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Abstract—Observation plays a crucial role in self-awareness.
In many scenarios, such as the Observe-Decide-Act (ODA) loops,
self-awareness is founded upon observations of the system.
In other words, observation generates the understanding of
the system from the status and behavior of its self and its
environment. Although recently more focus has been put on
comprehensive and competent observations, we believe that
further attention and work is due, especially in the field of cyber-
physical systems. Hence, in this paper, we discuss our position on
various aspects of observation methods. In a short list, the major
aspects are Abstraction, Disambiguation, Desirability, Relevance,
Data Reliability, Confidence, Attention, and History. We elaborate
and anticipate the potential of these factors in improving the
quality of the observation of the system, decreasing the processing
load of higher layers, increasing the reliability of decisions, and
consequently the overall performance of the system. To put these
aspects into perspective, we elaborate them in the context of their
potentials in our emotion recognition system under development.

I. INTRODUCTION

A
COMMON requirement for many of the systems of

today is an ability to perform correctly under a wide

range of variation in their environment, as well as their internal

states, parameters, applications and resources. Self-awareness

is a feature that can enable these systems to show a robust and

dependable behavior and meet their requirements.

Expecting 26 billion devices connected to the Internet of

Things by 20201 with an exponential growth trend means

that manual maintenance, fault diagnosis and repair for all

will soon be impossible [1]. This necessitates an embedded

awareness of the system regarding its own state so that it

detects and mitigates occurring faults. Self-awareness has been

applied to both hardware [1] and software [2]. Some of the

applications which have been explored for the implementation

of self-aware concepts (under this term or other terms such

as adaptivity, autonomy, goal-oriented and so on), are mobile

applications [3], cloud computing [4], networks [5], operating

systems [6], web [7], multi-core resource managers [8] and

adaptive and dynamic compilation environment [9], (cyber-

physical) system-on-chip [1], and health monitoring [10].

1www.gartner.com/newsroom/id/2636073

Several definitions for Self-awareness can be found in the

literature [11], [1]. For instance, in [11], it is defined as “a

system’s ability to obtain and maintain knowledge about its

state, behavior and progress.” In [12], [1], it is defined as the

ability of the system to “monitor its behavior to update one

or more of its components to achieve its goals”. These defini-

tions highlight the fundamental importance of monitoring, or

observation, in self-awareness of the system.

Observation is more than collecting data. Higher levels of

hierarchy, or the core in centralized units, are often burdened

with a large load of monitored data and the respective pro-

cessing [13]. On the other hand, local monitoring also may

be delayed due to the global communication traffic [13].

Therefore, to be a useful basis of self- and environmental

awareness it has to be a process that filters, analyses, selects,

abstracts, assesses, and actively ignores or requests sensory

data. Moreover, observation is not limited to sensory data,

but rather a more general concept which includes other ob-

servations of the system from its own and its parts, regarding

performance [8], functionality or other factors. In some works,

such as [14], [1], this duty is encapsulated in a unit called

“Inspection Engine” or “Introspective Sentient Unit” in [12].

In brief, the observation process transforms raw data into

a high-quality description of the system about itself and its

environment. In the following sections we describe the various

aspects and activities involved in the observation process,

especially that of a Cyber-Physical System (CPS), discuss

examples in an emotion recognition setting and finally sum-

marize the observation process, its importance and its potential

contributions to a self-aware system.

The remainder of this paper is organized as the follow-

ing: In the next section, a brief review of a self-awareness

architecture is presented, followed by a short review of use-

cases in Section III, where related works taking advantage of

various aspects of a good observation are presented. Next,

in Section IV, based on the aforementioned review of the

existing literature, we present a summary of various aspects

of a good observation scheme for self-aware CPSs. We clarify

these concepts further in Section V, by producing an example

in the context of an emotion recognition application which
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Fig. 1. Observe-Decide-Act (ODA) loop architecture for self-awareness.

we have under development. Finally, Section VI concludes

the paper.

II. A GLANCE ON THE ARCHITECTURE OF

SELF-AWARENESS

Many architectures have been proposed in order to achieve

self-awareness. In CPSs with limited resources available for

self-awareness, such as SEEC2 [8] or Cyber-Physical System-

on-Chip (CPSoC) [1], an Observe-Decide-Act (ODA) archi-

tecture is frequently used. ODA is one of the prominent

architectures for the CPSs with a central supervisor or control

unit. For example, in the SEEC framework, an application

specifies the goal and the system, based on its observation of

the performance, chooses the best action from a list of possible

actions, in order to meet the goals. CPSoC is distinguished

from a Multi-Processor System-on-Chip (MPSoC) due to

its observation capabilities [12]. In CPSoC observation is

done across various hardware and software layers to monitor

performance, decide on a proper action and steer actuators.

As seen in Fig. 1, the ODA loop starts with observation,

showing its importance. However, in a considerable number of

CPSs, sensory data are directly or with minimal processing fed

to and used by the decision-making unit. The processing is also

often a simple interpretation, abstraction, or transformation of

the raw data and scarcely entails any contextual information

about the data, how it is obtained, how reliable it is and

how it should be interpreted. This implies an inherent trust in

the hard-coded interpretation schemes, health, precision and

accuracy of sensors, and the obtained sensory data. Therefore,

a fault or failure in the sensory system or the collected raw data

can easily propagate to higher levels of decision-making and

consequently into actions. The same stands for environmental

or contextual changes which do not comply with the hard-

coded interpretation schemes. Therefore, as a countermeasure

learning and prediction is used in some self-aware systems

[11], [1].

Self-awareness, however, is not necessarily achieved only

through a centralized control or supervisory unit. In some

works such as [15], [16], [11], it is a cooperative or emerging

behavior of the group of agents or subsystems. Nevertheless,

attention and context-aware observation play a very important

role in creating self-awareness. Preden et al. [15] describe the

concept of context-awareness under situation-awareness which

consists of values and interpretations of a set of situation

2SEEC is the name of the SElf-awarE Computing (SEEC) platform by
Hoffman et al.[8]

parameters. Situation parameters represent properties of a

situation, processed and abstracted independently.

III. OBSERVATION IN THE LITERATURE

Traces of various aspects of a good observation can be

tracked throughout the literature, although the terms, extent

of usage, and thoroughness vary considerably. Thus, we base

our position on a comprehensive observation of the literature,

which provides us with good exemplars to follow in order

to improve the performance of systems through improving

their observation strategies. In this section, we briefly review

some works in the literature which have emphasized or taken

advantage of various aspects of a good observation scheme.

For example, in [8], the changes observed in the per-

formance of the system are abstracted into heartbeats (an

abstracted notion of time) which provide information about

the execution of the application. This abstraction enables the

framework to be adopted and used by various programs where

the nature of goals are significantly different. All that is needed

for this adoption is presenting the performance goal in the

heartbeat abstraction notion. Moreover, available actions and

reasoning in the decision-making process are abstracted into

their effect on the speed of the system. Hence, SEEC serves as

an example to show that abstraction does not necessarily need

to be bottom up, and it can be used in top-down observations

as well. We note that bottom-up abstraction often reflects

the perception of the system from its environment, whereas

top-down observations normally reflect the perception of the

system about the performance of some parts of the system, or

the system as a whole.

In [11], abstraction is done through online learning instead

of predefined knowledge and rules. This increases flexibility

and resilience of the overall system. In CPSoC [1], a virtual

sensing platform is used both for the purpose of abstraction

and disambiguation in the case of sensor fusions or faults and

errors.

In [17] the authors have tried to create a unified desirability

scale to compare and prioritize parameters of different nature

which are directly related or comparable. A form of desirabil-

ity scale is also found in [18].

Rinner et al. [11] briefly point to the selection of an

object tracking algorithm which has “an acceptable level of

robustness”, which approves of the importance of confidence,

which is dependent on the reliability of other observations.

Hoffman et al. [8], on the other hand, use the correlation

of the recent past and near future, to assess the accuracy

of the control scenario. Moreover, changes in this factor are

considered in -and propagate to- the decision-making process.

In CPSoC [1], a lifetime reliability characterization matrix is

kept in the OS layer, which uses the data from reliability

sensors in order to balance the workload of different units

and thus increase the overall reliability during the lifetime.

The quality of sensors and measurements are in many

systems unknown and cannot be guaranteed for the whole life-

time of the system. Therefore, data reliability analysis should

always be an integral part of comprehensive observations.
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In [11], for assessing the degree of the confidence of their

observation (finding and tracking objects of interest), they use

a measure of similarity. In this study, an existing database

enables application of this procedure to obtain a figure of

confidence. Alternatively, in some other systems history could

replace this database or provide measures of confidence with

other methods. However, self-assessment of the confidence

by the system itself remains a major challenge in many

cases. Specifically considering that a supervised assessment

or validation of the performance of the system is not always

possible, and often it is not desirable. Lack of history can

increase the difficulty of autonomic acquisition of this aspect

(confidence).

In [8], the history of recent observations are used to model

the behavior of the system and predict whether a change in

behavior is necessary, and if so, in what form. Typically, larger

tracks of history can help in obtaining a better and more

confident prediction of the future. However, maintaining a

large memory is often challenging, in terms of storage and its

respective costs, as well as the hardship and computation costs

of processing a large amount of data. Therefore, it is important

to use creative methods of storing data; that are compacting

the data in such a way that necessary space decreases while

valuable information is kept. Abstracting the data into the

aspects mentioned above can help in achieving this goal.

IV. ASPECTS OF A COMPREHENSIVE OBSERVATION

Building on the observation strategies in various related

works (some of which were reviewed in Section III), in this

section we present our position on various aspects of data

interpretation which can lead to a good and comprehensive

observation. Specific systems may not need or be able to

afford all the required resources for such implementation as it

will follow. Therefore, based on the details of the case, these

aspects should be prioritized and used according to the case

at hand.

A. Abstraction

1) Definition: Appropriate selection of the representation of

the information in order to obtain compact knowledge, relevant

to a particular purpose.

2) Description: Although collecting more data can help

in improving the awareness and thus the performance of the

system -since this relationship is not linear [14]- it does not

guarantee that. To balance the processing load at various

levels of the hierarchy, data need to be properly abstracted,

which implies a meaningful mapping of the measured values

to properties. A well-defined format is also crucial for a

good abstraction, especially in distributed and hierarchical

observation schemes [13].

3) Example: One of the parameters that is often measured

in many e-health systems -and in our emotion recognition

system as well- is the heartbeat rate. This value with all the

potential noise and variations could be passed on to the central

system for processing and decision making. Alternatively,

these values can be mapped to some abstracted values (e.g.,

only five values of extremely low, low, normal, high, and ex-

tremely high) and thus transferred with smaller communication

burden while decreasing the processing load of the decision-

making unit.

4) Challenges: Predefined abstraction scenarios show little

flexibility. While meaningful for a CPS in a well-defined

environment with clear and stable objectives, it can cause

an impediment for an autonomous system in following its

evolving needs to adapt to new environment and situations.

5) Potential Solutions: As a solution, the system itself

can create the most appropriate abstract properties based on

unsupervised learning processes (for an example see [11]).

This solution is significantly more challenging to implement

and requires considerable resources. Nevertheless, it appears to

be a prerequisite for truly autonomous and evolving systems.

B. Disambiguation

1) Definition: Remove uncertainty of meaning from mea-

sured data, or resolving conflicts arisen by different data.

2) Description: Despite a good abstraction scenario, the

data can often be interpreted in more than one way or

different parts of the system may have a different (conflicting)

experience of the environment which could be natural or due

to faults and failures. In either case, a functional, well-defined

disambiguation strategy is a necessity. This prevents propaga-

tion of ambiguities or misinterpretations and thus facilitates

decision making in the system.

3) Example: Heartbeat or temperature sensor may come

from a chest belt, a smart watch or other sensors with various

sensitivity and accuracy. Given information on data reliability

(including accuracy or precision) may help in arbitrating non-

matching values, e.g., heartbeat information from chest belt

is more accurate than the one from a smart watch, hence

the value of chest belt should be typically considered as the

reference value, if the numbers are not matching.

4) Challenges: One of the challenges for disambiguation

is again flexibility. For example, it is possible that the user

is not wearing the chest belt and only noisy random values

are observed, or for reasons of aging of the device or faults

the accuracy of the chest belt has degraded. In such cases,

the system should be able to change its arbitration and use

alternative and more reliable values.

5) Potential Solutions: Parameters such as History, Confi-

dence and Data Reliability of the measurements can help in

identifying a need for a change in the disambiguation strategies

and adapt the right alternative. A sudden drop in values can

show taking off the chest belt (History), variations larger than

usual, could imply some degradation (leading to decreased

confidence) and loss or malfunction of some sensors in the

chest belt constructing the final measurement could indicate

less reliable measurements (data reliability).

On a higher level, and in a top-down flow of information,

contextual awareness and predictions can provide meaningful

inputs to the disambiguation unit as well. For example, is a

low or high heartbeat accompanied by a low or high body

temperature? Or, if the person has started or stopped a sport
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activity, considerable and synchronized increase or decrease in

heartbeat and temperature are expected (which do not reflect

the feelings of the user).

C. Desirability

1) Definition: The quality of being inline with achieving

one (or more) of the goals or expected outcomes of the system.

2) Description: Desirability is an evaluation of the system

regarding the state of its own components and their alignment

to its goals and expectations. When inferred states are marked

as desirable or undesirable (possibly on a scale to distinguish

between more and less desirable situations), a value system

is implied that is rooted in the objectives and purpose of

the system. If the system has only one sole purpose, the

mapping of properties and states onto a desirability scale is

less necessary. However, if the system pursues potentially

contradicting goals a mapping onto a desirability scale is a

useful intermediate step for resolving conflicts as well. A

desirability scale serves as a unifying currency that allows for

the comparison of otherwise unrelated properties and states.

3) Example: Let us assume the system is confronted with

a discrepancy in the incoming data stream while on a low

battery. The system has to decide if it is more important

to preserve energy or to forward the detected anomaly for

further processing. In such cases, a “1” or “0” bit on whether

a discrepancy has happened or not, or the battery is full or

low provides insufficient information for making a suitable

and well-informed decision. If these events (observations) are

mapped onto a desirability scale, this additional aspect of

observation can show how undesirable a discrepancy has hap-

pened and how desirable would forwarding this problem be.

Given the continuous level of charge in the battery (desirability

of the available power), the system has further knowledge

and flexibility in making an informed decision inline with its

goals, for such situations where observations are not directly

comparable or related.

4) Challenges: Creating an appropriate mapping of desir-

ability for possible states of the components is sometimes very

challenging. Particularly, when there is no direct link between

the state of the component to be mapped to the desirability

scale and the goals and expectations of the system.

5) Potential Solutions: One solution could be evaluating the

effect of possible states of that component on achieving the

goals of the system, via proxies and/or in isolation. However,

this task itself (isolating the effect of the states of a non-

directly linked component in achieving the goals), can be

considerably challenging.

D. Relevance

1) Definition: The quality of being closely connected to/im-

portant for the matter at hand.

2) Description: Relevance has similarities with desirability,

however, rather than states, it regards measurements and val-

ues or parameters and variables. Moreover, relevance regards

smaller details in the system; that is, instead of considering

alignment with the overall goals and expectations of the

system, it considers the importance and connection of a

measured value or parameter to a certain specific analysis in

the system. This aspect can help in finding the right balance

in the weight of a parameter in disambiguation, conflict

resolution or decision-making as well as resources dedicated

to that observation. This not only offloads the decision-making

unit but also it enriches the observation unit by providing

it with information on where more attention is necessary.

Attention can affect how the raw data are obtained (such as

the degree of redundancy, or frequency of data collection),

or how it is processed, e.g., using precise methods requiring

larger resources or less precise but lighter methods (such as

approximate computing).

3) Example: Our preliminary measurements show that

Anger and Sadness, for example, have a strong correlation with

slow decrements of skin temperature, very weak correlation

to the heartbeat and moderate to weak correlation to skin

conductance, also known as Electro-Dermal Activity (EDA).

This means that relevance of skin temperature to the two

feelings is significantly higher than the other two. Hence, if

the skin conductance and temperature are giving conflicting

signals, skin temperature will be given greater weight in

determining whether the feeling is one of the two or not.

4) Challenges: Traditionally, relevance is set by the de-

signer, at design time. However, the relevance could change

by the way of extracting it from a larger set of data. Once the

designer does that, program upgrades are released. Nonethe-

less, this does not take into account personalization of this

factor regarding the biometrics of the particular user.

5) Potential Solutions: The relevance of a parameter could

be initialized, or predefined. Ideally, however, the system can

learn the trends and change this value based on its experience

and adapt it to its current situation and the biometrics of the

specific user.

E. Data Reliability

1) Definition: the extent to which a measuring procedure

yields the same results on repeated trials.

2) Description: As important as the data themselves, is

the knowledge about its thoroughness, accuracy and precision,

which allows the system to perform (here to observe/monitor)

within the expected limits and stated conditions. Here accuracy

describes the systematic bias of the data values compared

to the real values of the measured quantity3, and precision

denotes the random errors in repeated measurements under

the same conditions4. Although the concept of measurement

device precision and propagation of inaccuracies into the

system through calculations is well established, more attention

by CPS engineers is due in system design5.

3) Example: Awareness of the system about the robustness

of the given values and their data reliability in certain sit-

uations can help the system to choose the best method for

3In other words, accuracy is a measure of statistical bias.
4In other words, precision is a measure of statistical variability.
5Although in approximate computing this matter is well considered, we

believe that it should receive more attention in exact computing as well.

120 POSITION PAPERS OF THE FEDCSIS. GDAŃSK, 2016



each situation (in the case of multi-mode technology) without

needing to have an in-depth analysis of the situation and

speculations on the accuracy of the given systems. That is,

e.g., relying primarily on the heartbeat values coming from the

chest-belt for precise information, before the smart watch and

other means. Of course, if the data reliability of the chest-belt

has been set to lower values (compared to the smart watch or

other means), or if a problem, conflict or discrepancy has been

already observed, the data with the highest reliability should

be considered as the main/primary reference for the values.

4) Challenges: Propagation of measurements errors

through the system, specifically, when several post-processing

steps are taken, can impact the data reliability of the final

assessment and hence the decision of the system concerning

its situation. Whether the information is current or updated

when it reaches the decision unit, or when a decision is

reached, is another concern regarding the data reliability.

5) Potential Solutions: One solution is taking parameters

partaking in the data reliability and robustness of measure-

ments into account during the system design. These param-

eters could be the type of sensors and measurements (and

its inherent accuracy and precision limits), bias set-up and

peripherals of the sensory system, type and size of post-

processing, validity period of the measured data, and the

health (functionality) of the sensors themselves which could

be affected by aging, or the environment.

We also note that one method to increase the data reliability

is redundancy. Redundancy allows to collect the same data

in different ways, for instance with various sensors, and to

compare the consistency of the different, independent sources.

One method of checking consistency is following the trend

of changes in a single set of data and comparing the values

with possible or impossible variations in the trend and data

values. The other method is comparing different data sources

and analyzing them for their mutual consistency.

F. Confidence

1) Definition: the extent to which a procedure may yield

the same results on repeated trials.

2) Description: Confidence has significant similarities to

data reliability, however, rather than measured data (or propa-

gated results based on closed-form analysis), it regards ex-

periments and procedures where a comprehensive external

verification of accuracy and precision is not performed. This

determines the firmness or flexibility of the system concerning

its learning, analysis and decisions. In other words, to what

extent the learned trends, analysis and decisions should be

relied upon, or alternative analysis should be prepared or

further data processed.

3) Example: Whether the temperature sensor is attached to

the body or not, is not a measure of reliability. The confidence

of the system in its attachment to the body, however, can affect

how the system reacts to values out of the norm. To this end, a

top-down variant of consistency analysis can be used. That is,

a comparison of the measured values with expectations. Body

temperature hardly undergoes a large change within seconds

(or minutes). Therefore, a sudden drastic change could show a

consistency problem and decrease the confidence of the system

with regard to the measured value6. However, how reliable

is consistency checking for assessing the attachment of the

sensor is itself subject to the question of reliability (which

constitutes the confidence of the system in this procedure).

Should the system rely on this analysis or use other methods,

such as asking the user?

4) Challenges: Creating a confidence measure, assessing or

improving it can be a very challenging task, especially when

it is to be unsupervised or with minimum external inputs. To

be more specific, creating a fairly reliable (unsupervised) self-

assessment procedure can be extremely hard.

5) Potential Solutions: Confidence can be built up based on

the reliability of the inputs and the history of analysis. That

is, analyzing the consistency of decisions, previous analysis,

and the outputs given the data reliability of the inputs. One

method of checking confidence is following the trend of

outputs obtained by different procedures given a single set of

data and comparing the values with each other and if possible,

with the correct or desired values. The confidence values, in

turn, can drive, how heavy a given procedure weighs in the

interpretation of the current situation.

G. Attention

1) Definition: Selective allocation of limited resources to

specific tasks.

2) Description: It is neither meaningful nor efficient to al-

ways collect and process all possible data. Attention decides on

which observations to allocate the available communication,

computation, memory and energy resources. The observation

process should be guided by an understanding of what data

are required for a given purpose in a given situation. At the

same time, attention allows a low effort, continuous scanning

of all sensory input to detect unexpected events and anomalies.

If the attention process suspects the arrival of important new

data, it focuses the attention, i.e. allocates the resources, on

their collection and analysis. From these considerations, we

infer that attention is driven both bottom-up, by the incoming

data, and top-down, by prevailing expectations and goals.

3) Example: Using attention the system can, based on

aspects such as relevance for example, optimize the resource

allocation for data collection. As we present the details of

our measurements in Section V, EDA has some correlation

(weaker or stronger) with all targeted emotions. Therefore,

instead of processing all measured data, EDA can be mon-

itored and once an activity is observed there -based on the

relevance to the suspected feeling- other processes can be

activated selectively. Thus reducing the processing load of the

system and optimizing resource utilization.

4) Challenges: In order to trigger attention in the obser-

vation process, the system should be able to detect certain

trends and anomalies. A task which can be challenging given

6This, in turn, can trigger further processes which can determine whether
this consistency problem is due to a normal environmental change (i.e., the
sensor is detached) or a fault or failure.
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the wide range of data that can be observed as well as

trends or anomalies which can occur and need to be detected.

However, using such methods for observatory data streams

implies availability of very strict and limited resources which

can render many prominent methods impractical. In addition,

once an event is observed in a data stream which triggers

further processing, other data which were not part of the focus

of the system may be necessary and potentially missed.

5) Potential Solutions: A potential countermeasure for

missing unfocused data when an event is detected and change

of attention is triggered, could be using local buffers. Deciding

the length of this buffer and its required resources can impose

certain restrictions on the designer. Various learning methods

and smart anomaly detection systems are potential solutions

for detecting events in the data stream. However, we note that

creating efficient methods with extremely limited resources is

still a challenge.

H. History

1) Definition: Recording and studying a series of past

events connected to an entity.

2) Description: History allows extraction of statistics from

a series of observations; assessing the performance of the

system over time, its improvements or deterioration, assess-

ment of the quality of sensory data over time, and changes

of the environment over time. Based on such historical data

and analysis, the system is given the capability to predict its

own performance in the near future, the expected failure of

sensors and actuators, and future trends in the environment.

In turn, this understanding can motivate the system to evolve

its own goals, strategies, and tactics in order to adapt to these

observations and predictions.

3) Example: History can play a crucial role in many

different aspects, such as confidence (through consistency

analysis, as mentioned above). It can increase relevance by

establishing new correlations between factors that were not

predetermined, however, their correlation is discovered during

the process. In other words, what feelings correspond better

to which measurements. For example, is happiness better

associated with skin temperature or skin conductance? More

importantly, history can help in determining the standard state

of the system and identify potential abnormalities, which is

a parameter tightly coupled with predictions. For example,

history can establish what is the normal heartbeat rate of a

person. This sets the expectation of the system on the heartbeat

rate and its changes for each feeling.

4) Challenges: The greatest challenge of this aspect is

the limited available memory. How to abstract, compact, and

archive the data are some of other problems which often are

affected by the limited memory as well.

5) Potential Solutions: By history, we do not necessarily

imply an explicit bank of historical data. History can be

inherent to some other parameters and implied rather than

explicit with formal appearances. An instance is the average

value or the trends of change and evolution of a parameter

which may not include a bank of historical data to back the

trend but does represent history. Another instance could be

events and trends of their occurrence rather than the actual

data. Periodically compacting and forgetting (eliminating old

or less relevant data) are some other potential solutions.

V. COMPREHENSIVE OBSERVATION FOR OUR EMOTION

RECOGNITION SYSTEM

To validate helpfulness of a comprehensive observation as

discussed in Section IV, we plan to implement those aspects in

an emotion recognition system. In this section, we try to clarify

these concepts further by the way of examples in our design for

our emotion recognition system under the development. Here,

we suggest how the aforementioned aspects can be tailored,

taken advantage, implemented and improve the “observe” unit

of the system and consequently overall performance of the

system.

A. Set-up

For our emotion recognition system, we use Empatica,

“E4 Wristband” smart watch which has the following sensors

embedded: A photoplethysmogram (PPG) to measure Blood

Volume Pulse (BVP), Heartbeat and Heart Rate Variability

(HRV), Electr-Dermal Activity (EDA) sensor for skin con-

ductance, infrared thermopile for skin temperature, and 3-axis

Accelerometer for capturing motions.

For measurements, subjects were asked to wear the smart

watch and remain seated for one minute, so that we could

obtain their baseline. To solicit Sadness, Happiness, Anger

and Fear, short videos were played -in a random order- for

the subjects. Afterwards, the subjects were asked to remain

seated for one more minute (to get back to their baseline),

while filling a self-assessment form, reporting the emotion they

felt and how strongly they felt it.

Measured data was collected and plotted in Matlab. In the

future, this data needs to be post-processed and the emotions

extracted on some hardware with very limited resources (such

as a smartphone). For this reason, limited available resources

is one of the primary constraints in this system, and we will

describe how we plan to exploit comprehensive observation to

increase the efficiency of the system.

B. Preliminary Measurements

Four participants, male, between the age of 20 and 25,

took part in our preliminary measurements. Fig. 2 shows

a sample, namely the measured EDA signal, during two

different experiments: happiness and sadness. We observe that

when the subject experiences the feeling during the video

(between the star marks), his EDA changes with two different

trends. For happiness, this trend appears as (relatively) large

repetitive peaks, whereas as for sadness this seems to be a

slow increment. Studying other measurements obtained from

other subjects, the absolute value/level of EDA seems to carry

no considerable significance in identifying these emotions.

Therefore, an algorithm needs to be developed which can

identify such trends in the EDA signal and notify the ‘Decide’

unit (see Fig. 1) of the system.
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(a) Happiness

(b) Sadness

Fig. 2. Skin conductance (EDA) Signal for (a) Happiness, and (b) Sadness.

One of the simplest solutions to this problem is to define

templates based on our measurements and compare the incom-

ing data with the template. In this case, on top of identifying

a matching/non-matching trend, the degree of similarity of the

data with the template (how matching are the data compared

to the template), can be used as the confidence of that unit

in identifying the trends it is looking for. Hence, if a trend in

the data is identified (or rejected), and thus causes a conflict

in higher levels of the system, by looking into the confidence

aspect, the potential source of conflict can be traced and the

conflict can be resolved.

Table I summarizes the trends we have observed in our

measurements. In this table, the background color of cells

shows the relevance of that trend to the respective emotion.

The lightness of the cell background shows how likely it is that

with such emotion, such a trend in the measured parameter

may be observed. To associate a level of relevance to each

factor we have used the likelihood or unanimity of occurrence

in our experiments. For example, in our measurements -

unanimously- shortly after a person sees a scary video, their

heartbeat increases. Therefore, we can confidently associate

this observation with this feeling, and consider it highly

relevant. On the other hand, a peak in EDA was not observed

in every case, due to which we are less confident in our

conclusion regarding the relevance of a single short peak in

skin conductance, to the fear. Therefore, we consider it slightly

less determinant for this feeling, and hence less relevant.

Our primary measurements on heartbeat values also show

that only its changes from the baseline are relevant (rather than

its absolute value/level). So the heartbeat can be abstracted

to four values of increasing, decreasing, rise and fall, and

constant (as shown in Table I). The regular heartbeat rate

however, varies with the person under study. This variation

TABLE I
SUMMARY OF OBSERVED TRENDS IN OUR MEASUREMENTS.

Skin Conductance Skin Temperature Heartbeat Rate

Happiness Repetitive Peaks Slow Increment Constant

Sadness Slow Increment Slow Decrease Rise and Fall

Fear A short Peak Constant Small Increment

Anger No Correlation Slow Decrease Constant

Fig. 3. Details of the “Observe” unit for our emotion recognition system.

should be considered when the person’s emotion is being

analyzed. To this end also, a small footprint learning method

-based on the history- can be employed in the system. For

the learning process, often feedback from higher levels (after

categorization of emotions) are required and beneficial. There-

fore, exchanging abstracted data needs to happen not only in

a bottom-up manner but also in a top-down approach.

Based on such arguments and similar design analysis ac-

quired during our preliminary measurements (a summary of

which we have inserted in Table I), we propose the following

system architecture for the “Observe” unit of our emotion

recognition system. In this system we try to -whenever pos-

sible and beneficial- take advantage of as many observation

aspects as possible.

C. System Architecture

For our system, we consider an ODA loop architecture. In

this section, we further explain the details of the “Observe”

unit in the architecture. As seen in Fig. 3, observation starts

with collecting sensory data which are buffered on the cloud.

This data need to be post-processed, in the following units.

To be efficient in communication and processing power,

we take advantage of attention. That is, instead of continu-

ously processing all data, they are periodically processed. To

decrease the odds of missing an event, one data stream is

considered as the default and is continuously processed. As

mentioned in Section IV and seen in Table I, skin conductance

(EDA) shows the most sensitivity to emotional experiences.

Therefore, this stream is the default stream which is con-

tinuously processed in order to find potential events. Once

an event is observed by the EDA post-processing unit, it

triggers the “Decide” unit, which, based on the event and

suspected/possible related emotion(s), can decide what other

information is necessary. Accordingly, the action unit activates

the respective post-processing unit(s) to acquire the relevant

data from the cloud and process them. We note that the post-

processing units in Fig. 3 are logical units and thanks to the

attention based operation, the hardware itself could be shared.

Further details of the generic post-processor design are

shown in Fig. 4. The most challenging unit in the post-

processor is the matching unit where certain trends (according

to Table I) are looked for and if found, abstracted data

(abstracted following the trends categories listed in Table I)

informs higher levels (decision unit) about them. Alongside
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Fig. 4. Details of the post-processor unit.

the abstracted data, the confidence level of the findings can

be sent to decision unit to facilitate the process of decision-

making. Confidence information can be sent by the request of

other units (such as when they need it for disambiguation or

conflict resolution) or constantly with the abstract.

Relevance information on the other hand, undergoes very

little and infrequent changes and therefore is sent only when a

change in its value is observed in the post-processor unit (thus

shown by a dashed line). Observing such a change necessitates

keeping a history which is kept in the “relevance correction

unit”. This unit is initiated by the designer (represented as

the background color of each cell in Table I) and updated by

the feedback from higher levels of hierarchy (which includes

information on the confidence of the given feedback) for

each matched trend and taking into account the respective

confidences. A similar procedure transpires for updating the

template which is used for finding the patterns. We note that

for template correction -similar to matching unit- the reliability

of sensory data is also used. A parameter which is provided

by the designer at design time or provided automatically by

the sensors, once attached.

VI. CONCLUSION

The importance of the observational process can hardly be

overrated. In addition to the bare values, measured data have

many contextual aspects that determine what it means and

how it should be used. This host of information around the

collected data is the basis of assessing the state of a system, its

performance, its environment, and the influences of its actions.

Observation can be both a bottom-up and top-down pro-

cess. The measured data are usually collected, processed,

analyzed and abstracted bottom-up, while top-down expecta-

tions, hypotheses and needs greatly influence, steer, activate

or block these bottom-up processes. Information redundancy

and consistency analysis have to be used to assess confidence

and reliability of data and lead to an appropriate assessment

of the situation. Event-driven resource allocation (attention),

triggered bottom-up or top-down, is another aspect which can

considerably off-load the processing and communication.

After in-depth discussions on various aspects of a good

and comprehensive observation, we described how we plan to

use these concepts in our emotion recognition system under

the development. Although these concepts can be employed,

in “Decide” and “Act” units as well, since the role of a

comprehensive observation is bolder in the “Observe” unit, we

described the details of our comprehensive observation plan

only for this unit of our system.
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