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Abstract—The classification of leukocyte subtypes is a routine
method to diagnose many diseases, infections, and inflammations.
By applying an automated cell counting procedure, it is possible
to decrease analysis time and increase the number of analyzed
cells per patient, thereby making the analysis more robust. Here
we propose a method, which automatically differentiate between
two white blood cell subtypes, which are present in blood in the
highest fractions. We apply generalized pseudo-Zernike moments
to transfer morphological information of the cells to features and
subsequently to a classification model. The first results indicate
that information from the morphology can be used to obtain
efficient automatic classification, which was demonstrated for the
leukocyte subtype classification of neutrophils and lymphocytes.
The approach can be extended to other imaging modalities, like
different types of staining, spectroscopic techniques, dark field
or phase contrast microscopy.

I. INTRODUCTION

W
HITE blood cells (WBCs) are also called leukocytes.

These cells protect the body from infections caused

by viruses and other foreign invaders like bacteria or fungi,

which make WBCs an important part of the immune system.

Leukocytes are produced and derived from the bone marrow

and circulate through the bloodstream. A change of the number

of different WBC subtypes in the blood is utilized as marker

for various diseases. Therefore a blood cell count is often

utilized for a routine health examination or diagnosis of

specific conditions of a patient. There are five major subtypes

of WBCs [1], [2]:

• neutrophils (50-70%);

• lymphocytes (25-30%);

• monocytes (3-9%);

• eosinophils (0-5%);

• basophils (0-1%).

The ranges within the brackets display the percentage of the

corresponding cell subtypes in the blood, which are typical

ratios for a healthy person. There are various classification

approaches, which can be roughly divided into manual and

automated methods of cell classification.

The manual classification is performed by a pathologist

through the subjective recognition of cell subtypes on mi-

croscopic images of stained cells. This type of analysis

does not require complex equipment or highly specialized

chemical reagents. To simplify the identification, cells are

usually stained with the Kimura stain, which colors cell nuclei

in blue. Manual differentiation between varying subtypes is

accomplished based on characteristics of the cell morphology,

like cell size, transparency, granularity, and the shape of the

cell nucleus, which are the major differences between the

subtypes. Manual classification is widely used in some specific

cases of diagnosis and as a “gold standard” for scientific

purposes. However, variation of cell morphology within the

same cell subtype is very high, and manual classification

efficiency is dependent on the pathologist’s qualification and

experience.

On the other side, there are various automated classification

methods, based on different physical and chemical charac-

teristics of the cells. The main advantage of the automated

devices is that they efficiently analyze large number of cells in

a short time. Unfortunately, their analyzing workflows include

very specific combinations of chemical and physical processes.

The complexity of the analysis does not allow the design

of a simple portable device. Therefore, automated blood cell

counting machines are usually big and expensive.

An alternative approach is an automatic image analysis of

microscopic images of stained cells. In a combination with

a small camera this method can become a useful tool for

doctors, providing them an instant access to the information

about WBCs population at bedside of a patient. There are some

studies that show efficient leukocyte identification [3], [4] and

segmentation [5], [6] within microscopic images. However,

these studies are focused on the leukocyte count without the

classification of the leukocytes into subtypes. That leads to

the loss of important information about the proportions of

each cell subtype. In distinction to the mentioned studies, the

current manuscript describes an algorithm for the classification
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of WBCs, focusing on the textural features analysis of single

cell images.
The concept of the work is to extract quantitative features

related to the cell morphology from the microscopic images.

Subsequently, these features are used to train and evaluate a

statistical model for cell subtype identification. Moreover, the

same type of images as for manual classification is used, there-

fore, this approach allows a direct comparison to the “gold

standard”. In order to use these images for an automated image

analysis, standardization and preprocessing have to be carried

out. However, during the pretreatment step, it is important to

eliminate corrupting effects, such as uniformities in staining

and lighting, but to keep the morphological information for

further analysis steps.

The textural information extraction from preprocessed im-

ages can be carried out by various methods [7], [8]. How-

ever, image description by means of pseudo-Zernike (PZ)

moments [9] was chosen for the cell subtype identification

because it was proven to be a reliable method for the recog-

nition of shapes [10], characters [11], [12], faces [13], [14],

[15], and viruses [16]. An advantage of the representation by

PZ-moments is that their absolute values are independent from

image rotation, which is necessary due to random orientation

of the cells on a microscopic slide. The PZ-moments are

derived from PZ-polynomials, which are orthogonal to each

other and can be used in further statistical analysis, thus an

automated classification technique can be established.
The proposed automated cell classification method is aimed

to combine the simplicity of the manual classification and the

advantages of automatization. The approach is based on the

analysis of images, which are similar to the images used for

manual “gold standard” method and are produced by common

microscopy from a blood sample after non-complicated prepa-

ration. On the other side, due to automatization, extremely

short classification times and objectivity, comparable with a

human observer, can be achieved.

II. MATERIALS AND METHODS

A. Sample preparation

Leukocytes were isolated from the venous blood of patients

admitted to the intensive care unit with informed consent

according to the Ethics Committee of the Jena University

Hospital (Ethic vote n 4004-02/14). Briefly, 2.7ml of blood

in ethylenediaminetetraacetic acid (EDTA) was drawn freshly

from an existing catheter using the BD monovettes. In case of

healthy donor, blood (about 100µl) was collected from finger-

tip using lancet. Red blood cell lysis was carried out by mixing

the blood with an ammonium chloride solution with a ratio of

1:5 in a 50ml falcon tube. After 5 minutes of incubation at

room temperature (RT), the mixture was centrifuged for 10

minutes at 400g at RT. The WBC pellet at the bottom of the

falcon tube was collected by discarding the supernatant and

suspending it in a phosphate buffer solution (PBS). The WBCs

were chemically fixed with 4% formaldehyde for 10 minutes,

followed by washing the cells successively with PBS and 0.9%

NaCl. The cells were coated on slides using cytospin and

stained with a Kimura staining solution (which stains only the

cellular nucleus) and washed with distilled water. The slides

were dried at RT and stored at 4 ◦C for maximum one hour

until further use. The Kimura stained images of the WBCs

(Fig. 1 a,b) were captured with an upright epifluorescence

microscope (Axioplan 2, Carl Zeiss, Germany) equipped with

an AxioCam HRc camera (Carl Zeiss, Germany). Images

were acquired using Zeiss Axio Vert software (Carl Zeiss,

Germany).

B. Calculations

All calculations reported in this work were carried out

in Gnu R (version 3.0.2) [17] running on a Windows 7

Professional 64-bit system (Intel R© CoreTM i5-4570 CPU @

3.20 GHz 2.70 GHz with 8GB RAM). In addition to the base

R package, which contains the input/output, basic program-

ming support, and arithmetic functions, some more specific

algorithms were utilized from other packages. For orthogonal

moment analysis the “IM” package [18] was used. A support

vector machine (SVM) classification model was built with the

“e1071” package [19]. Parallel computing was obtained by

functions from “foreach” [20] and “doParallel” [21] package.

K-means clustering from the “stats” package [17] was utilized

for the background removal. The functions for principal com-

ponent analysis (PCA), nonlinear least squares estimation, and

the fast Fourier transform (FFT) are all contained in the base

package [17]. JPEG files were loaded into the R environment

via the “jpeg” package [22].

Prior to analysis, each image was converted from sRGB

color space to Lab color space, one of the most common

color spaces for image analysis applications. It was chosen

due to the fact that, unlike additive or subtractive color models

(for example RGB or CMYK), it is not optimized for image

representation on a screen or for printing, but is adapted to

cover the entire range of colors distinguishable by the human

eye and to match the perception of these colors. In this color

space, a and b components are related to chromatic color

values. The L component of Lab color space closely matches

the human perception of lightness, which allows to expect that

in this representation cell subtypes can be identified based

on their morphology. The conversion of the color space was

performed by base R function “convertColor”.

Subsequently to the color space conversion, other steps,

such as noise reduction, background removal and intensity nor-

malization were performed. The details of these preprocessing

steps are described in the “Results and discussion” section.

C. Pseudo-Zernike (PZ) Moments

As mentioned previously, PZ-moments were chosen for fea-

ture extraction from the images. These orthogonal, complex-

valued moments are defined on a unit disk and are widely used

for pattern recognition. The PZ-moments can describe a 2-

dimensional function on the unit circle. However, the function

f(x, y) can represent an image if two arguments, x and y, are

related to a pixel position and the function value is related to
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Fig. 1. Original images of two Kimura stained cell subtypes from the patients are displayed in the first row: lymphocytes (a), which are characterized by
deep staining of the nuclei and a relatively small amount of cytoplasm, and neutrophils (b), which are the most common subtype that normally contain a
nuclei divided into 2-5 lobes. All images are sized according to the scale (e). At the bottom preprocessed false-color equivalents of the presented images (c,
d) normalized to the unit scale (f) are shown.

lightness or another color component in that pixel. The PZ-

moments (Anl) of an image on a unit disk are defined in radial

coordinates by [23]:

Anl =
n+ 1

π

2π

∫
0

1

∫
0
[Vnl (r cos θ, r sin θ)]

∗

f (r cos θ, r sin θ) rdrdθ .

In this equation n = 0, . . . ,∞ represents the order, the

repetition is denoted by l ≤ n, and f is the value related

to the current pixel position: 0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π
(polar coordinates of the pixel). Vnl is the orthogonal set of

complex-valued PZ-polynomials, which can be written as:

Vnl(r, θ) = Rnl (r) e
jlθ ,

where Rnl represents radial polynomials with integer coeffi-

cients Dn,m,s:

Rnl(r) =

n−|l|∑

s=0

Dn,|l|,sr
(n−s) ,

Dn,m,s =
(−1)s(2n+ 1− s)!

s!(n−m− s)!(n+m− s+ 1)!
.

Both the order n and the repetition l are related to the spatial

frequencies of the image. However, the order n represents

the spatial frequency along the unit disk’s radius, while the

repetition l represents the spatial frequency along the unit

disk’s angular coordinate. Moreover, by clarifying the idea

behind order n and repetition l, the respective moments can be

interpreted. Therefore, the classification model can be checked,

analyzed and the morphological differences between the cell

subtypes can be examined.

As it is seen from the formulas, the angular coordinate is

included in the PZ-moments only within the multiplier ejlθ ,

which is related to the phase of the complex value [9], [10],

[12]. Due to this fact, the absolute values of moments are

independent from a rotation of the coordinate system. Thus,

they are independent from the spatial alignment of the cell

within the image and from the orientation on the microscopic

slide. Other advantages of these particular moments are their

low sensitivity to noise [10] and that the PZ-moments are

orthogonal to each other.

III. RESULTS AND DISCUSSION

A. Data set

Taking into account the extremely low number of mono-

cytes, eosinophils, and basophils in the data, only two major

subtypes could be investigated in the current study. These both

subtypes represent about 90% of WBCs in the blood and were

included in the statistical evaluation. Thus, the training data

included 28 lymphocytes and 45 neutrophils from 6 patients

which were showing signs of inflammation. On the other side,

the test data included 128 cells from two healthy volunteers.

Unlike the training set, where some cell subtypes were sorted

out, the test data included randomly selected cells without

presorting or labeling according to their subtypes.

The cell subtypes included in the training data are different

in sizes and cell nuclei morphology (see Fig. 1). Most notable

is that the neutrophils are relatively big and have multi-lobed

nuclei, while lymphocytes have almost round nuclei and are

smaller. Other WBC subtypes, which were not included in

the training data, are characterized by their granularity and

the following properties of the cell nuclei: monocytes have

kidney shaped nuclei, eosinophils have relatively small bi-

lobed nuclei, and basophils have bi-lobed or tri-lobed nuclei.

Although each subtype has a typical average cell size and

other specific characteristics, each single cell varies from that

average characteristics, which make some of its parameters

dissimilar to the typical characteristics of its subtype.

B. Workflow

To obtain a stable and efficient analytical system, an image

processing workflow was developed and optimized for the

specific task of leukocyte subtype classification. The data was

loaded, preprocessed, and represented as a set of pseudo-

Zernike moments based invariants for further analysis. The

workflow is presented in more detail in Fig. 2.

Important and nontrivial steps are the image preprocessing

and standardization, which have to be optimized. These pro-

cedures should reduce the variations of brightness and color

tones between the images of cells within the same sample

and occasional appearing variations caused by the sample

preparation routine for images taken from different samples. If
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the workflow presented here is applied to other imaging modal-

ities, like holographic imaging and phase contrast microscopy,

these variations are expected to be less significant. Therefore,

the preprocessing procedure has to be modified individually for

each microscopic imaging technique and classification task.

For the construction of the classification model based on

image analysis, the measured cells were labeled according

to the classification made by the pathologist. The labeled

and preprocessed training data were subsequently divided into

three batches for cross-validation of the model. This step of

the workflow was of enormous importance for setting model

parameters and estimating the model quality. Thereafter, it

should not be underestimated.

Leave-batch-out-cross-validation of SVM classification was

performed on the training data with different combinations of

input variables. This cross-validation procedure was designed

to avoid any relations between different batches of cells.

Therefore, the data splitting into three batches was arranged

so, that the batch reflect the measurement dates and patient’s

origin. Thus, the generalization performance for the prediction

of an independent dataset is well estimated by the leave-

one-patient-out-cross-validation. Consequently, classification

models with various numbers of PZ-moments’ orders and

principal components were compared. The variable selection

was carried out according to the highest sensitivity for cross-

validation of SVM classification model. The model with

highest sensitivity was chosen as an optimal one and further

used for the test data prediction.

Besides high identification efficiency, the proposed algo-

rithm has to be suitable for real-life applications. Therefore,

the workflow was optimized by parallelization of each single

image loading, preprocessing, and calculation of the moments.

Thereby, the parallelization on hardware with a multi-core

processor should decrease the calculation time for a large

amount of data roughly by a factor related to the number

of calculation units. We chose the number of clusters for

parallel calculation as one less than the number of processor

cores, which was three for the PC on which the analysis was

performed. During the preliminary study stage, the amount

of data was relatively small, and thus, the parallelization

of calculations had a negligible effect. However, despite the

insignificant improvement on a small data set, parallelization is

highly important for further applications and implementation

of the algorithm, especially for the case if the number of

analyzed cells is on the order of thousands.

C. Preprocessing

Examples of WBC images are shown in Fig. 1 a,b. As it

can be seen by naked eye, differences between some images,

which are not related to the cell’s morphology, occur. These

fluctuations originate from the sample preparation procedure,

which is simple and standardized. There are some systematic

deviations between the cells of different patients, but also the

images of cells from the same patient can differ due to the

spatial alignment of the cells and non-uniform coloring of

samples along microscopic slides. Moreover, parts of other

Training Testing

Start

Load images from

hard drive (HDD)

Preprocess images, calculate

PZ-moments, convert

moments to invariants

Cross-validate SVM models

for different variable selections

Choose model with

highest specificity

Store the model and

the algorithm

on HDD

Start

Load images

from HDD

Preprocess images, calculate

PZ-moments, convert

moments to invariants

Load classification

model

Apply model to unlabeled data

Store prediction

results

Compare prediction results with

classification by pathologist

Calculate sensitivity

values and accuracy

Store confusion table

and mispredicted images

StopStop

Fig. 2. Schematic workflow of the presented algorithm and the model
validation.

cells are visible within some images and, additionally, other

influences on the brightness, contrast, and tone are present on

the microscopic images. To reduce the discussed corrupting

effects, an advanced preprocessing has to be carried out before

the feature extraction procedure.

According to the chosen concept of the analysis, it was

important to keep the morphological features which can be

distinguished visually. The automation of the preprocessing

procedure took an important part in the development of the

algorithm. The original images were stored in the standard

sRGB representation, which is designed to display images in

electronic systems, such as a computer’s screens. However,

analysis of the color channels separately from each other

can be problematic and leads to a high complexity of the

classification model. Switching to a single component can be

circumvented by applying a more convenient color space. As

it was mentioned in “Materials and methods”, the lightness

L of Lab color space is closely related to the human visual

perception of images. In order to keep the features used for

manual classification, the Lab color space was used in the

further analysis. Moreover, the cells used for analysis were

colored by Kimura staining, which highlights the cell nucleus

in blue. Due to monochromatic coloring, all variations of the

chromatic values are only related to the deviations of the

sample preparation process and staining. Thus, related color

components (a and b) were skipped and only the lightness
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L was analyzed. However, for staining procedures which

stain different cell organelles or cytoplasm in different colors,

normalized a and b components should be also included in the

analysis.

Due to high variations between different images, even for

the single L-component, the automation of preprocessing took

an important part in the analysis development. Pretreatment

was aimed to decrease deviations of the features extracted

from images within the same cell subtype and to increase the

overall identification accuracy. Consequently, the background,

or non-cell area of the images, was cut off via the unsupervised

k-means clustering of lightness values within each image.

In order to improve the background removal, an FFT-filter

was applied to the images prior to the clustering. After the

background removal, the lightness distribution within each cell

was standardized by means of normalization to the unit interval

and equalization of the histogram.

Subsequently to the lightness standardization of the images,

a 2-dimensional Gaussian function was fitted to each cell

image using nonlinear least squares. Based on the coefficients

of the fitted function, centers and estimated radii were deter-

mined for each cell. As the next step, background-free images

of the single cells were cropped according to the estimated

cells’ radii. This procedure was performed, to preserve the

full region of the stained nucleus with a cytoplasm area and

to exclude regions of other cells, non-cell area, or unexpected

artifacts which were present in some images outside of the

cell area. After cropping, images were placed on frames with a

determined preset size, which was chosen to fit the biggest cell

expected among the analyzed cell subtypes: 13x13 µm, which

was equivalent to 200x200 pixels. On this step the centers

of the cells were also matched to the centers of the frames.

Pretreated images are shown in Fig. 1 c,d.

D. Features extraction

As quantitative features which can be used to describe

the morphology of cell images, the complex-valued pseudo-

Zernike moments where chosen. However, the position of each

individual cell on a slide is random and it is necessary to

operate with rotationally independent features. Since the phase

of the moment is related to the angular coordinate within

the image plane, complex-valued moments were converted to

absolute PZ-moments and then normalized to the zero-order

moment. Therefore, invariants, which are not dependent on the

image rotation and scale, were produced. These invariants skip

all information about the phase (angular coordinate), and thus,

the obtained variables are independent of the image rotation.

Unfortunately, as it is shown above in the “Materials and

methods” section, the calculation of PZ-moments requires a

double integration of a two-dimensional function which is a

costly CPU process. Because the pre-computed images were

transferred to a frame with a preset size, the algorithm for

the PZ- moment calculation can be simplified. Instead of the

integration, the sum of a scalar product of the image with

a pre-computed complex matrix can be used. The matrices
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Fig. 3. Mean sensitivity of SVM leave-batch-out-cross-validation of training
data. Classification models were created for a different number of selected
orders of moments and for a different number of principal components (called
variables in the image). The maximum value, which is related to the optimal
model, is indicated with a white arrow.

TABLE I
CONFUSION TABLE FOR THE LEAVE-BATCH-OUT-CROSS-VALIDATION OF

THE SVM MODEL WITH OPTIMAL VARIABLE SELECTION.

Predicted

Lymphocytes Neutrophils Sensitivity

True
Lymphocytes 26 2 0.893

Neutrophils 1 44 0.978

related to each moment can be generated once and then stored

on a hard disk drive for the further use.

E. Statistical model establishment and evaluation

To avoid an overfitting of the statistical model, the dimen-

sionality of the data was reduced. A dimension reduction

was obtained via a principal component analysis (PCA). The

dimensionality of the retaining data set was optimized based

on a leave-batch-out-cross-validation of the training data set.

The parameter intervals checked for the feature extraction was

1 to 20 for orders, while repetition was chosen maximal. The

score dimension of the PCA was evaluated from 1 to 20.

For each parameter set the model performance was estimated

based on the mean sensitivity. These values are summarized

in plot Fig 3. The maximal sensitivity is marked on the

plot with an arrow. This parameter set defines the optimal

combination of input variables (3 principal components, based

on PZ-moments up to 5th order). The model trained with these

parameters was further analyzed and visualized. In table I a

confusion table of training data cross-validation is given. In

Fig. 4 a histogram of its probability scores, which represents

SVM decision values rescaled to the unit range, is plotted.

F. Blind prediction

Model validation was performed by applying the estab-

lished model to the independent data, which contained 163

microscopic images of stained WBCs. All preprocessing and

feature extracting steps were performed on these unlabeled
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Fig. 4. Histogram for SVM posterior probabilities calculated by a leave-batch-
out-cross-validation of the training data with the optimal number of variables
are shown. Classification was performed between lymphocytes (gray bars)
and neutrophils (green bars). The overlap of the groups is indicated within
the histogram by dark green bins.

images in the same way as for the training data. In order

to avoid the influence of the operator’s subjectivity, a double

blind prediction was carried out. Images were classified in

manual mode by an experienced pathologist independently

from the automated prediction. Subsequently, the statistical

predictions were compared with the manual classification

results. A summary of the results is visualized by a confusion

table (see table II). Another representation of the classification

performance is shown by means of a ROC curve in Fig 5. This

curve, built for the threshold of the SVM decision values of

the test data prediction, illustrates the high performance of

the prediction. Moreover, the area under ROC curve (AUC) is

about 0.984, which indicates an almost perfect classification. A

perfect binary classification is characterized by an AUC equal

to 1. Among 155 cells, which were classified as lymphocytes

or neutrophils in manual mode, three images were wrongly

identified by the statistical model. Such a low misclassification

rate of independent test data corresponds to a high accuracy

of the 2-class prediction. This accuracy was higher as 97%.

Additionally, cells of the subtypes, which were not included in

the training set, were present in the test data. These cells (five

eosinophils and two monocytes), were predicted within the

same class as neutrophils. This behavior was expected, since

they feature a similar morphology as neutrophils compared

to lymphocytes. Additionally, neutrophils, eosinophils, and

monocytes feature a higher biological similarity and higher

subjective similarity of the images. These classification results

of the eosinophils and monocytes indicate that an extension

of the presented model may be possible. A hierarchic layout

of the classification seems optimal to incorporate eosinophils

and monocytes.

IV. CONCLUSION

In this work, we presented an algorithm for a highly efficient

classification between two dominant subtypes of leukocytes.

The special feature of the proposed method is that by means

TABLE II
CONFUSION TABLE FOR THE PREDICTION OF THE UNLABELED TESTING

DATA. CORRECT PREDICTED CELLS ARE SPECIFIED ONLY WITH THE

QUANTITY OF THE IDENTIFIED CELLS. ALL INCORRECTLY PREDICTED

CELLS AND CELLS, THAT RELATE TO OTHER SUBTYPES, WHICH WERE NOT

INCLUDED IN THE TRAINING DATA, ARE SHOWN IN THE TABLE AS

UNTREATED MICROSCOPIC (UPPER ROWS) AND PREPROCESSED (BOTTOM

ROWS) IMAGES.

Predicted (assorted by statistical model)

Lymphocytes Neutrophils

T
ru

e
 (

a
s
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o
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a
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o
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Lymphocytes 17

Neutrophils 101

Monocytes 0

Eosinophils 0
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Fig. 5. The ROC curve and area under the curve (AUC) illustrate the high
performance of the SVM prediction of the binary classification model between
two WBC subtypes (lymphocytes and neutrophils) for independent unlabeled
testing data.
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of PZ-invariants the cell morphology is represented as a quan-

titative marker for the cell subtypes. Therefore, a combination

of such common statistical methods as principal component

analysis and support vector machine classification was applied

to build the classification model. This approach showed a

high stability against patient to patient and sample to sample

variations. Moreover, an advanced image preprocessing made

a further contribution to the robustness of the model. The

standardization of the images decreased deviations, which

occur between samples due to the sample preparation routine.

Additionally, the automated framing and centering of the

analyzed images of cells led to the replacement of the double

numerical integration, performed for PZ-moment calculation,

with a matrix product. This simplification of the calculation

procedure resulted in the reduction of computation time and

allowed the analysis to be performed in real-time. The clas-

sification results showed that WBCs subtypes as monocytes

and eosinophils (which were not included in the model due to

their low quantity in the training data) were predicted within

the same class. Due to this fact, it can be assumed that the

classification can be improved and extended to other cell types

by a multilevel model. However, that requires a statistically

significant amount of microscopic images for each leukocyte

subtype in the training data set. The described approach can be

applied for microscopy images taken of other staining types.

Only important is that the images display the cell morphology.

The method presented here may be also applied to images

obtained with techniques such as fluorescence, dark field, or

phase contrast microscopy.
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