
Formal Definition of a General Ontology Pattern

Language using a Graph Grammar

Eduardo Zambon

Federal University of Espı́rito Santo (UFES), Brazil

zambon@inf.ufes.br

Giancarlo Guizzardi

Free University of Bozen-Bolzano, Italy &

Ontology and Conceptual Modeling Research Group (NEMO),

Federal University of Espı́rito Santo (UFES), Brazil

giancarlo.guizzardi@unibz.it

Abstract—In recent years, there has been a growing interest
in the use of ontological theories in the philosophical sense
(Foundational Ontologies) to analyze and (re)design conceptual
modeling languages. This paper is about an ontologically well-
founded conceptual modeling language in this tradition, termed
OntoUML. This language embeds a number of ontological
patterns that reflect the micro-theories comprising a particular
foundational ontology named UFO. We here (re)define OntoUML
as a formal graph grammar and demonstrate how the models of
this language can be constructed by the combined application of
ontological patterns following a number of graph transformation
rules. As a result, we obtain a version of this language fully
defined as a formal Ontology Pattern Grammar. In other words,
this paper presents a formal definition of OntoUML that is both
explicit in terms of the ontological patterns that it incorporates
and is completely independent of the UML meta-model.

I. INTRODUCTION

IN RECENT years, there has been a growing interest in

the use of ontological theories in the philosophical sense

(Foundational Ontologies) and engineering tools derived from

these theories to improve the theory and practice of Informa-

tion Systems Engineering (ISE). In particular, there is a stable

tradition on the use of foundational ontologies to analyze

and (re) design conceptual modeling languages that play an

essential role in ISE. For example, in [1], the authors have

conducted an empirical study with 528 practitioners and have

shown that the perception of ontological deficiencies in con-

ceptual modeling languages negatively affects the perception

of the usability and usefulness of these languages.

This paper is written in the context of a research program

involving a particular Foundational Ontology, namely, the

Unified Foundational Ontology (UFO) [2] and a particular

conceptual modeling language derived from it, namely, On-

toUML [3]. OntoUML was conceived as an ontologically well-

founded version of the UML 2.0 fragment of class diagrams.

Both UFO and OntoUML have gained increasing attention

in the context of ontology-driven conceptual modeling. For

example, a recent study shows that UFO is the second-most

used foundational ontology in conceptual modeling and the

one with the fastest adoption rate [4]. Moreover, the study

also shows OntoUML is among the most used languages

in ontology-driven conceptual modeling (together with UML,

(E)ER, OWL and BPMN).

In a recent paper [5], we have shown that OntoUML

comprises a number of ontology patterns reflecting corre-

sponding ontological micro-theories put forth by its underlying

foundational ontology (UFO) [6]. As discussed in [5], UFO is

a system of micro-theories addressing basically all the classic

conceptual modeling concepts. For each of the ontological

distinctions present in UFO and which are reflected as mod-

eling constructs in OntoUML, we have a corresponding ax-

iomatization. This axiomatization makes sure that OntoUML

constructs can only appear in a model forming clusters of

constructs with their ties and associated constraints. In other

words, in general purpose languages such as ER, UML or

OWL, the actual modeling building blocks of the language are

low-granularity modeling primitives such as class, association,

attribute, etc. In OntoUML, in contrast, the actual modeling

primitives are these structures (and their corresponding axiom-

atization) reflecting the underlying ontological micro-theories.

As a consequence, OntoUML could be conceived as a pattern

grammar (language) whose models are constructed via the

combined instantiation of the ontological patterns.

In [5], we presented the ontological patterns embedded in

OntoUML, the connection between these patterns, and their

possible combination rules. However, the characterization of

OntoUML as a full-blown pattern grammar was done there

in an informal way. In this paper we remedy this situation by

defining and implementing OntoUML as an Ontology Pattern

Grammar. As the main contribution of this paper, we show

how OntoUML patterns can be formally defined using a graph

grammar based on the Single-Pushout Graph Transformation

theory. Furthermore, we present a practical implementation of

this grammar, using the general-purpose graph transformation

tool GROOVE [7][8].

We highlight that the definition and implementation of

OntoUML as a formal Ontology Pattern Grammar can bring

several benefits to the (Ontology-Driven) Conceptual Model-

ing community, namely: (i) the grammar is defined in a for-

mal, Turing powerful, computational method that circumvents

the limitations of the current meta-modeling approaches for

defining the abstract syntax of modeling languages; (ii) the

language is defined in a way that affords its independence

from the UML meta-model and, as consequence, the results

presented here can be ported to other conceptual modeling

languages (e.g., some ontological distinctions put forth by

UFO have been incorporated in the ORM language [9][10])

and employed by the conceptual modeling community at large

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 1–10

DOI: 10.15439/2017F001

ISSN 2300-5963 ACSIS, Vol. 11

IEEE Catalog Number: CFP1785N-ART c©2017, PTI 1



beyond UML users; (iii) the language makes explicit its con-

stituting ontology design patterns which, once more, reflect the

ontological micro-theories put forth by UFO. In other words,

in comparison to the current definition of OntoUML’s abstract

syntax (in terms of a UML 2.0 meta-model with associated

OCL constraints), the implementation of this language in the

manner proposed here affords a much higher ontological trans-

parency for the language, i.e., the implementation makes much

more transparent the ontological commitments embedded in

that conceptual modeling language. Finally, we highlight that

the implementation of these patterns in a computational tool

supports the construction of OntoUML models by employing

modeling primitives of a higher-granularity (the ontological

patterns). Moreover, since these higher-granularity modeling

elements can only be combined to each other in a restricted set

of ways, in each modeling step, the design space is reduced.

We believe that this strategy reduces the complexity of the

modeling process, especially for novice modelers.

The remainder of this paper is organized as follows. Sec-

tions II and III present the background of this work. In

particular, Section III briefly introduces the basic concepts of

graph transformation, including the commonly used Single-

Pushout approach, and the definition of a graph grammar and

its associated graph language. Section IV presents the syntac-

tical conventions of the GROOVE tool set. Section V presents

the definition of OntoUML as an Ontology Pattern (Graph)

Grammar and shows its implementation in GROOVE. Finally,

by using this implementation, in Section VI we illustrate the

use of the proposed grammar to instantiate real OntoUML

models. Section VII presents our final considerations.

II. UFO AND ONTOUML

OntoUML, as all structural conceptual modeling languages

(e.g., UML, ER, ORM), is meant to represent type-level

structures whose instances are endurants, i.e., they are meant

to model Endurant Universals and their type-level relations.

Fig. 3 depicts the Endurant Universals hierarchy in UFO.

A basic formal relation that can hold between (endurant)

universals in UFO is the relation of subtyping. If a universal

B is a subtype of a universal A then we have that: (i) it is

necessarily the case that all instances of B are instances of A;

and (ii) all properties of universal A are in a sense inherited by

universal B, i.e., Bs are As and, therefore, have all properties

that are properties defined for universal A.

Endurant universals are distinguished into Substantial Uni-

versals and Moment Universals. Naturally, these are kinds of

universals whose instances are Substantials and Moments [3],

respectively. Substantials are existentially independent objects

such as John Lennon, the Moon, an organization, a car, a

dog. Substantials can have a mereologically complex structure,

i.e., they can have parts that are themselves substantials.

In case these substantials are functional complexes, their

parts are functional parts termed components (e.g., a CPU

is a functional component of a computer); in case they are

collectives, they have a uniform structure in which all parts

(termed members) are undifferentiated w.r.t. the whole (e.g.,

in the sense all trees are considered merely as members of a

forest) [3]. Moments, in contrast, are existentially dependent

individuals such as John’s headache (which depends on him)

and the marriage between John and Yoko (which depends on

both John and Yoko). Being existentially dependent entities,

moments can only exist by inhering in other endurants [3].

Concerning the substantial universal hierarchy, Sortal Uni-

versals are the ones that either provide or carry a uniform

principle of identity for their instances. A principle of identity

supports the judgment whether two individuals are the same,

i.e., in which circumstances the identity relation holds. In

particular, it also informs which changes an individual can

undergo without changing its identity. Within the category of

Sortal Universals, we have the distinction between rigid and

anti-rigid universals. A rigid universal is one that classifies its

instances necessarily (in the modal sense), i.e., the instances

of that universal cannot cease to be so without ceasing to

exist. Anti-rigidity, in contrast, characterizes a universal whose

instances can move in and out of its extension without altering

their identity. For instance, contrast the rigid universal Person

with the anti-rigid universals Student or Husband. While the

same individual John never ceases to be an instance of Person,

he can move in and out of the extension of Student or Hus-

band, depending on whether he enrolls in/finishes college or

marries/divorces, respectively. Kinds are sortal rigid universals

that provide a uniform principle of identity for their instances

(e.g., Person). Subkinds are sortal rigid universals that carry

the principle of identity supplied by a unique Kind (e.g., a

kind Person can have the subkinds Man and Woman that carry

the principle of identity provided by Person). Concerning anti-

rigid sortals, we have the distinction between roles and phases.

Phases are relationally independent universals defined as a

partition of a sortal. This partition is derived based on an

intrinsic property of that universal (e.g., Child is a phase of

Person, instantiated by instances of persons who are less than

12 years old). Roles are relationally dependent (or externally

dependent) universals, capturing relational properties shared

by instances of a given kind, i.e., putting it baldly: entities play

roles when related to other entities via the so-called material

relations (e.g., in the way some plays the role Husband when

connected via the material relation of “being married to” with

someone playing the role of Wife). Since the principle of

identity is provided by a unique Kind, each sortal hierarchy

has a unique Kind at the top [3].

The relational dependence of Roles is manifested by the

presence of a Relator (a particular type of moment that is

existentially dependent on multiple individuals) in the model.

Relators are individuals with the power of connecting entities.

For example, an Enrollment relator connects a Student role

with an Educational Institution. OntoUML has a construct

for modeling relator universals. Every instance of a relator

universal is existentially dependent on at least two distinct

entities. The formal relation that take place between a relator

universal and the object classes it connects is termed mediation

(a particular type of existential dependence relation) [3].

2 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017



Non-Sortals or Mixins are universals that aggregate prop-

erties that are common to different sortals, i.e., that ultimately

classify entities that are of different Kinds. Non-sortals do

not provide a uniform principle of identity for their instances;

instead, they just classify things that share common properties

but which obey different principles of identity. Furniture is an

example of non-sortal (a category) that aggregates properties

of Table, Chair and so on. Other examples include works of art

(including paintings, music compositions, statues), insurable

items (including works of arts, buildings, cars, body parts, etc.)

and social and legal objects (including people, organizations,

contracts, legislations, etc.). The meta-properties of rigidity

and anti-rigidity can also be applied to distinguish different

types of Non-Sortals (Mixins). A Category represents a rigid

and relationally independent mixin, i.e., a dispersive universal

that aggregates essential properties that are common to differ-

ent rigid sortals [3] (e.g., Physical Object aggregates essential

properties of Table, Car, Glass, etc). A RoleMixin represents

an anti-rigid and externally dependent non-sortal, i.e., a dis-

persive universal that aggregates properties that are common

to different Roles (e.g., a Customer that aggregates properties

of Individual Customer and Corporate Customer) [3].

The leaf ontological distinctions represented in Fig. 3 as

well as their corresponding axiomatization (i.e., their corre-

sponding ontological micro-theories) are reflected as modeling

constructs in OntoUML [3]. Moreover, as shown in [5], this

axiomatization ensures that the OntoUML constructs repre-

senting these ontological categories can only appear in a model

forming clusters of constructs with their ties and associated

constraints. In other words, as previously mentioned, the actual

modeling primitives of OntoUML are certain pattern-based

structures reflecting the ontological micro-theories comprising

UFO. Thus, OntoUML is a pattern language whose models are

constructed via the combined instantiation of certain founda-

tional patterns. As a pattern grammar, an OntoUML model is

a non-empty set of Endurant Universal Expressions. These

expressions, in turn, as summarized in Table I, are defined in

a recursive manner reflecting the taxonomic structure of the

UFO ontology of Endurant Universals (Fig. 3) until a level

of concrete terminal elements (kinds and concrete ontology

patterns) is reached. The OntoUML patterns have already been

presented in [5] but at a more informal level. In this paper,

we present the OntoUML patterns in a formal manner, using

a graph transformation system.

III. GRAPH TRANSFORMATION

A. Basic Concepts

Graph transformation (or graph rewriting) [11] has been

advocated as a flexible formalism, suitable for modeling

systems with dynamic configurations or states. This flexibility

is achieved by the fact that the underlying data structure,

that of graphs, is capable of capturing a broad variety of

systems. Some areas where graph transformation is being

applied include the visual modeling of systems, the formal

specification of model transformations, and the definition of

graph languages, to name a few [12][8].

TABLE I
EXPRESSIONS OF ONTOUML.

Expression Expression Structure

Essentially, whenever a system consists of entities with

relations between them, this can be naturally captured by a

graph in which nodes stand for entities and edges for relations.

If, in addition, a main characteristic of such a system is that

entities are created or deleted and the relations between them

can change, then the transformation of graphs comes into play.

The core concept of graph transformation is the rule-based

modification of graphs, where each application of a rule leads

to a graph transformation step. A transformation rule specifies

both the necessary preconditions for its application and the

rule effect (modifications) on a host graph. The modified

graph produced by a rule application is the result of the

transformation.

In this work, we use graph transformations to formally

model the construction of ontology patterns. A set of graph

transformation rules can be seen as a declarative specification

of how the construction of an ontology model can evolve

from an initial state, represented by an initial host graph. This

combination of a rule set plus an initial graph is called a graph

grammar, and the (possibly infinite) set of graphs reachable

from the initial graph constitute the grammar language.

In its basic form, our formal graphs are composed of nodes

and directed labeled binary edges. Fig. 1(a) shows a graph

representing a single-linked list composed of five cells (nodes

labeled C) and a sentinel node (L) to mark the head and tail

elements of the list. Labels C and L are actually part of self-

loop edges; however, for visual convenience, unary labels are

written inside their associated node and the edge is omitted.

Node identities are displayed at the top left corner of each

node (edge identities are not shown). Edges labeled n indicate

EDUARDO ZAMBON, GIANCARLO GUIZZARDI: FORMAL DEFINITION OF A GENERAL ONTOLOGY PATTERN LANGUAGE USING A GRAPH GRAMMAR 3



(a)

L

v1

C

v2

C

v3

C

v4

C

v5

C

v6

h

t

n

n

nn

(b) get L

v1

C

v2

C

v3

h n

lhs

L

v1

C

v3

h

rhs

(c) put L

v1

C

v2

t

lhs

L

v1

C

v2

C

v3

n

trhs

Fig. 1. (a) A graph representing a single-linked list with five elements. (b),(c)
Two graph transformation rules.

L

v1

C

v2

C

v3

C

v4

C

v5

C

v6

h

t

n

n

nn

G

L

v1

C

v3

C

v4

C

v5

C

v6

h

t n

nn

H

L

v1

C

v2

C

v3

h n

L

L

v1

C

v3

h

R

m

Fig. 2. Example of a graph transformation, with application of rule get to
the graph of Fig. 1(a). Match m is indicated with dashed arrows.

the next list element, and labels h and t, indicate the list head

and tail, respectively.

Graphs are modified according to transformation (or pro-

duction) rules, that describe both the conditions for their

application and the changes that should be performed to the

host graph. In its basic form, a transformation rule r is

composed of two graphs, a left-hand side (LHS) L and a right-

hand side (RHS) R. Fig. 1(b,c) shows rules for removing the

head element of a list (get) and inserting a new element at the

tail of the list (put). For rule get, we have that the set of deleted

nodes is {v2}, indicating that the head cell is removed by

the rule. Additionally, set {〈v1, h, v2〉, 〈v2, n, v3〉} corresponds

to the set of edges to be removed. Rule get does not create

new nodes, and set of edges to be created consists solely of

{〈v1, h, v3〉}. For the put rule given in Fig. 1(c) these sets can

be analogously inferred.

Graphs are related by morphisms, structure preserving func-

tions over nodes and edges that also respect edge labels. For a

rule r to be applicable to a host graph G, a match m of L into

G has to exist, where m must be structure-preserving, i.e., m is

a morphism from L to G. The application of r to G according

to match m comprises two steps. First, all nodes and edges

matched by L \R are removed from G. In the second step of

rule application, elements of R \ L are added to G, to obtain

the derived graph H . Fig. 2 depicts the application of rule get

(Fig. 1(b)) to the host graph of Fig. 1(a), under match m. The

commuting square of morphisms corresponds to a pushout in

Category Theory, therefore this type of construction for graph

transformation is dubbed the Single-Pushout (SPO) approach.

By associating an initial host graph to a set of related rules

we obtain a graph grammar. A graph grammar defines a graph

language, the set of all graphs reachable from the initial host

graph. If a grammar has at least one rule that is always enabled

(i.e., that has an empty LHS), then the grammar language is

infinite. However, a finite fragment of a language can still

be algorithmically generated. This is the core functionality of

the GROOVE tool set, which calls this action exploration of

the grammar state space. We describe the GROOVE tool in

Section IV.

A graph grammar is a Type 0 grammar according to the

Chomsky Hierarchy and therefore graph transformations can

be seen as an alternative, Turing powerful, computational

method [13]. However, despite their theoretical power, graph

grammars still require further extensions to be applicable in

practice. In this work, we use the concepts of typed graph

grammars and of rule schemata, described in the following

two sections.

B. Node Types and Inheritance

A typed graph transformation with node type inheri-

tance [14] is a formalization of the inheritance concept com-

mon to object oriented (OO) systems. The core concept of

this formalization requires enriching a graph grammar with

a (transitive) inheritance relation over node types. Using

the usual graph transformation terminology, the inheritance

relation is described by a type graph (roughly equivalent to a

class diagram, in OO terms) that describes all valid structure

of rule and host graph elements.

Roughly speaking, a graph grammar can be typed according

to a type graph T by the construction of a morphism from

any grammar graph (rule or host graphs) into T . If no such

typing morphism can be constructed, then the grammar is

considered erroneous. Tools such as GROOVE are properly

equipped to handle type graphs and node inheritance, and give

error messages if a grammar cannot be typed.

Although we refrain ourselves from presenting the theory of

typed graph transformation due to its complexity (an interested

reader is referred to [14]), in practice the consequences of

using types in a graph grammar are quite straightforward,

affecting only the rule matching mechanism. For example,

suppose two node types S and T, with S a subtype of T. Any

occurrence of a T-node in the LHS of a rule can be matched

by either a T- or S-node in the host graph. This idea can be

generalized to a complete transitive inheritance relation and is

properly implemented in the GROOVE tool [8].

Fig. 3 depicts a type graph that describes a UFO-A fragment

of Endurant Universals, as presented in [5] and discussed in

Section II. The type graph is able to properly capture the

complete hierarchy as given in [5], with the exception of

annotations such as disjoint and complete. In addition, the

type graph in Fig. 3 can be seen as a formal representation

of the recursive relationships between expression structures,

as informally presented in Table I of Section II. In Table I,

for example, a Anti-Rigid Sortal Expression can stand for

either a Phase Pattern or a Role Pattern. This is formalized

4 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017



Universal

Endurant

Moment Substantial

IntrinsicMoment

Mode Relator

Sortal Mixin

RigidSortal AntiRigidSortal

SubstanceSortal

Kind Collective SubKind Phase Role

RigidMixin NonRigidMixin

Category

AntiRigidMixin

RoleMixin

Fig. 3. Type graph describing a UFO-A fragment of Endurant Universals.

Top

n: string

RelationalDependencePattern

MaterialRelation

RelationallyDependentExpression

Role RoleMixin

componentOf

externallyDependsOn

inheresIn

inheritsFrom

mediation

memberOf

relation
Universal

involved

Fig. 4. Additional type graph used in the Ontology Pattern Grammar.

in the type graph by the subtyping (inheritance) relations

between node types AntiRigidSortal, Phase, and Role. It

is also important to note that some types in Fig. 3 have

been abbreviated for convenience. For example, an Endurant

Universal is summarized as the Endurant node type.

Not all expressions given in Table I are part of the UFO-A

fragment of Endurant Universals. Therefore, to completely and

formally define the graph structures allowed in the Ontology

Pattern Grammar, we also use the additional type graph

elements shown in Fig. 4. For convenience, we introduce the

most general node type Top, and unify all edge types allowed

using this node type. The string attribute n within the Top-

node is used to name the constructs as they are introduced

in the ontology graph. Also worthy of note is node type

RelationalDependencePattern, whose purpose is to serve as

a place-holder, representing an intermediate construction on

the ontology graph that will later be replaced by further rule

applications (see Section V).

From here on, we assume that all graph grammar elements

presented are typed by the type graph T that is formed by

the merge (on equal node types) of the type graphs shown in

Figs. 3 and 4.

C. Rule Schemata

If a node type T is not a leaf in the type graph T , then

any rule where a T-node occurs in the LHS actually describes

(a) A

(k>0)

Bc (b) A Bc
(c)

A

A

B
c

c

Fig. 5. (a) LHS of a rule schema describing an arbitrary number of A-nodes
connected to a single B-node. (b),(c) Instantiation of such schema for k = 1

and k = 2, respectively.

a “collection of rules”, where the elements of this collection

are formed by instantiating the T-node with all its subtypes.

Although this is not necessary in practice, conceptually speak-

ing, a transformation rule that uses node type inheritance can

be seen as a rule schema, which defines a family of concrete

rules by means of the inheritance relation.

This idea of rule schemata or rule collections can also

be used capture the concepts of element multiplicity and

quantification [15][16]. Fig. 5(a) shows a rule schema to

handle node multiplicities. Node A is depicted with extra

copies to indicate that it can represent an arbitrary number

of concrete nodes, with such number bound by parameter k.

Fig. 5(b,c) shows the concrete schema instantiation for k = 1

and k = 2, respectively. Again, for simplicity’s sake, we will

not elaborate further on the theory of rule schemata, referring

the reader to [15] for details.

A rule schema for node types describe a finite collection of

rules, since any type graph T must be finite. However, in a rule

schema for multiplicities this is usually not the case: parameter

k can be unbounded, leading to an arbitrarily large collection

of concrete rules. This may pose a problem, since the definition

of a graph grammar requires the set of transformation rules

to be finite. Nevertheless, this problem can be easily fixed by

imposing an upper bound n to k, thus limiting the number

of concrete rules under consideration. The value for n is

dependent on the application scenario of the graph grammar;

in most practical scenarios (including the Ontology Pattern

Grammar), n is a small (single digit) natural. In Section V,

for each grammar rule that required the use of a schema, we

specify the value of k used upon instantiation.

EDUARDO ZAMBON, GIANCARLO GUIZZARDI: FORMAL DEFINITION OF A GENERAL ONTOLOGY PATTERN LANGUAGE USING A GRAPH GRAMMAR 5



(a)

L C Ch n

h (b)

L C Ct n

t

Fig. 6. Rules (a) get and (b) put in GROOVE notation.

IV. GROOVE

GROOVE [7][8] is a general purpose graph transformation

tool set that uses directed labeled graphs. The core function-

ality of GROOVE is to (partially) compute the language of

a graph grammar, by recursively applying all rules from the

grammar to the initial host graph, and to all graphs generated

by such applications. In the tool terminology, this exploration

results in a state space consisting of the generated graphs. The

main component of the GROOVE tool set is the Simulator, a

graphical tool that integrates (among others) the functionalities

of rule and host graph editing, and of interactive or automatic

state space exploration.

A graph transformation rule is composed of two graphs

L and R, as defined previously. However, in practice, it is

tedious and rather repetitive to describe a rule in terms of its

composing graphs. Therefore, in GROOVE, both L and R are

combined into a single graph, and colors and line strokes are

used to visually distinguish them. Fig. 6 shows the get and put

rules previously given in Fig. 1(b,c), now in GROOVE notation.

The semantics of this notation is summarized as follows:

• The black (continuous thin) components are reader ele-

ments, which must be present during matching and are

preserved by the rule application.

• The blue (dashed thin) components are eraser elements,

which must be present during matching and are deleted

by the rule application.

• The green (continuous fat) components are creator ele-

ments and are created by the rule application.

V. ONTOUML AS A GRAPH GRAMMAR

In this section we describe the main contribution of this

paper, namely the Ontology Pattern Grammar. In [5], we

discussed at length the static structure of OntoUML patterns,

focusing mainly on the rationale for the usage of a pattern,

but without concern with the actual sequencing of pattern

constructions that may lead to a complete model. On the other

hand, in Section III, we described the major concepts of graph

transformation, a formalism aimed at specifying the dynamic

evolution of graph structures. In this section we merge these

two concepts.

Our goal is to use graph transformations to formally cap-

ture the dynamic evolution of an OntoUML model from its

inception until its final form. To do so, we specify each step

in the construction of a Ontology Pattern as the application

of a graph transformation rule. This level of granularity in the

model construction is justified by the fact that, in OntoUML,

the patterns are the actual modeling primitives, as previously

stated.

Tables II and III show all graph transformation rules that

form the Ontology Pattern Grammar, as implemented in

GROOVE. The initial host graph is empty and thus it is not

depicted. Certain patterns admit two or more variants, which

are presented consecutively in Tables II and III. Additionally,

rules whose names end in ki are based in rule schemata, with i

indicating the concrete value used in the schema instantiation.

In these cases, we indicate in the rule description which nodes

are multiple (i.e., have an associated k > 0).

With exception of the Kind Pattern rule, for any other rule

to be applicable, an existing structure must already be present

in the model (these are the reader and eraser elements in the

rules). Also, every rule creates an additional graph structure

(creator elements) with each application. Thus, by sequencing

a series of rule applications, the ontology model (which starts

empty) grows until reaching its final form, with the GROOVE

tool ensuring that only valid (applicable) transformations can

be taken at each step. Therefore, the final model created

is guaranteed to be structurally and ontologically sound by

construction.

The first two cells of Table II show the rules for creating a

Category Pattern, which has two variants. Variant 1 creates

a Category node for an existing Mixin node to inherit from.

Variant 2 comes from a schema, where the RigidSortal node

is multiple, with the rule instance using k = 2. Thus, in this

rule, a category serves as the inheritance point of two rigid

sortals. The Collective Pattern also comes from a schema,

with the Endurant node being multiple (the rule instance uses

k = 1). Thus, in this rule, a new Collective node is created

as a member of a single existing endurant. The Component,

Inheritance and Membership Pattern rules are used to

respectively create the relations of parthood, inheritance and

membership among two existing endurants.

The Kind Pattern rule is used to create new Kind nodes.

This is always possible, since a kind has no preconditions to

be introduced in the model. Therefore, the Kind Pattern rule

is always applied first in a new graph (model). The Mode

Pattern rule follows a schema, with the Endurant node the

mode depends on being multiple. Here, this multiple node is

instantiated with k = 1. A similar construction occurs in the

Phase Pattern, with the multiple Phase nodes instantiated for

k = 2, indicating that two distinct phases can inherit from an

existing sortal.

The Relational Dependence Pattern has three variants to

handle distinct structures of mediation by a Relator node. In

Variant 1, the mediation is direct, whereas in Variants 2 and 3

the mediation occurs through the membership of a substantial.

In either case, the goal of these rules is to confirm the existence

of a relator mediating a Relationally Dependent Expression

(either a Role or RoleMixin node). The rules then erase the

temporary RelationalDependencePattern marker node which

was previously created when a Role or RoleMixin Pattern

was introduced.

The Relator Pattern has two variants, with Variant 1

handling the creation of a Relator node that directly mediates

one or more substantials. Table III shows instances of the

rule schema for k = 1, 2, 3. Variant 2 behaves similarly but

also introduces a reified MaterialRelation node to connect

6 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017



TABLE II
ONTOLOGY PATTERN GRAMMAR IN GROOVE (PART I)

CategoryPattern-Variant1

Mixin CategoryinheritsFrom

CategoryPattern-Variant2-k2

RigidSortal

Category

RigidSortal

inheritsFrominheritsFrom

CollectivePattern-k1

Collective EndurantmemberOf

ComponentPattern

Endurant EndurantcomponentOf

InheritancePattern

Endurant EndurantinheritsFrom

MembershipPattern

Endurant EndurantmemberOf

KindPattern

Kind

ModePattern-k1

EndurantMode

EndurantexternallyDependsOn

inheresIn

PhasePattern-k2

Sortal

PhasePhase

inheritsFrominheritsFrom

RelationalDependencyPattern-Variant1

RelationallyDependentExpression Relator

RelationalDependencePattern

mediation

relation

RelationalDependencyPattern-Variant2

RelationallyDependentExpression Substantial

RelationalDependencePattern Relator

mediationrelation

memberOf

RelationalDependencyPattern-Variant3

RelationallyDependentExpression Substantial

RelationalDependencePattern Relator

relation

memberOf

mediation

TABLE III
ONTOLOGY PATTERN GRAMMAR IN GROOVE (PART II)

RelatorPattern-Variant1-k1

Relator Substantialmediation

RelatorPattern-Variant1-k2

Relator Substantial

Substantialmediation

mediation

RelatorPattern-Variant1-k3

Relator Substantial

Substantial

Substantial

mediation

mediation

mediation

RelatorPattern-Variant2-k1

Relator

Substantial

Substantial

MaterialRelation

mediation

involvedmediation

involved

involved

RolePattern

Role

Sortal

RelationalDependencePatternrelation

inheritsFrom

RoleMixinPattern-Variant1

RoleMixin

RoleMixin

RelationalDependencePatternrelation

inheritsFrom

RoleMixinPattern-Variant2-k2

RoleMixin

Role Role

Sortal

RelationalDependencePattern

Sortal

inheritsFrominheritsFrom

inheritsFrominheritsFrom

relation

SubkindPattern-Variant1

SubKind RigidSortalinheritsFrom

SubkindPattern-Variant2-k2

SubKind RigidSortal

SubKind

inheritsFrom

inheritsFrom

EDUARDO ZAMBON, GIANCARLO GUIZZARDI: FORMAL DEFINITION OF A GENERAL ONTOLOGY PATTERN LANGUAGE USING A GRAPH GRAMMAR 7



the involved substantials. This reification is necessary because

GROOVE only admits edges connecting nodes (not other

edges).

The Role Pattern rule creates a Role node that inherits

from an existing sortal. A role is a Relationally Dependent

Expression which must be connected to a Relator Pattern.

Since the relator can only be created after all mediated

substantials exist, the rule creates the RelationalDependen-

cePattern marker node, to indicate that there is a unresolved

dependence in the model. Subsequently, after one or more

Relator Patterns are created, this marker node is removed

by a Relational Dependence Pattern rule. A model with

one or more RelationalDependencePattern nodes is at an

intermediate state of construction, and cannot be considered

finished until all dependencies are satisfied.

The Role Mixin Pattern is similar to the Role Pattern,

with the distinction that this pattern creates a RoleMixin node

to aggregate one or more roles. Variant 2 instantiates the rule

schema with k = 2, both for the Role and Sortal nodes.

Variant 1, on the other hand, allows the introduction a mixin

that generalizes an existing one. Finally, the last two cells of

Table III show the rules that creates the Subkind Pattern.

The main functionality of the GROOVE tool is state space

exploration (language enumeration) of a graph grammar. Al-

though this functionality can be used with the Ontology Pattern

Grammar to (partially) enumerate consistent OntoUML mod-

els, this is not the grammar intended use, as the exploration

can quickly exhaust computational resources. Conversely, the

Ontology Pattern Grammar was designed to be used with the

interactive mode of GROOVE, where the user (modeler) decides

at each step which rule to apply to introduce a new pattern.

This sequencing of rule applications is illustrated in the next

section with two examples.

VI. APPLYING THE ONTOLOGY PATTERN GRAMMAR

In order to illustrate the application of the Ontology Pattern

Grammar to produce OntoUML models, we use two exist-

ing published models of [5]. The versions of these models

produced using the grammar are shown in Figs. 7 and 8,

respectively. In the model of Fig. 7, we see on the top-left

side the result of an application of a Kind Pattern (Person)

followed by an application of the Phase Pattern (Deceased

Person and Living Person specializing the sortal Person).

In the top-right side of the model, we see an analogous

application of the same patterns creating the kind Organization

and the phases Extinct Organization and Active Organization.

In the center of the model, we see the application of the

RoleMixin Pattern Variant 2 creating the rolemixin Customer

and the roles Personal Customer and Corporate Customer that

specialize the sortals Living Person and Active Organization,

respectively. The Relational Dependent Pattern node (let us

call it RDP-1) created by this RoleMixing Pattern Variant 2

serves as a marker to indicate that the rolemixin Customer

requires a relation with a pattern that is still not present.

Continuing with the model construction, the role Supplier is

introduced via an application of the Role Pattern. This role

also requires a Relational Dependent Pattern (call it RDP-

2). Finally, a relationally dependent expression is introduced

with a relator (Purchase Contract) and the material relation

purchases from via the application of the Relator Pattern

Variant 2. Once the relator Purchase Contract is created,

both RDP-1 and RDP-2 are satisfied and thus their temporary

node markers can be removed with two applications of the

Relational Dependency Pattern Variant 1. This concludes

the model creation, yielding the graph shown in Fig. 7.

In the model of Fig. 8, we can start with the applications

of the Kind Pattern creating the kinds Organization, Orga-

nizational Unit and Person. After that, with the application

of the Component Pattern, we can make an Organizational

Unit a component of an Organization (both Organizational

Unit and Organization are Endurant types). We have then

two applications of the SubKind Pattern Variant 1 creating

the subkinds Car Rental Branch and Car Rental Agency.

Again these two types can be connected by an application

of the Component Pattern. An application of the RoleMixin

Pattern Variant 2 creates the rolemixin Car Rental Provider as

well as the roles Car Rental Branch Provider (that specializes

the sortal Car Rental Branch) and Car Rental Agency Provider

(that specializes the sortal Car Rental Agency). The Relational

Dependency Pattern instance (let us call it RDP-1) associated

to this pattern is left unresolved at this moment. We can then

apply the RoleMixin Pattern Variant 1 to create the rolemixin

Service Provider as a supertype of Car Rental Provider,

leaving a second instance of the Relational Dependency

Pattern unresolved (let us call it RDP-2). We can apply

once more an instance of the RoleMixin Pattern Variant

2 creating the rolemixin Potential Car Renter and the roles

Potential Person Car Renter (specializing the sortal Person)

and Potential Organization Car Renter (specializing the sortal

Organization). Again, we leave an instance of the Relational

Dependency Pattern unresolved (RDP-3). We can apply again

the RoleMixin Pattern Variant 1 creating the rolemixin Target

Customer as a supertype of Potential Car Renter, leaving a

final instance of a Relational Dependency Pattern unresolved

(RDP-4). Then, using the Collective Pattern we can introduce

the Target Customer Community as a member of the endurant

Target Customer. This collective then appears as the supertype

of the Potential Car Renter Community subkind, created via

a Subkind Pattern Variant 1. Rule Membership Pattern is

used next, to introduce the memberOf relation between the

Potential Car Renter Community subkind and the Potential

Car Renter mixin. Finally, to complete the model we apply

the Relator Pattern Variant 1 (k = 2) twice, to introduce

the two relators Service Offering and Car Rental Offering,

which are then connected using the Inheritance Pattern. After

this step, all relational dependencies are satisfied, and are

removed via two applications of the Relational Dependency

Pattern Variant 1 (handling RDP-1 and RDP-2), and two

applications of the Relational Dependency Pattern Variant

2 (handling RDP-3 and RDP-4). This concludes the model

creation, yielding the graph shown in Fig. 8.

8 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017



Kind

n = "Person"

Kind

n = "Organization"

Phase

n = "Deceased Person"

Phase

n = "Living Person"

Phase

n = "Extinct Organization"

Phase

n = "Active Organization"

Role

n = "Corporate Customer"

Role

n = "Personal Customer"

RoleMixin

n = "Customer"

Role

n = "Supplier"

MaterialRelation

n = "purchases from >"

Relator

n = "Purchase Contract"

inheritsFrom inheritsFrom inheritsFrominheritsFrom

inheritsFrom

inheritsFrom

inheritsFrom

inheritsFrom

inheritsFrom

mediation

involved involved

mediationinvolved

Fig. 7. Model from [5] produced in GROOVE using the proposed Ontology Pattern Grammar.

Collective

n = "Target Customer Community"

Kind

n = "Organizational Unit"

Role

n = "Potential Person Car Renter"

RoleMixin

n = "Service Provider"

RoleMixin

n = "Target Customer"

Role

n = "Car Rental Agency Provider"

Kind

n = "Organization"

SubKind

n = "Car Rental Agency"

Relator

n = "Service Offering"

Kind

n = "Person"

SubKind

n = "Car Rental Branch"

SubKind

n = "Potential Car Renter Community"

Relator

n = "Car Rental Offering"

RoleMixin

n = "Car Rental Provider"
RoleMixin

n = "Potential Car Renter"

Role

n = "Potential Organization Car Renter"

Role

n = "Car Rental Branch Provider"

mediation

inheritsFrom

inheritsFrom

inheritsFrom

inheritsFrominheritsFrom

mediation

mediation

inheritsFrom

componentOf

inheritsFrom

inheritsFrom

inheritsFrom

inheritsFrom

inheritsFrom

componentOf

inheritsFrom

inheritsFrom

componentOf

mediation

memberOfinheritsFrom

memberOf

Fig. 8. Model from [5] produced in GROOVE using the proposed Ontology Pattern Grammar.

VII. CONCLUSION

In this paper, we employ the formalism of a graph gram-

mar to propose an alternative formulation of the OntoUML

language, fully defining it as an Ontology Pattern Grammar.

Given that (as shown in [4]) OntoUML is among the most used

modeling languages for ontology-driven conceptual modeling,

we believe that the results presented here amount to a theo-

retical and practical contribution to the conceptual modeling

community.

In an extended version of this paper, we shall elaborate

on a version of the OntoUML modeling tool that fully im-

plements a computational support for the modeling strategy

proposed here, in which models are completely constructed

by the restricted combination of these patterns as higher-

granularity modeling primitives (see discussion in [5]). We

believe that this strategy dramatically reduces the complexity

of the modeling process, especially for novice modelers. This

is, of course, an empirical question, which we intend to address

in a series of experiments.

As discussed in [6], the observation of the application of

OntoUML over the years conducted by a variety of groups in

a variety of domains amounted to a fruitful empirical source

of knowledge that triggered the evolution of both UFO and

OntoUML. In this process, termed Systematic Subversions [6],

users of the language systematically created models that were

(purposefully) grammatically incorrect but which were needed

to express the intended characterization of their underlying

conceptualizations that could not be expressed otherwise.

These includes the representation of event-related phenomena

in structural conceptual models [17], the representation of

powertypes [18] (types whose instances are types, not in-

dividuals), as well as the representation of anti-rigid types

(e.g., roles, phases) and non-sortal types (i.e., categories, mix-

ins and role-mixins, whose instances are moments (relators,

modes) [19]. As a follow up of this paper, we intend to

EDUARDO ZAMBON, GIANCARLO GUIZZARDI: FORMAL DEFINITION OF A GENERAL ONTOLOGY PATTERN LANGUAGE USING A GRAPH GRAMMAR 9



propose an updated version of the OntoUML pattern grammar

presented here to formally account for new patterns and

constraints related to the modeling of these phenomena.

We would like to highlight that the definition and imple-

mentation of the language as presented here bring several

benefits to this community, namely: (i) the grammar is de-

fined in a formal, Turing powerful, computational method

that circumvents the limitations of the current meta-modeling

approaches for defining the abstract syntax of modeling lan-

guages; (ii) the language is defined in a way that affords its

independence from the UML meta-model and, as consequence,

the results presented here can be ported to other concep-

tual modeling languages and employed by the conceptual

modeling community at large; and (iii) the language makes

explicit its constituting ontology design patterns which, once

more, reflect the ontological micro-theories put forth by UFO.

In other words, in comparison to the current definition of

OntoUML’s abstract syntax (in terms of a UML 2.0 meta-

model with associated OCL constraints), the implementation

of this language in the manner proposed here affords a much

higher ontological transparency for the language, i.e., the

implementation makes much more transparent the ontological

commitments embedded in that conceptual modeling language.

In summary, we believe to have proposed in this paper

what is (to the extent of our knowledge) the first attempt to

produce a general-purpose conceptual modeling language that

is ontologically well-founded, explicitly defined as an ontology

pattern language, and not tied to a particular legacy meta-

model (the UML 2.0 meta-model).

REFERENCES

[1] J. Recker, M. Rosemann, P. Green, and M. Indulska, “ Do ontological
deficiencies in modeling grammars matter?” MIS Quarterly, vol. 35,
no. 1, pp. 57–79, 2011.

[2] G. Guizzardi and G. Wagner, “ Using the Unified Foundational Ontology
(UFO) as a oundation or general conceptual modeling languages,”

Theory and Applications of Ontology: Computer Applications, pp. 175–
196, 2010.

[3] G. Guizzardi, Ontological oundations or structural conceptual models,
ser. Telematica Institute Fundamental Research Series. University of
Twente, 2005, no. 15.

[4] M. Verdonck and F. Gailly, “ Insights on the use and application
of ontology and conceptual modeling languages in ontology-driven
conceptual modeling,” ER (LNCS), pp. 83–97, 2016.

[5] F. Ruy, G. Guizzardi, R. Falbo, C. Reginato, and V. Santos, “ From
reference ontologies to ontology patterns and back,” Data & Knowledge

Engineering, 2017.
[6] G. Guizzardi, G. Wagner, J. Almeida, and R. Guizzardi, “ Towards

ontological oundation or conceptual modeling: the Unified Foundational
Ontology (UFO) story,” Applied Ontology, pp. 259–271, 2015.

[7] A. Rensink, “ The GROOVE Simulator: A tool or state space generation,”
AGTIVE (LNCS), pp. 479–485, 2003.

[8] A. Ghamarian, M. de Mol, A. Rensink, E. Zambon, and M. Zimakova,
“ Modelling and analysis using GROOVE,” STTT, vol. 14, no. 1, pp.
15–40, 2012.

[9] T. Halpin, “ Object-role modeling: principles and benefits,” Int. J. Inf.

Syst. Model. Des., vol. 1, no. 1, pp. 33–57, 2010.
[10] T. Halpin and T. Morgan, Information modeling and relational

databases, 2nd ed. Morgan Kaufmann, 2008.
[11] R. Heckel, “ Graph transformation in a nutshell,” ENTCS, vol. 148,

no. 1, pp. 187–198, 2006.
[12] E. Zambon, Abstract Graph Transformation – Theory and Practice,

ser. Centre or Telematics and Information Technology. University of
Twente, 2013.

[13] A. Habel and D. Plump, “ Computational completeness of programming
languages based on graph transformation,” FoSSaCS (LNCS), pp. 230–
245, 2001.

[14] J. de Lara, R. Bardohl, H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer,
“ Attributed graph transformation with node type inheritance,” Theor.

Comput. Sci., vol. 376, no. 3, pp. 139–163, 2007.
[15] R. Grønmo, S. Krogdahl, and B. Møller-Pedersen, “ A collection

operator or graph transformation,” ICMT (LNCS), pp. 67–82, 2009.
[16] A. Rensink and J.-H. Kuperus, “ Repotting the geraniums: On nested

graph transformation rules,” GT-VMT, 2009.
[17] G. Guizzardi, J. Almeida, and N. Guarino, “ Ontological Considerations

About the Representation of Events and Endurants in Business Models,”
BPM, pp. 20–36, 2016.

[18] G. Guizzardi, J. Almeida, N. Guarino, and V. Carvalho, “ Towards an
Ontological Analysis of Powertypes,” IJCAI, 2015.

[19] N. Guarino and G. Guizzardi, “ We Need to Discuss the Relationship:
Revisiting Relationships as Modeling Constructs,” CAiSE (LNCS), 2015.

10 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017


