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Abstract—This paper deals with the process of identifying
the parameters of the dynamic equivalent (DE) load model
of an active distribution system (ADN) simulated in RTDS
using mean-variance mapping optimization (MVMO) algorithm.
MVMO is an emerging variant of population-based, evolutionary
optimization algorithm whose features include evolution of its
solutions through a unique search mechanism within a normal-
ized range of the sample space. Due to the prominent large-
scale integration of DG in low and medium voltage networks, it
is important to develop equivalent models that are suitable for
representing the resulting active distribution network in dynamic
studies of large power systems. This would significantly reduce
the computational demands and simulation time. Moreover,
only a defined portion of a system is usually studied, which
means that the external system can be substituted with DE
thereby allowing the detailed modelling of the focus area. The
IEEE 34-Bus distribution system was modified and used as
the reference network where measurement data were gathered
for identification of the parameters of its developed DE. An
optimization-enabled simulation involving MATLAB, which host
the MVMO algorithm and RTDS, which simulates the models
was established. The reactions of the detailed network and the DE
were compared upon subjecting them to different disturbances in
the retained system. The effectiveness of the MVMO algorithm in
identifying DE parameters based on its unique mapping function
is reflected through the results of the response comparison.

I. INTRODUCTION

O
VER the last couple of years, there has been an in-
crease in the level of renewable energy resources in

the electricity grid. Recently, countries such has Germany
and Portugal have reportedly supplied most of their energy
demands using only renewable energy sources. Consequently,
several technical challenges are being faced by utilities with
respect to planning and operations of the modern power
system. The surge in the capabilities of power electronic
devices implies that more large-scale integration of RES such
as Wind, PV, Biomass etc. should be expected, especially in
MV/LV networks. As a result, there is a paradigm shift in the
LV networks from traditionally passive to active networks.

Prior to these technological advancement, power systems
planners and operators have utilized results from power system

stability simulation studies to make appropriate decisions on
both short and long-term basis. They use simulations to eval-
uate the performance and limits of power system components
in the network upon subjection to several operating conditions
which could compromise the stability of the system. Among
all power system components, the need to model the electrical
characteristics of loads accurately due to their significant
influence on the dynamic behaviour of the power system as
long been acknowledged and documented [1], [2], [3]. Besides,
a working group (WG) C4.605: "Modelling and aggregation of
loads in flexible power networks" was established by CIGRE
Study Committee in 2009 to address cogent issues related
to load modelling. Since then, they have provided critical
and updated overview about the current methodologies and
approaches used in load modelling [4].

Most notable among the results of an international survey
of utilities done by the work group is the lack of aggregated
load models for active distribution networks [5]. Admittedly,
it was realized that very few recommendations for dynamic
equivalencing of ADN and microgrids exist from the in-
dustry. Their preliminary reports suggest that supplementary
development of equivalent models for ADNs and MGs be
investigated. Moreover, the intermittent nature of the DGs in
the active distribution network stresses the need for power
system planners to develop adequate models that efficiently
represent the grid. These models would facilitate reasonable
technical and economic decisions to maintain the stability and
reliability of their network.

However, it is a herculean task to build detailed models for
such large and multifaceted network due to the computational
resources required and the long simulation period. For these
reasons, only the specific region of interest (internal network)
is usually modelled in detail while the rest of the system
(external network) is reduced to equivalent models that provide
similar responses [6]. Dynamic equivalent (DE) models are
simple aggregated representation of large networks, able to
provide similar dynamic responses and behaviours as the
actual network for stability analysis. Although developing
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them can be complex, they significantly reduce the simulation
time and computational resources.

There are two main steps required to develop adequate DE
models. First is to establish the proper structure of the DE
based on the characteristic of the region of the network to
be reduced. Many methods have been implemented and well
documented in literature such as [7]. However, according to
[5], only a few have been deployed for ADNs in real time
digital simulations. The DE structure that is used in this
research is based on recommendations from [8] as shown in
Fig. 1. Secondly, a means of identifying the parameters of
the defined model is executed such that its responses correlate
with those of the reference detailed system upon subjection to
the same disturbances. There have been many studies done
on developing such aggregate models in several software
like PSSE and DigSilent Powerfactory [9] however, only few
have been done on models developed in Real Time Digital
Simulators. This research contributes to this important field of
load modelling by implementing an optimization-enabled real
time digital simulation of ADN.

ZIP Model
Induction

Motor

PCC

Equivalent transformer

Equivalent impedance

External Grid

(TS)

Fig. 1. Dynamic Equivalent load model structure

After establishing the DE structure, reference signal data
from the simulated detailed model are used for the identifi-
cation of appropriate DE parameters. To do this, several opti-
mization techniques based on metaheuristics such as Genetic
Algorithms, (GA) [10], Particle swarm optimization (PSO)
[11] and Levenberg-Marquardt algorithm (LMA) [12] have
been proposed. However, these techniques have some common
limitations such as slow convergence, high computational cost,
being trapped in a local optimum or low efficiency, with some
having better characteristics than others. These problems are
due to the non-linear, non-convex and multi-modal nature of
the optimization challenge in attempts to properly identify
parameters. Nevertheless, due to impressive results of these
heuristic-based techniques, this work uses the mean-variance
mapping optimization algorithm (MVMO), with its special
mapping function described in [13], to determine the parame-
ters of the DE model on RTDS.

The rest of this paper is structured as follows: Section
II presents the project approach while the model used are

discussed in Section III. The MVMO procedure is elaborated
in section IV while the test cases and the associated results
are presented in Section VI. Finally, derived conclusions and
recommendations for further studies are provided in Section
VII.

II. PROPOSED APPROACH

Fig. 2 illustrates the general approach adopted in this
research. The reference signals i.e. active and reactive power,
were measured at the point of common coupling between the
detailed distribution system and the external grid by applying
specific disturbances in the external grid. These signals were
then stored for subsequent comparison with those measured
from the PCC of the DE model. The error between the
signals is fed to MVMO algorithm as an objective function.
Thereafter, the algorithm supplies new parameters, as a vector
x, to the dynamic equivalent model based on its internal
evolutionary mechanism. The optimization process stops when
the termination criteria is fulfilled. Then the best obtained pa-
rameters are updated to the model thus producing a sufficient
dynamic equivalent.
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Dynamic

Equivalent 

Model
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Fig. 2. Research approach

The MVMO optimization algorithm is available as a MAT-
LAB script while the models are built in the RTDS software,
RSCAD and simulated in RTDS/Runtime.

III. DEVELOPED MODELS

The reference detailed model adopted in this research due
to the lack of actual field measurement data is the IEEE
34-Bus distribution system, an actual system in Arizona,
provided by the IEEE Power Engineering Society [14]. It
operates at a voltage level of 24.9KV and includes transform-
ers, voltage regulators, shunt capacitors, overhead distribution
lines as well as distributed and spot loads which sum up to
1.769MW/1.04MVAR, thus making it an ideal system for this
research. However, the system was modified to become an
active DS by including PV generation on 3 buses as described
in Fig. 3. The modified system was connected to an external
transmission system equivalent grid through a transformer and
a 120km transmission line. In addition, induction motors were
also added at a few nodes to increase the contribution of
dynamic loads in the detailed reference model.
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Fig. 3. Modified IEEE 34-Bus reference model

The PV system used for the above modification and also
as an aggregate in the DE was modelled using a PV array
component in RSCAD component library. The voltage source
converter was simulated with small time step in RTDS due
to its high switching frequency. The control blocks and the
interfacing of the PV array to the grid was implemented as
done in [15]. A unique scaling feature is available on the
VSC interface transformer which allows the generated power
of the PV to be increased without changing any variables.
The structure of the DE model was already shown in Fig.
1. The parameters that were chosen for optimization in each
block are: the length of the equivalent line, the scale factor
and reference voltage (Vsdref) of the PV model, the ZIP per-
centages of the load on each phase which totals 18 parameters
(6 parameters per phase), and 6 parameters of the IM model.
In total, 26 parameters were chosen for optimization. These
would determine the accuracy of the DE during the period of
disturbance.

IV. MVMO-BASED SOLUTION PROCEDURE

Fig. 4 illustrates the overall procedure of the MVMO
algorithm as implemented in this research. Firstly, the opti-
mization parameters of the model are initialized with their
upper and lower bounds. Then the numerical configuration
of the algorithm is done. In this case, its settings are as
follows: total number of evaluation is 200, the solution archive
size is 4, number of parameters to be randomly varied is 13
and the scaling factor is set to 1. Thereafter, the automated
phases of the procedure commence with MVMO generating an
initial solution vector by randomly sampling the optimization
parameters within the defined [min, max] bounds.

Since MVMO’s evolution mechanism operates in the nor-
malized search space, the generated values are scaled to the
[0, 1] range. This search range restricts the algorithm to the
defined boundaries. However, the variables are de-normalized
before sending them to the RTDS for dynamic simulations
and subsequent objective function evaluation. The OF takes
as input, the signals stored from the detailed model and those
from the simulation of the DE model. Its output is evaluated
for fitness and determines the evolution procedure in the inner
loop of the flowchart, shaded in Fig. 4.

The inner loop constitutes the core of the algorithm. The
solution archive is continuously updated based on the previous
outcomes. The best outcome available in memory is chosen as

the parent solution from which new solutions (i.e. offspring)
are generated. The unique mapping function is also applied to
strategically produce new values for an optimization variable
set. This phase is known as the mutation phase. The entire
optimization procedure is concluded upon fulfilling the termi-
nation criterion, which is the specified number of evaluations.
An elaborate description of the MVMO algorithm is addressed
in [13].
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Fig. 4. Flowchart of the approach used for identification of parameters of
DE with MVMO

A. Optimization Problem Statement

The desired goal of the optimization is to derive optimal
values of parameters that effect the closest match between the
behaviours of the dynamic equivalent model and the detailed
model. To do this, the active and reactive power signals are
measured at the boundary bus between the external grid and
both models. The comparison is formulated as the objective
function given in 1:

Minimize:

OF =

p
∑

n=1

√

αn

∫ τ

0

[

(Pn − Pnref
)2 + (Qn −Qnref

)2
]

dt

(1)
Subject to:

xmin ≤ x ≤ xmax (2)

Where Pn and Qn are the active and reactive power signals
of the DE, while Pnref

, Qnref
are the corresponding signals

from the detailed model. p is the number of disturbances, αn
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is the probability of the nth disturbance and τ is the simulation
period. Also, x is the solution vector that constitutes the set
of DE parameters to be optimized while xmin and xmax are
the minimum and maximum values defined for each parameter
in x. Equation 1 is based on the Euclidean distance function
which calculates the point to point distance between two signal
vectors. The algorithm aims to reduce this distance error, thus
providing very similar response signals.

B. Dynamic Simulation

Dynamic simulation of the detailed and equivalent models
is implemented in RSCAD Runtime environment. To establish
a link between RTDS and MATLAB which host the MVMO,
a TCP/IP connection is established as described in Fig. 5.
A special Runtime script command called ‘ListenOnPort()’ is
used to open a specific communication port (Runtime becomes
a server) for MATLAB to connect as a client. Once the
connection is established, the port becomes a bi-directional
communication channel. Hence, the P and Q signals derived
at the PCC upon applying a fault in the external grid is
sent through this port to MVMO on MATLAB. The OF is
calculated using equation 1 and new parameters are sent in the
other direction from MATLAB to RTDS/Runtime. Sliders are
used in the Runtime module to accept the new de-normalized
parameters and a push button component is used to initiate the
fault occurrence.

RTDS

RSCAD/Runtime

Performs optimization

Performs dynamic simulations

MATLAB

Fig. 5. MATLAB and RSCAD/Runtime Interaction

MATLAB has a jtcp.m program which enables it to send
and/or receive TCP packets. Some of the basic functions used
in MATLAB to communicate with RTDS/Runtime are detailed
below:

• JTCPOBJ = jtcp ( ‘ REQUEST ’ , Host, Port) represents
a request from MATLAB to RTDS/Runtime to establish
a TCP/IP connection on the specified port opened by
RTDS/Runtime. The host can be represented by an IP
address string (e.g. ‘192.168.0.10’) or by a hostname.
Since both applications are on the same host, a loopback
address (‘127.0.0.1’) was used. Port is an integer number
between 1025 and 65535 which must be open by the
server to enable connection.

• jtcp ( ‘ writes ’, JTCPOBJ, msg) sends the specified infor-
mation contained in the ‘msg’ variable to RTDS/Runtime
through the TCP/IP connection.

• rmsg = jtcp ( ‘ read ’, JTCPOBJ) reads the information
that is sent from RTDS/Runtime through the communi-
cation port and stores it in a variable ‘rmsg’.

• jtcp ( ‘ close ’, JTCPOBJ) closes the port thereby
ending the TCP/IP connection between RTDS/Runtime
and MATLAB.

The variable "JTCPOBJ" stores all the necessary informa-
tion flowing through the communication port which are needed
by the remaining functions of the algorithm.

C. Solution archive

The solution archive is one of the key features of MVMO
algorithm. It serves as the knowledge database which guides
the algorithm’s search direction. Essentially, the n-best solu-
tions that MVMO has derived at any point in the iteration,
with their corresponding fitness value, d factors and shape,
are stored in the archive. The archive size is specified at the
beginning of the optimization through the main script.

Furthermore, the archive is gradually filled up in a de-
scending order of fitness as the iteration progresses. When
the archive is full, it is only updated if a newly generated
solution has better fitness than those already stored in the
archive. After each update, the mean and shape variables of
every optimization parameter xi are calculated using equations
3 and 4 respectively.

x̄i =
1

n

n
∑

j=1

xi(j) (3)

si = − ln(vi).fs (4)

where the variance vi is computed as follows:

vi =
1

n

n
∑

j=1

(xi(j)− x̄i)
2 (5)

Initially, x̄i is the same as the randomly generated value
of xi, and vi is set to 1. The geometric characteristics of the
mapping function is highly influenced by the shape variable
si, thus, the reason for si being dependent on the user defined
scaling factor fs. Moreover, si facilitates the control of the
mapping function hence the search process.

D. Evolution of new solutions

The process of generating new offspring solutions distin-
guishes MVMO from other algorithms. After the parent vector,
D is chosen, a subset m out of D optimization variables are
selected for mutation through a random, sequential selection
scheme. The mutation is facilitated by the mapping function
which samples the random selected dimension xi within
the [0, 1] limits. The mean and variance of the selected
dimension is explored by the function to produce new values.
These parameters influence the way the shape of the mapping
function varies. As a result, the algorithm’s control can switch
from a search exploration mode to a search exploitation mode.
The mapping function used in this paper based on [13] is as
follows:
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if x∗

r < 0.5 if x∗

r ≥ 0.5

s∗
1
= s1/(1− x̄) s∗

2
= s2/x̄ (6)

hm = x̄−
x̄

(0.5 · s∗
1
+ 1)

hm =
(1− x̄)

(0.5 · s∗
2
+ 1)

hf = x̄ · (1− e−x∗

r ·s
∗

1 ) hb = (1 − x̄)/((1 −

x∗

r) · s
∗

2
+ 1) + x̄

hc = (x̄− hm) · 2 · x∗

r hc = hm · 2(1− x∗

r)

xnew
i = hf + hc xnew

i = hb − hc

where x̄ is the mean of the selected variable xi, xnew
i

represents the new value of the selected dimension xi. s
∗

1
and

s∗
2

denote the shape factors which vary around measure of
entropy as expressed in 5. The entropy measure is a function
of the selected variable variance vi. The values of x̄ and vi
are derived from the values available in the solution archive
[13].

V. TEST CASE

A modified version of the IEEE 34-Bus distribution sys-
tem was used in this research. PV generators and induction
motor were connected to different buses to create an active
distribution system and account for industrial dynamic loads
respectively. The PV generation accounted for 40% of the
load while the IM added about 15% additional load. Active
(P) and reactive power (Q) signals were measured at the
point of common coupling (i.e. HV side of the interfacing
transformer) between the external grid and the distribution
grid. The measurements were done after three phase faults
described in table I were implemented in the external TS grid.
Thereafter, these data were stored and used as reference data
for validating the parameters of the developed DE load model
mentioned in the previous section.

TABLE I
FAULT CASES

Fault Voltage
(pu)

Source Impedance
(ohms)

Fault Duration
(ms)

0.2 1.0 100
0.4 1.0 100
0.6 1.0 100

Three fault scenarios were considered in this study. The
faults were simulated in the external grid by instantaneously
varying the level of the source voltage behind a source
impedance. The three-phase source model that was used to
represent the external grid in RSCAD has a remote fault
feature which allows the faults to be initiated while the
simulation is running. However, only three-phase faults can
be simulated. The percentage drop in the source voltage
during faults represents the occurrence of the faults at various
places within the transmission system equivalent grid. The

fault duration was set to 100ms through the source model
configuration menu. The application of fault during every
function evaluation was automated through a MATLAB script
which sends instruction to RSCAD/Runtime to push the fault
button.

VI. NUMERICAL RESULTS

The simulations were performed on a personal computer
with Intel(R) Core(TM) i7-4510U CPU @ 2.0GHz and 8 GB
RAM. As mentioned previously, the algorithm was imple-
mented by interfacing MATLAB which performs the optimiza-
tion with RTDS/Runtime where the dynamic equivalent model
is simulated. A special scripting feature in RTDS/Runtime fa-
cilitated the communication between both applications. It takes
less than a second for MVMO to generate new parameters.
However, due to time delays included in the script to allow the
model to stabilize in RTDS, it takes approximately 2 minutes
to run one iteration of the optimization scheme.

The termination criterion used for the algorithm is the num-
ber of evaluations which was set to 200. A fault is applied in
the external grid during each evaluation and the error between
the power signals of the detailed and DE model is reduced
as the iteration progresses. Fig. 6 shows the convergence of
MVMO as it attempts to find the least error. It can be observed
that MVMO converges quite fast and obtains a nearly optimal
solution after about 100 evaluations which is reached within
3.5 hours.
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Fig. 6. Convergence plot of MVMO

The value of the objective function is based on the cal-
culation of the Euclidean distance between the active and
reactive power signals generated from the detailed and DE
models. Since the timestep used for the dynamic simulation
in RTDS is about 55µs, the data points for 1 second simulation
is 18,182. Therefore, the point to point distance is suitable for
determining the difference in the curves. After 200 evaluations,
the objective function value was 0.6987 which implies an
approximate error reduction of about 95%.
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Fig. 7 and 8 show the result of the first and second fault
scenarios. The first fault i.e. 0.2pu was applied during the
parameter identification process while the second fault 0.4pu
was applied to the DE model derived from the first scenario
as a way of validating the model. From Fig. 7, it can be
seen that the DE model produces an identical response to the
detailed model response. Besides, similar responses were also
derived when a random fault not used during the optimization
procedure was applied as shown in Fig. 8.

Fig. 7. Fault simulation result for 0.2pu retained voltage

Fig. 8. Fault simulation result for 0.4pu retained voltage

VII. CONCLUSIONS

The application of MVMO for identification of dynamic
equivalent parameters in Real time digital simulation was
presented in this paper. An optimization-enabled real time
digital simulation was implemented by connecting MATLAB
to RTDS. PV models were included in the detailed model to
properly represent an active distribution network. The suit-
ability of the heuristic-based MVMO algorithm was evident
through the close similarity of the DE model reactions to

those of the detailed model. Through its unique search and
evolutionary mechanism, adequate parameters of the dynamic
equivalent model were generated. Therefore, computational
resources and simulation time can be reduced by replacing a
detailed distribution system with the DE model. The MVMO
exhibits fast convergence which proves its effectiveness in re-
ducing the error between the signals measured on the detailed
model and the DE model. To further reduce computation time,
future research would explore the possibility of implementing
parallel computing with the optimization procedure. The in-
clusion of other DGs to the reference model shall also be
considered in subsequent research.
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