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Abstract—In this contribution we present an approach on how
to include local soft constraints in the fully distributed algorithm
COHDA for the task of energy units scheduling in virtual
power plants (VPP). We show how a flexibility representation
based on surrogate models is extended and trained using soft
constraints like avoiding frequent cold starts of combined heat
and power plants. During the task of energy scheduling, the
agents representing these machines include indicators in their
choice for a new operation schedule. Using an example VPP we
show that our approach enables the agents to reflect local soft
constraints without sacrificing the global result quality.

I. INTRODUCTION

IN DECENTRALIZED energy systems, small combined

heat and power (CHP) plants, electrical storages and re-

newable energy units are aggregated both for an integration

of these energy units into the energy markets and for the

provision of ancillary services for a stable grid operation.

Both applications are widely known as virtual power plants

(VPP) and expected to be one of the core concepts for

distributed energy systems [1]. One of the core challenges

during operation of such a VPP arises from the complexity of

the scheduling task due to the large amount of (small) energy

units in the distribution grid [2]. To this end, multiple scalable

scheduling algorithms have been proposed for distribution grid

energy unit scheduling for VPP, with many of them using

software agents technology and distributed algorithms [3], [4].

During scheduling, both global constraints (i. e. concerning the

VPP as a whole) and local constraints (i. e. restricted to a

single energy unit) have to be handled in an appropriate way.

Both types of constraints may be either hard or soft constraints

(cf. Table I). Local hard constraints set defined limits to the

operational flexibility of an energy unit, thus defining feasible

operation schedules. For the example of a CHP installation

including thermal storage, the thermal capacity of the storage

sets a hard constraint to the CHP’s operation in combination

with the current thermal load. Local soft constraints comprise

technical or economical preferences, e. g. preferred operation

times or the avoidance of technically unfavorable frequent

cold starts. Global hard constraints can be market driven, like
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TABLE I
CONSTRAINT TYPES AND EXAMPLES FOR A VPP COMPRISING CHP

INCLUDING THERMAL STORAGE.
HC: HARD CONSTRAINTS. SC: SOFT CONSTRAINTS.

local: unit level global: VPP level

HC
operational limits of thermal

storage
energy amount contracted at

the market

SC avoidance of cold starts (out of scope of this work)

obligations from existing contracts. The reflection of global

soft constraints is out of scope of the work presented here.

VPP scheduling is the task of identifying distinct operation

schedules for all components of a VPP that are within the

flexibility range of the respective components. Thus, the

process can be split in two parts: First, the flexibility of

the components has to be assessed and modelled, and then

a scheduling solution is identified within an optimization

process. The overall process thus constitutes a multi-objective

optimization problem, with the different types of constraints

either being reflected during modelling or during optimization.

In this contribution, we extend a scalable VPP scheduling

approach from previous work that takes into account local and

global hard constraints with the ability to additionally reflect

local soft constraints of individual energy units, thus solving

the given multi-objective optimization problem. Individual

preferences (i. e. preferences for single energy units and their

operation) do not have to be disclosed within the VPP during

the scheduling process.

The rest of this contribution is structured as follows: In

section II we present relevant approaches for the tasks of

modelling and optimization in distributed energy scheduling

and identify basic algorithms used for the work presented here.

We then elaborate on the chosen approach to model feasible

operation schedules using a support vector data description

(SVDD) based method and extend this model to include local

soft constraints (section III). In section IV the COHDA heuris-

tic is presented. In former work, this distributed algorithm

has been used to generate VPP schedules satisfying local and

global hard constraints [5]. We show how the modelled local

soft constraints can be included in the optimization process
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using an apriori-multi-objective optimization approach. Re-

sults from a case study evaluating the presented general multi-

objective optimization approach are presented in section IV.

We summarize and discuss open issues in section V.

II. CHOOSING THE BASIC ALGORITHMS

In recent years, a large body of research has emerged

in the field of distributed energy scheduling. For the tasks

of constraint modelling and optimized scheduling relevant

for the contribution at hand, in the following some basic

approaches are presented, along with a discussion on the

chosen algorithms.

Flexibility modelling can be understood as the task of

modelling constraints. Apart from global VPP constraints,

constraints often appear within single energy components;

affecting the local decision making. Since these constraints

are not of a distributed nature, they can be solved locally

using central approaches. A widely used approach is the intro-

duction of a penalty into the objective function that devalues

a solution that violates some constraint [6]. In this way, the

problem is transferred into an unconstrained one by treating

fulfillment of constraints as additional objective. Alternatively,

some combinatorial optimization problems allow for an easy

repair of infeasible solutions. In this case, it has been shown

that repairing infeasible solutions often outperforms other

approaches [7]. Another popular method treats constraints or

aggregations of constraints as separate objectives, also leading

to a transformation into a (unconstrained) multi-objective

problem [8]. A hierarchical approach that combines both

hard and soft constraints in an explicit model formulation

and weighted objective functions has been introduced in [9].

For optimization approaches in smart grid scenarios however,

black-box models capable of abstracting from the intrinsic

model have proven useful [10], [11]. They do not need to

be known at compile time. A powerful, yet flexible way of

constraint-handling is the use of a decoder that gives a search

algorithm hints on where to look for schedules satisfying local

hard constraints (feasible schedules) [11], [12]. This approach

has been chosen in the work presented here. In section III-A

an introduction to the decoder approach is given.

The chosen flexibility representation is the foundation for

scheduling algorithms. The work presented by Akkermans,

Ygge and Gustavsson in 1996 has been one of the first

applications of distributed agent-based control in the electrical

energy system [13]. The so-called HomeBots approach was

motivated by an expected need for scalability, flexibility,

adaptivity and broad applicability for future distributed energy

systems [14]. Since this work, many distributed agent-based

approaches have been developed in the disciplines of electrical

engineering, control and system theory, information technol-

ogy and information systems. The understanding of what

constitutes a distributed system differs a lot, from software

agents as gateways to the energy units and hierarchical systems

[15] up to fully distributed algorithms [16]. Prior to the work

presented here, a requirement based analysis has been done

to identify appropriate algorithms for the task of distributed

R
d

S

H(k)
Φ : X → H

Φ−1(S)

Fig. 1. General support vector model scheme for individual search spaces.

energy scheduling [17]. In the following a short overview on

those algorithms already evaluated for energy scheduling tasks

is presented.

The Holonic Virtual Power Plant (Hol. VPP) presented in

[18] was introduced for the reactive rescheduling process in

VPPs. In this concept, a dedicated agent performs the task of

evaluating a VPP schedule regarding global constraints. The

agents presented in the concept are not capable of evaluating

the quality of a new VPP schedule but decide on their

contributions based on local constraints. The same approach

has been chosen for Autonomous Virtual Power Plants [19].

ALMA [20] is a fully distributed and highly dynamic approach

implemented for a dynamic supply-demand-matching task.

The scheduling task at hand is not solved using a set of feasible

schedules but based on a different modeling approach: The

energy units communicate comfort levels, thus allowing to

operate them flexibly within the defined levels. With COHDA,

a fully distributed heuristic has been presented for energy

scheduling [16]. The operational limits are modeled using the

concept of a set of feasible schedules. Although possible, soft

constraints have not yet been integrated in the process.

As COHDA satisfies the requirements regarding our mo-

tivating use case, the approach has been chosen as basic

algorithm in the work presented here. For the full analysis,

cf. [17]. In section IV-A we will introduce COHDA before

discussing the concept of soft constraint integration.

III. FLEXIBILITY AND LOCAL CONSTRAINT MODELLING

A. Decoder for Local Constraint Handling

In this section we briefly recap the technique for local hard

constraint handling used in this work. For handling individual

local constraints from different types of energy units, we use

a decoder technique. An in-depth discussion of the technique

can for example be found in [11], [12].

In general, a decoder is a technique that gives algorithms

hints on where to look for feasible solutions and thus allows

for a targeted search. It imposes a relationship between a

decoder solution and a feasible solution and gives instructions
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on how to construct a feasible solution [12]. A simple version

without a need for machine learning techniques to deduce a

meta-model, a response surface or similar uses directly a given

set X of feasible schedules derived from a simulation model

[16]. This approach has the limitation of supporting only

discrete combinatorial problems. In [21] a homomorphous

mapping between an n-dimensional hyper cube and the feasi-

ble region has been proposed in order to transform the problem

into a topological equivalent one that is easier to handle. This

approach has the problem of introducing additional parameters

that have to be tuned and adapted to the problem instance at

hand. In order to be able to derive a decoder automatically

from any given energy unit model, [22] developed an approach

based on a support vector model [23].

Fig. 2 shows the idea of using a so called support vector

decoder. The basic idea is to start with a set of feasible

example schedules derived from a simulation model of the

respective energy unit and use this sample as a stencil for

the region (the sub-space in the space of all schedules) that

contains just feasible schedules.

We regard a schedule of an energy unit as a vector s =
(s0, . . . , sd) ∈ S ⊂ R

d with each element si denoting mean

power generated (or consumed) during the ith time interval.

As has been shown in [24], it is advantageous from a machine

learning point of view to use scaled schedules for learning the

feasible region. Thus, we construct the training set X by a

normalization with

N : S → X ⊂ [0, 1]d

s 7→ x = N (s),with xi =
si − pmin

pmax − pmin

;
(1)

pmin and pmax denoting minimum and maximum power

respectively. The scaled sample X is then used as a training

set for a support vector data description (SVDD) approach

[25] that derives a geometrical description of the sub-space

that contains the given data (in our case: the set of feasible

schedules). Given a set of data samples, the inherent structure

of the scope of action of the respective energy unit can

be derived as follows: After mapping the data to a high

dimensional feature space by means of an appropriate kernel,

the smallest enclosing ball in this feature space is determined.

When mapping back this ball to data space, it forms a set of

contours enclosing the given data sample.

This task is achieved by determining a mapping

Φ : X ⊂ R
d → H; x 7→ Φ(x) (2)

such that all data from a sample X from the feasible region F
is mapped to a minimal hypersphere in some high-dimensional

space H. The minimal sphere with radius R and center a in

H that encloses {Φ(xi)}N can be derived from minimizing

‖Φ(xi)− a‖2 ≤ R2 + ξi with ‖·‖ as the Euclidean norm and

slack variables ξi ≥ 0 for soft constraints (here for getting a

smoother ball).

After introducing Lagrangian multipliers and further relax-

ing to the Wolfe dual form, the well-known Mercer’s theorem

(cf. e.g. [26]) may be used for calculating dot products in H

by means of a kernel in data space: Φ(xi)·Φ(xj) = k(xi,xj).
In order to gain a more smooth adaption, it is known to

be advantageous to use a Gaussian kernel: kG(xi,xj) =

e−
1

2σ2
‖xi−xj‖

2

[27]. Putting it all together, the equation that

has to be maximized in order to determine the desired sphere

is:

W (β) =
∑

i

k(xi,xi)βi −
∑

i,j

βiβjk(xi,xj). (3)

With k = kG one gets two main outcomes from the training

procedure: the center a =
∑

i βiΦ(xi) of the sphere in terms

of an expansion into H and a function R : Rd → R that allows

to determine the distance of the image of an arbitrary point

from a ∈ H, calculated in R
d by:

R2(x) = 1− 2
∑

i

βikG(xi,x) +
∑

i,j

βiβjkG(xi,xj). (4)

Because all support vectors show the characteristics of being

mapped onto the surface of the sphere, the sphere radius RS

can be easily determined by the distance of an arbitrary support

vector to the center a. Thus the feasible region can now be

modeled as F = {x ∈ R
d|R(x) ≤ RS} ≈ X .

The comparably small set of support vectors together with

a reduced version of vector β that contains non zero weight

values (denoted w) for the support vectors is sufficient for

building the model. The model might then be used as a black-

box that abstracts from any explicitly given form of constraints

and allows for an easy and efficient decision on whether a

given solution is feasible or not. In this way, the model allows

for an easy check whether a given schedule is operable or not

by using decision function (4).
So far, this surrogate model is just capable of checking

feasibility when already given a schedule. In this way, the

surrogate may tell feasible and infeasible schedules apart on

behalf of the specific simulation model of the energy unit and

thus already allows for an abstraction from any model specific

implementation. On the other hand, it is not yet a sufficient

constraint-handling technique as it still needs externally (e. g.

by any optimization algorithm) generated schedules which can

merely be checked. But, due to the tiny share of the search

space that is actually feasible, it is quite unlikely that a feasible

schedule is generated by an algorithm just by chance [28].
Hence, a way is needed to guide an algorithm where to look

for feasible schedules. To achieve such systematic search for

a good and still feasible solution, a decoder can be derived

automatically from the support vector surrogate. The set of

feasible schedules is represented as pre-image of a high-

dimensional ball S. Fig. 1 shows the geometric situation. This

representation has some advantageous properties. Although

the pre-image might be some arbitrary shaped non-continuous

blob in R
d, the high-dimensional representation is still a ball

and thus geometrically easier to handle.
The relation is as follows: If a schedule is feasible, i.e.

can be operated by the unit without violating any technical

constraint, it lies inside the feasible region (grey area on the

left hand side in Fig. 2). Thus, the schedule is inside the pre-

image (that represents the feasible region) of the ball and thus
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x∗

Fig. 2. General support vector decoder scheme for solution repair and
constraint handling.

its image in the high-dimensional representation lies inside

the ball. An infeasible schedule (e. g. x in Fig. 2) lies outside

the feasible region and thus its image Ψ̂x (generated by the

empirical kernel mapping Ψ̂x) lies outside the ball. But we

know some relations: the center of the ball, the distance of

the image from the center and the radius of the ball. Hence,

we can move the image of an infeasible schedule along the

difference vector towards the center until it touches the ball.

Finally, we calculate the pre-image of the moved image Ψ̃x

(mover by translation function Γa) and get a schedule at the

boundary of the feasible region: a repaired schedule x∗ that

is now feasible. We do not need a mathematical description

of the original feasible region or of the constraints to do this.

More sophisticated variants of transformation are e. g. given

in [22].

Formally, we want to derive a mapping function (the so

called decoder Θ)

Θ : [0, 1]d → F[0,1] ⊆ [0, 1]d

x 7→ Θ(x)
(5)

that transforms any given (maybe in-feasible) schedule into a

feasible one. This decoder mapping Θ is derived automatically

from the trained SVDD repesentation of the search space using

three steps:

x ∈ [0, 1]d Ψ̂x ∈ H(ℓ)

x∗ ∈ F[0,1] ⊆ [0, 1]d Ψ̃x ∈ H(ℓ)

Θ

Φ̂ℓ

Φ∼1
ℓ

Γa

(6)

Applying such decoder to some internal solution represen-

tation x ∈ [0, 1]d transforms the solution to some feasible

solution Θ(x) ∈ F[0,1].

Thus, we are able to transform any global scheduling

problem into a formulation that is unconstrained regarding

local hard constraints. Apart from finding a combination of

schedules whose sum resembles a given target power profile

best, further objectives are usually integrated due to the many-

objective nature of energy scheduling.

This procedure of training a decoder has to be done only

once prior to the scheduling process. During scheduling the

all decoders are merely used for generating feasible schedules.

For our experiments, training was usually done within mil-

liseconds. For an in-depth discussion of computational issues

of the decoder we refer to [29].

For distributed problem solving, the decoder can serve as

a substitute for an often (particularly with regard to a fully

automated generation) hardly derivable mathematical model of

feasibility. Like in well studied industrial approaches for model

predictive control [30] only a simulation model as a source for

learning the model is needed. Due to the abstraction from the

underlying simulation model (or real unit), no information on

which operations are possible and no information on limiting

restrictions, cost considerations or soft constraints are needed

at runtime. Thus, the ad-hoc integration of arbitrary (even of

at compile-time unknown units) becomes easily possible and

hence eases the implementation of many control algorithms

for the smart grid.

B. Modeling local soft constraints

In general, the satisfaction of a local soft constraint by a

defined operation schedule s is modeled as a DER specific

function Ii that assigns a value between 0 and 1 to the

respective operation schedule, with i denoting the respective

DER within the set of DER regarded in the scheduling task,

i. e. the current VPP setup.

Ii : S → [0, 1]

Ii(s) = σ, ∀s ∈ S
(7)

In the following, we omit the subscript i for reasons of brevity.

As the soft constraint evaluation is a component-specific task

it is performed locally in all upcoming definitions.

We now define an extended search space S ′ that integrates

the soft constraints into the search space S :

S
′ : {( s, σ(1), ..., σ(m) ) | s ∈ S} (8)

With this definition, the extended search space S ′ is the set of

all tuples of feasible operation schedules s and their respective

soft constraint values, with m being the number of modelled

soft constraints.

But how to model this extended search space? For the

decoder concept presented in Section III-A, a possible inte-

gration of indicators has been shown: Data vectors containing

the mean power levels for the respective time intervals are

extended by one element per indicator to mixed feature

vectors. This approach has been proposed for environmental

performance indicators [23], but in general, arbitrary indicators

can be added as long as a functional relationship exists

between the power part and the indicator. In this way, we

can build a modified sample x′ as

x′ = (x1, . . . , xd, I
(1)
[0,1](x), . . . , I

(m)
[0,1](x)), x′ ∈ [0, 1]d+m,

(9)
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with the first d elements denoting real power and m trailing el-

ements denoting indicator values. Whereas I takes a schedule,

I[0,1] maps an already scaled training vector x instead. This

sample is fed into exactly the same support vector training

process to build the model. The decoder is derived in exactly

the same way. The decoder mapping Θ then likewise maps

feature vectors x′ ∈ X ′

[0, 1]d+m → F[0,1] × [I[0,1]]
m

Θ(x′) 7→ (x, I
(1)
[0,1](x), . . . , I

(m)
[0,1](x)).

(10)

If x′ is given with arbitrary values then Θ(x′) contains a

feasible active power schedule in the first d elements as well as

m elements evaluating this schedule correctly (slight inaccu-

racies are possible) with regard to the secondary optimization

objectives.
Using this concept of the decoder approach including in-

dicator reflection, we can set up an extended search space

from a set of samples (i. e. normalized schedules) as shown in

equation 9. For this purpose, we have to add the indicator value

I for the chosen soft constraint to the sample schedule prior

to the support vector training phase. In the example chosen

here, we want to reduce the amount of cold starts within an

operation schedule to minimize motor deterioration. We can

infer the number of cold starts directly from the schedules

within a preprocessing step. We omit the precise definition of

cold starts for reasons of brevity, but usually it is a defined

change of switching an engine off and on within a given time

span. The indicator value thus matches the soft constraint value

as given in equation 7. We now have to define the DER specific

soft constraint function as an indicator for the amount of cold

starts Ics precisely to feed it into the SVDD training:

Ics(s) =

(

1−
css

csmax

)2

(11)

with css as the amount of cold starts in the given schedule s

and csmax as maximum amount of cold starts in the given

schedule set. Using the squared value, a rising amount of

cold starts is punished disproportionally high. For schedule

sets without cold starts, the value is undefined – these cannot

be used to distinguish schedules using this characteristic.1

It can be seen that there is a functional relationship between

the schedule and the indicator, thus allowing to use the

modified sample definition as given in equation 9 and using

equation 1 to map schedule s to its normalized sample x. For

each sample x in the given sample set we append the indicator

as defined in equation 11 and use it for SVDD training.
As a result of these steps, we yield the extended search

space S ′ and can now integrate this in the scheduling process.

IV. DISTRIBUTED ENERGY SCHEDULING

A. Introducing COHDA

The Combinatorial Optimization Heuristic for Distributed

Agents (COHDA, originally introduced in [16]) can be used

1Please note that in the implementation presented here, I is defined
identically for all DER, without limiting the applicability of the presented
approach to DER specific soft constraint functions Ii.

ai

ap

ao

an

am

al

ak

aj

Fig. 3. Exemplary communication topology in the form of a small world
topology for a system comprising eight agents.

to solve scheduling problems in VPPs. In the present con-

tribution, we consider predictive scheduling: the goal is to

select a schedule for each energy unit—from a given search

space of feasible schedules with respect to a future planning

horizon—such that a global objective function (e. g. a target

power profile for the VPP) is optimized. This target profile

is understood as global hard constraint within the scheduling

process for the rest of this contribution. We will recap the

approach briefly, based on the description in [5].

The key concept of COHDA is an asynchronous itera-

tive approximate best-response behavior, where each agent—

representing a decentralized energy unit—reacts to updated

information from other agents by adapting its own selected

schedule with respect to the global objective. All agents ai ∈ A

initially only know their own respective set of schedules Si, so

from an algorithmic point of view, the difficulty of the problem

is given by the distributed nature of the system in contrast to

the task of finding a common allocation of schedules for a

global target power profile.

Thus, the agents coordinate by updating and exchanging

information about each other. But, in order to preserve privacy,

the amount of information that is exchanged is restricted. In

particular, the set of feasible schedules Si is not communicated

as a whole by an agent ai. Instead, the agents try to publish as

little information as possible. How these possibly conflicting

goals are handled, and how the system is able to converge

to sound and satisfying solutions, will be explained in the

following.

First of all, the agents are placed in an artificial communi-

cation topology (e. g. a small world topology, see Fig. 3), such

that each agent is connected to a non-empty subset of other

agents. To compensate for the resulting non-global view on the

system, each agent ai collects two distinct sets of information:

on the one hand the believed current configuration γi of the

system (that is, the most up to date information ai has about

currently selected schedules of all agents), and on the other

hand the best known combination γ∗
i of schedules with respect

to the global objective function it has encountered so far.

Beginning with an arbitrarily chosen agent by passing it a

ASTRID NIESSE ET AL.: LOCAL SOFT CONSTRAINTS IN DISTRIBUTED ENERGY SCHEDULING 1521



perceive
��

act

��

��
decide

private

search space

public

knowledge

Fig. 4. The perceive–decide–act behavioral pattern in COHDA from the
point of view of an agent ai.

message containing only the global objective (i. e. the target

power profile), each agent repeatedly executes the three steps

perceive, decide, act (cf. [5]) as visualized in Fig. 4:

1) perceive: When an agent ai receives a message

κp from one of its neighbors (say, ap), it imports the

contents of this message into its own memory.

2) decide: The agent then searches Si for the best sched-

ule regarding the updated system state γi and the global

objective function, thus respecting the global hard con-

straints. The reflection of local hard and soft constraints

depends on the chosen approach to model the energy

unit’s flexibility and will be discussed in a later part of

this contribution. If a schedule can be found that satisfies

both the global and the local objectives, a new schedule

selection is created. For the following comparison, only

the global objective function must be taken into account:

If the resulting modified system state γi yields a better

rating than the current solution candidate γ∗
i , a new

solution candidate is created based on γi. Otherwise

the old solution candidate still reflects the best schedule

combination regarding the global objective the agent

is aware of, so the just created schedule selection is

discarded and the agent reverts to its schedule selection

stored in γ∗
i .

3) act: If γi or γ∗
i has been modified in one of the previous

steps, the agent finally broadcasts these to its neighbors

in the communication topology.

Following this behavior, only small subsets of the sets of feasi-

ble schedules Si are communicated by the agents. During this

process, for each agent ai, its observed system configuration

γi as well as solution candidate γ∗
i are empty at the beginning,

will be filled successively with the ongoing message exchange

and will some time later represent valid solutions for the given

optimization problem. After producing some intermediate so-

lutions, the heuristic eventually terminates in a state where

for all agents γi as well as γ∗
i are identical, and no more

messages are produced by the agents. At this point, γ∗ (which

is the same for all agents then, so the index can be dropped)

is the final solution of the heuristic and contains exactly one

extended private 

search space 

+/– 

local 

preferences 

global optimization 

target 

global 

 evaluation 

perceive 

act 

new schedule 

d
e

ci
d

e
 

opt
s

opt
I

cand
s

Fig. 5. The decide behavioral pattern of COHDA including the reflection of
soft constraints.

schedule selection for each agent.

B. Reflecting soft constraints during scheduling

In Fig. 4 an overview on the heuristic COHDA has been

given from the perspective of a single agent representing

a DER within a VPP. The algorithm is designed originally

to optimize for a global objective only: In a two-stepped

procedure, first a new schedule is chosen from the agent’s

ai local search space Si. After that, the resulting global result

quality is evaluated. However, each agent must be permitted to

decide itself which schedule it contributes. This way, techni-

cally, economically or ecologically rooted local soft constraints

can be taken into account as secondary optimization goals.

Moreover, in order to preserve privacy and autonomy of the

participating entities, these individual secondary objectives

must be treated as private to the corresponding agent, i. e.

similar to the set of feasible schedules Si, the local objectives

are not part of the communicated information.

To integrate such local soft constraints into the decision

process without compromising the convergence of the dis-

tributed algorithm, we modified the first step by replacing the

search space S by the extended search space S ′ as defined

in equation 8. During the decide phase, the agent thus has

surplus information regarding the indicator (see Fig. 5). With

this modelling approach, an additional constraint is integrated

in the search space. Using the decoder approach as presented

in section III-A, the agent can now try to identify a candidate

schedule s that enhances the performance regarding the global

objective (e. g. energy amount) and additionally enhance the

performance regarding local quality as defined by the local

soft constraint function Ii(s) (cf. equation 7). To enable this

multi-objective optimization, the decide phase of COHDA is

extended (cf. Fig. 5): In the first step, the needed schedule

sopt to best reach the global optimization target is calculated.

The optimal indicator value Iopt (i. e. the best possible soft

constraint performance) is added. For multiple soft constraints,

additional indicator values would be added. In the next step

this combination of needed schedule and indicator(s) is passed

to the decoder for a targeted search. While without soft

constraint modelling only the schedule best fitting the global
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target would be identified, the decoder now returns a schedule

depending on both the needed schedule sopt and the optimal

local soft constraint performance Iopt. Using the decoder

concept with an extended search space modelling approach

thus leads to an apriori-multi-objective optimization with an

implicit weighting of the different constraints. The schedule

identified by the decoder is passed as candidate schedule scand

to the evaluation of the global result quality, i. e. the global

hard constraint.

In the example chosen here, the indicator gives information

regarding the amount of cold starts contained in the schedule.

The extended search space S ′ therefore is built using the

indicator Ics as defined in equation 11. The agent now can

choose a candidate schedule that might enhance the perfor-

mance regarding the global objective and minimize the number

of cold starts simultaneously.

In summary, the outlined modelling and decision process

yields a reasonable hierarchy of constraint handling in the

domain of distributed energy scheduling (cf. Table I in sec-

tion I): Using the decoder concept as depicted in section III-A,

local hard constraints are modelled in such a way that only

feasible schedules are returned by the decoder. Local soft

constraints are used for SVDD training (see section III-B

and guide the decoder targeted search (see section IV-B.

Therefore, schedules satisfying the soft constraints are returned

preferentially by the decoder. In the last step, the global

evaluation is performed, reflecting global hard constraints.

With this concept, local hard constraints are prioritized over

global objectives, while local soft constraints are being taken

into account with least importance.

V. RESULTS

To evaluate the presented approach for the integration of soft

constraints in distributed energy scheduling, two hypotheses

have been chosen:

H1 The integration of local soft constraints in the distributed

scheduling enhances the performance of the chosen

schedules regarding the modeled soft constraint, i. e. the

local quality.

H2 The integration of local soft constraints does not reduce

the quality of the chosen solution regarding the global

objective, i. e. producing the target power profile.

In the following, we will first introduce the evaluation setup,

then discuss the evaluation results using these hypothesis. In

all experiments, regarding the local soft constraints, we go

with the example of reducing the amount of cold starts within

an operation schedule to minimize motor deterioration, as

introduced in section III-B.

A. Evaluation Setup

To evaluate the effect of an integration of local soft con-

straints in the distributed scheduling process, a setup is needed

where agents have the choice to either reflect or ignore the

performance indicator regarding the amount of cold starts

Ics(s). As the global objective is to fulfill a defined energy

profile, enough flexibility within the aggregation of agents

is needed to fulfill this objective either using schedules with

high or low performance values regarding cold starts. In the

experimental setup we therefore choose a mixed set of agents

representing small CHP plants (4.7 kWel): For 15 CHP plants,

the conventional search space is used, without adding the

indicator value. For additional 15 CHP plants, the search space

is extended, thus allowing these agents to reflect the indicator

during scheduling. For the support vector training phase, we

need a set of schedules that can be distinguished regarding cold

starts: On a winter day, CHP plants are expected to run nearly

the whole day. Therefore, schedules of a CHP for a winter day

are not suitable for the evaluation task. The opposite holds for

a summer day. We chose a spring day and generated schedules

from a CHP simulation for this task. The largest number of

cold starts (csmax) within this set has been 9. Thus, a schedule

with 9 cold starts within one day might have been chosen

without reflecting this constraint for each CHP.

For this aggregation of 30 CHP plants, different target

profiles have been defined manually in such a way that

fulfilling the profile is possible with more than 90 % accuracy,

thus covering a range of possible target profiles. Each target

setting has been simulated 100 times with different random

seeds for generating the training set for reasons of statistical

soundness.

B. Local Quality (Hypothesis H1)
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Fig. 6. Simulation results for a VPP with 30 CHPs and different target
profiles. Mean values from 100 simulation runs are shown.

In Fig. 6 the results for the simulative experiments are

shown regarding local quality: The horizontal axis denotes

the different target profiles. On the vertical axis the mean

local quality is shown. With only one soft constraint given

in our scenario, we define σ as the local quality of a schedule

under evaluation (cf. equation 7). The filled circles depict the

mean value of 15 CHP plants over 100 simulations for the

agents reflecting the amount of cold starts in their search space,

whereas the unfilled circles show the mean local quality of
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those 15 CHP plants over 100 simulations for the agents that

do not consider this local soft constraint.

It can be seen that the local quality is higher for all target

profiles, if soft constraints are integrated in the scheduling

process. Additionally a trend can be seen: The higher the

energy amount of the target profile, the better is the local

quality. This can be explained as follows: If more electrical

energy has to be produced, the agents choose schedules with

longer runtimes. Thus, less cold starts are expected.

For one of the simulation setups (target profile 50 kWh),

the raw data are depicted in Fig. 7. It can be seen that

using the extended search space model (S ′), the number of

schedules with 2 cold starts is reduced, whereas the number

of schedules without cold starts is increased. There is a slight

rise in the number of schedules with 1 and 3 cold starts.

This rise is considered to be non-significant compared to

the effect regarding the reduction of schedules without cold

starts. In general, a shift to schedules with less cold starts can

be observed. The results are similar for the other simulation

setups but not displayed here.

With the given results, we consider hypothesis H1 strength-

ened: The integration of local soft constraints in the distributed

scheduling enhances the performance regarding the modeled

soft constraint.
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Fig. 7. Detailed simulation results for a VPP with 30 CHPs and target profile
50 kWh. Regarding 100 simulation runs, the distribution of schedules with
respect to the amount of cold starts per schedule is shown.

C. Global Quality (Hypothesis H2)

We now focus on the effects of the integration of soft

constraints in the scheduling process on the global quality.

In Table II the normalized global quality regarding the target

profile fulfillment is summarized using the mean values over

100 simulation runs for different target profiles. In general, the

energy unit aggregations perform best for a profile with either

50 or 55 kWh, although a high quality could be reached for all

simulation settings. This depends on the chosen aggregation of

energy units and their feasible schedules: Within the defined

range from 40 to 65 kWh, enough operational flexibility is

given to adapt to a defined target profile. We now compare

the global quality within one target profile simulation setting

with and without the reflection of soft constraints: It can be

seen that for all profiles, the values differ only very slightly.

This effect can be understood from the chosen concept of

soft constraint integration: If an agent manages to identify

an operation schedule that will outperform the current target

fulfillment, this would be chosen although this schedule might

decrease local quality. With the chosen concept of guiding

the search within the schedule search space along the soft

constraint performance though, the heuristic COHDA tends to

find those local optima that not only increase global quality

but additionally show better local quality.

With the given results, we consider hypothesis H2 strength-

ened: The integration of local soft constraints does not reduce

the quality of the chosen solution regarding the target profile

delivery significantly for the chosen setting.

TABLE II
COMPARISON OF TARGET PROFILE FULFILLMENT WITH AND WITHOUT

REFLECTION OF SOFT CONSTRAINTS. MEAN VALUES FROM 100
SIMULATIONS RUNS PER TARGET PROFILE ARE GIVEN.

40kWh 45kWh 50kWh 55kWh 60kWh 65kWh

with reflection of soft constraints

0.9862 0.9886 0.9921 0.9939 0.9874 0.9590

without reflection of soft constraints

0.9850 0.9907 0.9931 0.9937 0.9830 0.9605

VI. CONCLUSION AND OUTLOOK

In this contribution we presented an approach on how to

include local soft constraints in the fully distributed algorithm

COHDA for the task of energy units scheduling in virtual

power plants (VPP). For this task, we extended a flexibility

representation based on SVDD using indicator values and

used these indicators to guide the search for a new schedule.

Using the example of preventing frequent cold starts for CHP

plants, we could show that the presented approach enables

the agents to reflect the modeled local soft constraint without

sacrificing the global result quality. As the information on

local soft constraints is not communicated within the system

and considered only locally, the presented approach reveals

benefits regarding privacy without sacrificing global result

quality.

With these results, further work should be done on the inte-

gration of extended search spaces in the presented distributed

scheduling heuristic COHDA. With the extension of the search

space using indicators, an implicit weighting is given by

the length of the schedules and the number of indicators.

Additional evaluation effort is needed to yield an appropriate

weighting depending on the specific soft constraint. A straight-

forward approach would be to adapt the weights of an indicator

by multiplying its value during the SVDD training phase, thus
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yielding an explicit weighting. The formalization given in the

contribution at hand is compatible with this concept.

Additionally, the boundaries of effectiveness for energy

unit aggregations with less flexibility should be evaluated,

especially compared to other multi-objective optimization con-

cepts: With the presented approach, soft constraints guide the

search in the search space. Therefore it has to be evaluated, if

for some types of DER the global quality would be reduced to

an unaccepted extent. Straight-forward extensions of the pre-

sented approach like time-dependent soft constraint relaxation

could overcome such problems.
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