document presented after exporting to PDF

MICHAŁ MADERA ET AL.: MEDICAL REPORTING IN WEB-BASED APPLICATIONS DESIGNED TO MEET REGULATORY 155

REFERENCES

[1] T. Piliouras, A. Fortino, M. Andonov, and H. Huang, “Methodology to
assist physicians in the selection of electronic health records
software,” in Applications and Technology Conference (LISAT), 2010
Long Island Systems, 2010, pp. 1–6.

[2] S. Ajami and T. Bagheri-Tadi, “Barriers for Adopting Electronic
Health Records (EHRs) by Physicians,” Acta Inform. Medica, vol. 21,
no. 2, pp. 129–134, 2013.

[3] “Pathology Reports,” National Cancer Institute. [Online]. Available:
http://www.cancer.gov/about-cancer/diagnosis-
staging/diagnosis/pathology-reports-fact-sheet. [Accessed: 26-May-
2016].

[4] P. N. Valenstein, “Formatting pathology reports: applying four design
principles to improve communication and patient safety,” Arch.
Pathol. Lab. Med., vol. 132, no. 1, pp. 84–94, Jan. 2008.

[5] “Rich-Text and Html WYSIWYG Content Editing - ASP.NET MVC
HTML Rich-Text Content Editor Demo | DevExpress.” [Online].
Available:
https://demos.devexpress.com/MVCxHTMLEditorDemos/Features/Fe
atures. [Accessed: 26-May-2016].

[6] “Text Control - .NET Reporting and Word Processing Components for
Developers of Windows, Web and Mobile Applications (TX Text
Control) | www.textcontrol.com.” [Online]. Available:
http://www.textcontrol.com/en_US/. [Accessed: 26-May-2016].

[7] “TinyMCE | The Most Advanced WYSIWYG HTML Editor.”
[Online]. Available: https://www.tinymce.com/. [Accessed: 26-May-
2016].

[8] “danielearwicker/carota,” GitHub. [Online]. Available:
https://github.com/danielearwicker/carota. [Accessed: 26-May-2016].

[9] T. Bray, “The JavaScript Object Notation (JSON) Data Interchange
Format.” [Online]. Available: https://tools.ietf.org/html/rfc7159.
[Accessed: 26-May-2016].

[10] “HTML Canvas 2D Context.” [Online]. Available:
https://www.w3.org/TR/2dcontext/. [Accessed: 26-May-2016].

[11] By Laura Bryan CMT BS Technology for the Medical
Transcriptionist. Lippincott Williams & Wilkins Publishers, 2009.

[12] “Microsoft Word Online - Work together on Word documents.”
[Online]. Available: https://office.live.com/start/Word.aspx.
[Accessed: 30-May-2016].

[13] “Dokumenty Google – twórz i edytuj bezpłatnie dokumenty online.”
[Online]. Available: https://www.google.pl/intl/pl/docs/about/.
[Accessed: 30-May-2016].

156 POSITION PAPERS OF THE FEDCSIS. GDAŃSK, 2016

