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Abstract—The method of key sharing between a mobile unit
and a base station through a wireless MIMO-based fading
channel is investigated. The description of a key distribution
protocol is given. The expression to estimate the correct key
bit agreement based on the use of guard interval is proved.
Statistical properties of the key string are tested using the NIST
criteria. Impossibility of key string eavesdropping by illegal users
is guaranteed due to small values of correlation between legal
and eavesdropper carrier phases. Numerical examples show that
the MIMO system with 8 antennas is able to agree 256 bits with
a reliability value 0.99 for SNR equal to 35 dB. This experiment
confirms that the MIMO scenario is especially effective for secret
key distribution.

Index Terms—MIMO fading channel, key distribution, multi-
phase detection, correlation, NIST tests.

I. INTRODUCTION

S
ECURE transmission is still a concern for wireless mobile

devices due to broadcast nature of signals. Although

traditional secure systems employ private or public-key cryp-

tography independently of physical transmission, there is a

growing interest in physical layer security methods that exploit

noisy telecommunication channels and channels with multi-

path wave propagation.

In a pioneered paper [1], Wyner introduced the wire-tap

channel concept with two types of channels: the main channel

(less noisy) and the wire-tap channel (more noisy). Wyner’s

theorem states that under some (not very strong conditions)

there exist such encoding and decoding procedures that reli-

able transmission on the main channel and zero information

leakage on the wire-tap channel can be provided with an

increasing of the block lengths if the transmission rate is

less than the so called secrecy capacity Cs. In the post-

Wyner’s period there appear a lot of paper devoted to a

generalization of wire-tap channel models [2], [3], [4], [5], [6]

and to a specification of the amount of information leaking

to eavesdropper [7]. But unfortunately it is still unknown

constructive encoding and decoding procedures providing a

transmission rate close to secrecy capacity. Next advance in

the physical security area occurs due to Maurer’s paper [8] at

the cost of public discussion between legitimate users. Such

approach allows to share secret keys between legitimate users

even in the case when the wire tapper observes a “better”

channel than one used by the legitimate user but only if

the wire tapper is passive (that is in another words if legal

channel is authenticated). After a common key sharing the

legitimate correspondents can use ideal Shannon’s one-time

pad cipher [9].

The idea of a common key sharing and the execution of an

ideal cipher is very positive especially in the so called post-

quantum period when it is assumed that many cryptographic

algorithms can be broken by a quantum computer [10]. But

such approach requires to share a very long secret key string

before ideal encryption. Moreover, in order to provide a secure

key sharing that means to get a negligible amount of Shannon

information leaking to an eavesdropper about this key, it is

necessary to be sure that signal-to-noise ratio at the input of

wire tapper receiver is fixed and known for legitimate users.

In order to avoid such strong requirement it has been proposed

to execute (for mobile users) a multipath wave propagation in

some wireless channels [11], [12]. Unfortunately if mobile unit

stops it may result in a very slow and small channel fluctuation.

In order to take for granted some given randomness level it

would be better to create this randomness artificially by means

of legitimate users. In [13] it has been proposed a method

using smart antenna excited randomly by electronic means.

More detail investigation of such approach was undertaken

in [14]. But such approach requires a special construction of

a Variable Directional Antenna.

The explosion of interest to multiple-input multiple-output

(MIMO) systems soon led to a realisation that exploiting

the available spatial dimensions can also enhance the secrecy

capabilities of wireless channels [15].

One of advantage of MIMO system for key sharing is its

property that a presence of many antennas results in a better

randomisation even for very small transfer of mobile units. It is

worth to note that in contrast to communication system where

a presence of MIMO devices results in interference of signals

at the receiving antennas, key sharing occurs avoidable of such

interference because in that case it is necessary to form any but

only coinciding key bits. The last property is provided thanks

to the Reciprocity Theorem of radio wave propagation between
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transmitting and receiving sides of MIMO-based link. Further

investigation of MIMO-based key distribution protocols (KDP)

was undertaken by authors of the papers [16], [17]. But a

final solution of this problem is very far from a termination.

First of all it is requested to increase the key generation rate

providing simultaneously high secrecy and good statistical

properties of the shared keys that should be close to truly

random data. Namely these questions form the main subject

of our investigations undertaken in the current paper.

The reminder of the article is organised as follows. Sec-

tion II describes the model of MIMO channel with point

of view key sharing protocol. In Section III algorithm of

key distribution is presented jointly with estimation of key

bits reliability and key rate generation. Section IV discusses

system parameters optimisation. Section V concludes the paper

and formulates open problems for further investigations. The

appendix presents the proof of the relation for the error

probability given in Section III.

II. MATHEMATICAL MODEL OF MIMO-BASED CHANNEL

We assume that a key distribution protocol (KDP) is per-

formed between a mobile unit A and a base station B that

have the same number of antennas NA and that the signal

power radiated of each antenna is equal to PS/NA.

For a frequency-flat fading MIMO channel, the commonly

used discrete-time input-output relation for test-signal is given

by

y = Hs+ z (1)

where H is a square (NA × NA)-matrix, s is a transmitted

test-signal (NA × 1)-vector, y is a received signal (NA × 1)-
vector, and z is an additive noise (NA×1)-vector of the MIMO

channel output.

Due to the Reciprocity Theorem the relation for back

channel is

y′ = HT s+ z′.

However the elements of the matrix H can change during

the test signal transmission, generally speaking, and therefore

in order to provide approximated equally channel matrices in

direct and back channels it is necessary that the following

inequalities hold [18]:

∆t << Tc , ∆f << Bc

where ∆t is the delay in transmission between direct and back

test signals, ∆f is the frequency (Doppler) shift, Tc is the

coherent time and Bc is the coherent band width for the MIMO

channel.

In order to specify the values of the matrix H , it is necessary

to describe the channel model in detail.

Let us consider the multi-path MIMO channel model with

Raleigh fading according to [19] and presented in Fig. 1.

We denote the number of rays as L and denote by βl
the attenuation in the l-th ray, by φl, ψl the transmitted and

received angles, respectively, by Φ, Ψ the antenna diagram

angles, and by ωl the frequency shift due to mobile units

transfer (Doppler effect).

Fig. 1. General model of MIMO channel between mobile unit and base
station.

Then the matrix H(t) of the test signal at time t can be

presented as

H(t) =
L
∑

l=1

βl (aRla
T
Tl) e

−jωlt

being

• βl = ale
jθl : signal attenuation resulting by reflection,

• aRl,aTl: response vectors at the receiver and at the

transmitter respectively.

aRl =
[

1 e−jΩRl · · · e−j(NA−1)ΩRl
]T
,

aTl =
[

1 e−jΩTl · · · e−j(NA−1)ΩTl
]T
,

• ΩRl =
2π
λ
dR sinφl: angular receiver frequency,

• ΩTl =
2π
λ
dT sinψl: angular transmission frequency,

• λ: wave length corresponding to carrier frequency,

• dR: diversity interval for receiving antennas, and

• dT : diversity interval for transmission antennas.

A typical example of the above channel model is the octal-

rays model of the railway telecommunication system having 8

antennas with distances λ
2 , between them, mobile object speed

100 km/h, Φ = 28◦, Ψ = 180◦, and carrier frequency 2.6 GHz.

Investigation of such model has been undertaken in many

papers (e.g. [20], [21] and others) and results of our inves-

tigations show that the entries of matrix H can be correctly

approximated by zero mean Gaussian distribution with equal

variances.

The space correlation is determined only by mutual antenna

locations. Then space-time correlation can be presented fol-

lowing to the results of [22], [18] as

RH(t) = RH · ρ(t),

where RH is the matrix of space correlation between antennas,

and ρ is the time correlation function of antenna location. For

Jakes fading model [20], the function ρ can be determined as

∀t : ρ(t) = J0(2πfD(t)),

where fD is the Doppler spread and J0 is the Bessel function

of zero order.
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III. KDP BASED ON MIMO CHANNEL MODEL

The KPD is described in the following steps:

1) User B (base station) sends the test signal to the mobile

unit A executing all antennas.

2) A calculates some parameter of the received signals.

3) Just after step 2, A sends the same test signal to B.

4) B calculates the same (selected in advance by both users)

parameters of the received signals.

5) Both users A and B form the key bits from the found

parameters using a quantisation procedure.

It is worth to note that the knowledge of MIMO-based

channel model parameters can be ignored in KDP design

if during the time of its execution these parameters are

approximately constant. But this knowledge it is necessary

to estimate a reliability of KDP (the probability of key bits

coincidence for both correspondents), the statistical properties

of key strings and its security (in terms of information leakage

about this key to eavesdropper who can be located in some

vicinity of users A and B).

We can see from relation (1) that each coordinate yi of the

vector y is a complex Gaussian random value with amplitude

µi =
√

ℜ(yi)2 + ℑ(yi)2 (here ℜ and ℑ are the maps that

take the real and the imaginary parts of a complex number)

and phase θi = tan−1
(

ℑ(yi)
ℜ(yi)

)

, and these variables have

Rayleigh distribution and uniform distribution, respectively.

It has been proved in [23] that phases are less correlated

versus distance between legal users and eavesdroppers than

amplitude. Therefore our selection as parameter for the key

bit generation, namely the phase quantisation procedure into

q integers, is determined as:

if θi ∈
[

2π(q−1)
Q

, 2πq
Q

)

with 1 ≤ q ≤ Q

then fQ(θi) = q,
(2)

where Q is the number of quantisation levels. Then the

probability of an integer q equals 1
Q

. Since the channel noise

results in a transition of q to q′ 6= q and it is more likely

closer to the bounds of the decision areas in (2), we propose

to introduce guard intervals between decision areas as key

symbols may be erased. Then the decision function (2) can be

modified as:

if θi ∈
(

(q − 1)Ω− γ
2 , (q − 1)Ω + γ

2

)

∪
(

qΩ− γ
2 , qΩ+ γ

2

)

then fQG(θi) = erasure;

if θi ∈
[

(q − 1)Ω + γ
2 , qΩ− γ

2

)

then fQG(θi) = q;

with 1 ≤ q ≤ Q, Ω = 2π
Q

and γ a threshold, γ ∈
[

0, 12Ω
)

.

Let us consider one of the decision areas (or sector) in

Fig. 2, determined by yi = (µi, θi), xi = Hs = (ai, φi),
zi = (bi, ψi). Under the decision taken about the phase φi
when yi is received, the following events may occur:

• yi is in the same area that the vector xi (correct decision

area with angle Ω− γ),

Fig. 2. Sectors of decision area.

• yi belongs to the guard interval (erasure area with an-

gle γ),

• yi appears outside of both previous areas (incorrect

decision).

Let us denote the probabilities of previous events by Pcor,
Per, Perror, respectively.

It is proved in the Appendix that

Perror =
1

2πΩ

∫ Ω

0

F (φ) dφ (3)

F (φ) =

∫ 2π−(φ+ γ
2 )

φ+ γ
2



1 +

[

h tan
(

φ+ γ
2

)

sinψ

]2




−1

dψ

Per = 1− Pcor − Perror

where Pcor is given by eq. (16) in the Appendix after com-

bining (11)–(15).

In Fig. 3 there are plotted the dependences of Pcor, Per,
Perror with respect to signal to noise ratio for Q = 8 and

different guard intervals (GI) that were calculated after nu-

merical computations of corresponding integrals. We observe

that it is possible to trade off Perror to the value of the guard

interval but it affects also on Per. Hence there appears the

problem of KDP parameters optimisation, given some final

requirements, as key generation rate maximisation for given

SNR and the number of antennas NA in MIMO system. (We

remark that it is not obtained a precise expression for the

corresponding probabilities but some bounds, namely an upper

bound for Perror, a lower bound for Per and lower bound for

Pcor because it was not taken into account that correct key

bits can be obtained sometimes even if both legal users got

incorrect phase. But such incorrectness is acceptable).

From Fig. 3, it can be seen that a guard interval (GI)

allows to decrease the error probability but simultaneously

the probability of erasure increases. In reality a final decision

about key bit has to be taken no by the single user B but by
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Fig. 3. Curves of Perror , Pcor , Per against the values of SNR for Q = 8.

both users A and B. Thus the final probabilities Pcor, Per,
Perror should be changed as follows:

P ∗

cor = Pcor(A) · Pcor(B)

P ∗

error = Perror(A) · Pcor(B) +

Perror(B) · Pcor(A) +

Perror(A) · Perror(B)

P ∗

er = 1− P ∗

cor − P ∗

error

The KDP should be also slightly corrected under the con-

dition of symbol erasures. Namely the numbers of the erased

symbols have to be transmitted from both users to opposite

ones in addition and next it is transmitted extra signal if it is

necessary.

A relation for the probability Pn0
(k) of the key bit string

sharing of length n0 is:

Pn0(k) =

(

P ∗
cor

1− P ∗
er

)

n0
logQ

(4)

where Q is the number of quantisation levels. The key bit

stream rate for the use of all NA antennas is

R = NA log2Q(1− P ∗

er)
bit

sample
. (5)

Then the following optimisation problem arises:

(γ∗, Q∗, N∗

A, (h
2)∗) = argmax

γ,Q,NA,h2

R (6)

subject to the restrictions

Pn0
(k) ≥ Pn0

(k)requested;

γ ∈
[

0, π
Q

)

;

Q ∈ [2, Qmax];
NA ∈ [1, (NA)max];
h2 ∈ [1, (h2)max];

where the values Pn0
(k)requested, Qmax, (NA)max, (h2)max have

to be conditioned by the general requirements of the MIMO

system design.

The solution of problem (6) has been found by the branch

and bound algorithm [24].

In Fig. 4 there are presented the dependences R from SNR

under the conditions n0 = 256, Pn0(k)requested = 0.9 and 0.99,

and NA = 1, 2, 4, 8, 16.

In Table I the optimal values for a = γ
Ω and Q are displayed

maximising the rate R for a given SNR.

An analysis of the curves in Fig. 4 shows that the key

generation rate R increases with an increasing of the number

of antennas in MIMO massive. Key generation rate increases

obviously as SNR increases. For every SNR value there exist

optimal number of phase quantisation levels and value of

guard interval providing the requested probability of correct

key sharing for both legal users.

IV. INVESTIGATION OF KEY STREAM STATISTIC AND

INFORMATION LEAKING TO EAVESDROPPER

The statistics of the key stream distributed due to KDP is

very important because if it is very far from uniform distri-

bution it may result in effective attacks for cipher breaking.

In order to investigate the key stream statistic after phase

quantisation from different antennas they will be combined

in a serial sequence containing bits from all antennas and this

sequence investigated by statistical tests. In Fig. 5 there are

presented the empirical density distributions for the length of

binary strings equal to 1 and 16.

We see there that also a balance of zeros and ones (as

follows from Fig. 5 a) is good, but the multi-variate distribu-

tion (Fig. 5 b) has anomalous peaks. In order to improve the

statistics of the key string it was undertaken some deterministic

transforms of two types recommended in [25]. The first type

is so called transposition of symbols and the second transform

is adjacent bit XOR-ing. The results of testing after such

transforms are presented in Table II in which were used some

NIST STS tests [26].

We see that after both transforms the key bit sequence passes

the most of NIST tests.

Now let us face with eavesdropping problem and assume

that the following parameters hold [21]:
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TABLE I
OPTIMAL PARAMETERS γ AND Q PROVIDING THE MAXIMUM RATE R FOR A GIVEN SNR.

Pn0 (k)requested SNR (dB)

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

0.9 Q∗ − 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4
a∗ − 0.89 0.86 0.82 0.77 0.71 0.64 0.56 0.47 0.38 0.30 0.22 0.37 0.24 0.15 0.10

0.99 Q∗ − − − − − − 2 2 2 2 2 2 2 2 2 2
a∗ − − − − − − 0.89 0.86 0.82 0.77 0.71 0.64 0.57 0.48 0.39 0.30

a) Pn0
(k)requested = 0.9

b) Pn0
(k)requested = 0.99

Fig. 4. The key sharing bit rate of the length 256 bits with Pn0 (k)requested ∈
{0.9, 0.99} for optimisation of the system parameters.

• frequency carrier: 2600 MHz;

• MIMO massive: 8× 8;

• distance between MIMO antennas at the departure unit:

0.5λ
• distance between MIMO antennas at the arrival unit: 0.5λ
• number of rays: 8;

• departure ray angle: 28◦;

• arrive ray angle: 180◦;

• speed of mobile unit motion: 50 km/h;

• number of simulated channel matrices: 1000.

a) String length 1

b) String length 16

Fig. 5. Empirical probability density distributions for two string lengths.

The mutual correlation between the phases of legal user B
and an eavesdropper located at a distance d from B (in terms

of wave length factors) is presented in Fig. 6.

We see from this figure that in line with similar results

presented in [14] the correlation has not a monotonically

decreasing dependence from d but it has a randomly-looking

dependence. But in contrast to [14] it has significantly less

values from all distances between (0.1λ, . . . , 20λ). This is a

consequence of the multi-phase functional used for key bit

generation and another channel model. Thus, we can believe

that it can be neglected an opportunity of key eavesdropping
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Fig. 6. Mutual correlation between phases of legal user and eavesdropper
against distance between them in terms of wave length factors.

TABLE II
EXPERIMENTAL TESTING BASED ON NIST STS OF THE KEY SEQUENCES

AFTER TWO TYPES OF TRANSFORMS.

Nr. Name of test Transposition TXOR

1 The Frequency (Monobit) Test 10/10 10/10
2 Frequency Test within a Block 10/10 10/10
3 The Runs Test 9/10 10/10
4 Tests for the Longest-Run-of-Ones

in a Block,
0/10 10/10

5 The Binary Matrix Rank Test 10/10 10/10
6 The Discrete Fourier Transform

(Spectral) Test
0/10 9/10

7 The Non-overlapping Template
Matching Test

1/10 8/10

8 The Overlapping Template Match-
ing Test

0/10 10/10

9 Maurer’s “Universal Statistical”
Test

10/10 10/10

10 The Linear Complexity Test 5/5 7/7
11 The Serial Test 5/5 7/7
12 The Approximate Entropy Test 0/10 10/10
13 The Cumulative Sums (Cusums)

Test
3/10 10/10

14 The Random Excursions Test 1/10 10/10
15 The Random Excursions Variant

Test
10/10 10/10

TXOR: Transposition plus XOR of adjacent bits.
The numerators of fractions are number of “passed” tests and the

denominators are the total number of tests.

in large area of eavesdropper locations.

(It is worth to note that if phase had Gaussian distribution

and even for binary quantisation values it would be results

in the error probability for eavesdropper about one key bit

near 0.47 [14] that it is very close to “break of eavesdropper

channel”.)

V. CONCLUSION

We considered a method of key sharing for wireless secret

communication based on MIMO concept with the use of multi-

phase functionals that seems to be especial effective for mobile

unit and multi-path fading channels.

It has been proved that following to the proposed key

distribution protocol it can be provided a key sharing of size

256 bits and with probability of its reliable performance about

0.99 for SNR equal to 35 dB, and 16 antennas after execution

of about 74 test signals on average. It was also shown that

the key sequence after simple transforms is very close to i.i.d.

practically satisfying all NIST tests. Interception of key stream

by eavesdropper is prevented by a very small correlation

between phases at legal users and eavesdropper if distance

between them is not lesser than 0.1λ.

We believe that a future work that can be undertaken is in

the use of error correcting codes in order to maximise the key

distribution rate and to short a delay in key delivering.
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APPENDIX

Proof of the formula (3)

Let us consider one of the decision areas, namely ∠TOL =
Ω (see Fig. 7). Assume that the vector y is in the sector ∠SOX

(area D′
1) and that it is a sum of the vectors x and z. Then

the error for taking a decision on the phase of y occurs if y

lays on the axis OS or at left to it. This event will occur if

and only if:

∠BOA ≥ ∠SOA = Ω− φ+
γ

2
. (7)

Let us draw the perpendicular from the point B on the axis

OX. Then BC = b sin(π − ψ) = b sinψ, AC = −b cosψ. We

have

∠BOA = tan−1

(

BC

a− AC

)

= tan−1

(

b sinψ

a+ b cosψ

)

. (8)

where a is the amplitude of vector x, and b is the amplitude

of vector z. By substituting (8) into (7) we get

b sinψ

a+ b cosψ
≥ tan

(

Ω− φ+
γ

2

)

.

If a >> b (which is very likely) then the term b cosψ can be

neglected and it results in the following condition to produce

error:

u :=
b

a
≥

tan
(

Ω− φ+ γ
2

)

sinψ
=: ℓΩ−φ,ψ.

Let us denote by P (u) the probability density of the random

variable u. Then the error probability (Perror), provided that

the received vector y lies at the left of OS, can be expressed

by the following formula, on the assumption that phases φ and

ψ are distributed uniformly:

P Ierror =
1

Ω

∫ Ω

0

dφ
1

2π

∫ π

Ω−φ+ γ
2

dψ

∫ +∞

ℓΩ−φ,ψ

f(u) du (9)

Fig. 7. Areas for taken of decision after quantisation.

(the superindex I emphasises that it is true whenever the

received vector occurs to the left of line OS).
For the area D1′′ = ∠LOX, we can repeat the derivation

of (9) in order to get

P IIerror =
1

Ω

∫ Ω

0

dφ
1

2π

∫ 2π−φ− γ
2

π

dψ

∫ +∞

ℓφ,ψ

f(u) du (10)

Let us specify the formula for the probability of correct

decision after quantisation and introducing of guard interval.

We can see such areas at Fig. 7. Having received the vector

y we get the following cases:

1) x ∈ D1,y ∈ D1, with D1 = D1′ ∪D1′′. After repeating

the procedure to obtain (9) and (10), we get

Pcor D1 =
1

Ω

∫ Ω−
γ
2

γ
2

dφ
1

2π

∫ 2π−φ+ γ
2

φ− γ
2

dψ ·

∫ ℓφ,−ψ

0

f(u) du (11)

2) x ∈ D2 ∪ D3,y ∈ D1, with D1 = D1′ ∪ D1′′. After

repeating the procedure to obtain (9) and (10), we get

Pcor D2∪D3 =
1

Ω

∫
γ
2

Ω−
γ
2

dφ
1

2π

∫ 2π−φ+ γ
2

φ− γ
2

dψ ·

∫ ℓφ,−ψ

ℓ
−(Ω−φ),ψ

f(u) du (12)

3) x ∈ D1,y ∈ D0. In such situation the vector x transfers

to the area of correct decision from the area of erasure

due to noise.

Pcor D0 =
1

Ω

∫ Ω−
γ
2

γ
2

dφ
1

2π

∫ Ω−γ

0

dψ

∫ +∞

0

f(u) du

=
(Ω− γ)2

2πΩ
(13)
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4) x ∈ D2,y ∈ D0 (in this case, D2 and D0 are intersected)

Pcor D2→D0 =
1

Ω

∫
γ
2

0

dφ
1

2π

∫ Ω−
γ
2

γ
2

dψ ·

∫ +∞

ℓ
−φ,ψ

f(u) du (14)

5) x ∈ D3,y ∈ D0. It is easy to see that

Pcor D3→D0 = Pcor D2→D0 (15)

Combining (11)–(15) we get:

Pcor = Pcor D1 + Pcor D2∪D3 + Pcor D0 + 2Pcor D2→D0 (16)

It is very easy to see that

Perasure = 1− Pcor − Perror.

In order to prove the relations (9)–(14) in a closed form it

is necessary to derive the probability density function of the

random variable u = b
a

, where a and b have the Rayleigh

distribution and they are mutually independent. This means

that

f(a) =

{

a
σ2
a
e
−

a2

2σ2a if a ≥ 0

0 if a < 0

f(b) =







b
σ2
b

e
−

b2

2σ2
b if b ≥ 0

0 if b < 0

After a simple transform, we get the following relation

f(u) =
u

σ2
aσ

2
b

∫ +∞

0

a3e−ra
2

da, (17)

where r = 1
2σ2
a
+ u2

2σ2
b

.

The integral (17) can be expressed in a closed form [27].

Then for the definite integral (17) we get

f(u) =
2σ2

aσ
2
b u

(uσ2
a + σ2

b )
2
. (18)

By denoting δ2 =
σ2
b

σ2
a

then we get from (18)

f(u) =
2δ2 u

(δ2 + u2)2
. (19)

Substituting (19) into (9) and (10) we obtain

Perror =
1

2πΩ

∫ Ω

0

dφ

∫ 2π−φ− γ
2

φ+ γ
2

dψ ·

∫ +∞

ℓφ,ψ

2δ2 u

(δ2 + u2)2
du (20)

Last integral in (20) can be expressed in a closed form:
∫

2δ2 u

(δ2 + u2)2
du = −

δ2 u

δ2 + u2
.

Then we get for the definite integral
∫ W

V

2δ2 u

(δ2 + u2)2
du =

[

1

1 + (hV )2
−

1

1 + (hW )2

]

(21)

where h = 1
δ

is the signal-to-noise ratio.

Substituting (21) into (20) we get finally

Perror =
1

2πΩ

∫ Ω

0

dφ ·

∫ 2π−φ− γ
2

φ+ γ
2



1 +

[

h tan
(

φ+ γ
2

)

sinψ

]2




−1

dψ

Q.E.D
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