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Abstract—Interacting with real-time rendered 3D content from
powerful machines on smaller devices is becoming ubiquitous
through commercial products that enable in-home streaming
within the same local network. However, support for high
resolution, low latency in-home streaming at high image quality is
still a challenging problem. To enable this, we enhance an existing
open source framework for in-home streaming. We add highly
optimized DXT1 (DirectX Texture Compression) support for
thin desktop and notebook clients. For rendered light fields, we
improve the encoding algorithms for higher image quality. Within
a 10 Gigabit Ethernet (10 GbE) network, we achieve streaming
up to 5K resolution at 55 frames per second. Through new
low-level algorithmic improvements, we increase the compression
speed of ETC1 (Ericsson Texture Compression) by a factor of 5.
We are the first to bring ETC2 compression to real-time speed,
which increases the streamed image quality. Last, we reduce the
required data rate by more than a factor of 2 through foveated
compression with real-time eye tracking.

Index Terms—in-home streaming, ETC1, ETC2, DXT1, light
fields.

I. INTRODUCTION

“I
N-HOME STREAMING” refers to interacting with real-

time content on a thin client that has been generated

on a more powerful computing device. The user’s inputs are

forwarded to the server, which processes these and sends back

updated video to the client. “In-home” refers to a local network,

either wired or wireless, but not over the Internet. Ideally,

in-home streaming is transparent to the user, delivering the

perception as if the interactively streamed application were

running locally on the target device. To achieve this, latency

between user inputs and screen updates needs to be lower

than 100 ms [1] and the image quality needs to be high, free

of noticeable artifacts. Comparing with the state of the art

approaches, these requirements still leave room for significant

improvements as we will show in this paper. Our contributions

are extending an open source in-home streaming approach [2]

with the following features:

• Support for multiplexed rendered light field images

• Higher image quality through ETC2 support

• Optimizations for ETC1, ETC2 and DXT1 encoding

• Streaming up to 5K resolution using 10 GbE

• Foveated compression through real-time eye tracking

II. RELATED WORK

The idea of controlling one compute device from another

has been around for a long time. Desktop-sharing apps

like Microsoft Remote Desktop and VNC (Virtual Network

Computing) [3] are used, but are only optimized for 2D content.

Cloud gaming approaches like "PlayStation Now" focus on

lower bandwidth and use H.264 [4] compression. Specific in-

home streaming solutions, supporting 3D real-time rendered

content provide an opportunity to deliver a high Quality of

Experience without the latency of the Internet, and with higher

available data rates in the network. We compare our approach

with the most commonly known in-home streaming products,

which use H.264 internally: SplashTop, NVidia Shield Android

TV Box and Steam.

Current in-home streaming approaches are optimized towards

sequences of regular 2D images, generated from rendering 3D

real-time content. Auto-stereoscopic and light field displays

are getting attention again, enabling a way of perceiving

stereoscopic content without glasses [5]. To drive these displays,

multiple views of the scene are rendered and multiplexed

together into a 2D image. This can create high frequency

content in the multiplexed image which does not correspond

to high frequencies in the single views and hence can lead to

artifacts when using classical image or video coding standards.
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We present an encoding algorithm optimized for multiplexed

images.

Our work is an extension to the open source in-home

streaming approach from Pohl et al. [2]. They introduced

a client/server model that allows to interact with real-time

rendered content created from one or many machines and can

be remote controlled over wireless IEEE 802.11ac [6] from

mobile clients like smartphones. Compared to using H.264

compression like other commercially available solutions, it

relies on using ETC1 [7] (Ericsson Texture Compression),

which results in a system with a motion to photons latency

of 60–80 ms, compared to NVidia Shield Portable at 120–

140 ms [2]. As ETC1 has a fixed 1:6 compression ratio for

RGB data, it requires a high data rate inside the network. We

extend the framework to significantly reduce encoding times,

stream efficiently to notebooks and desktop PCs and enable

even higher image quality through ETC2 [8]. Furthermore,

as ETC1 and ETC2 native decoding is not supported on all

desktop/notebook GPUs (see Table I), we extend the framework

to use DXT1 [9] for encoding with our new highly optimized

routines.

Guenter et al. [10] introduced a foveated rendering approach,

generating and blending together three images of different

quality in real-time depending on the inputs from a desktop

eye tracker. Instead of using the eye gaze for rendering

optimizations, we introduce a foveated compression method

to lower the required data rate for in-home streaming. Zund

et al. [11] follow a similar approach, changing the amount of

pixels used in certain regions of a video for compression based

on automatically extracted saliency maps [12]. Ours is based

purely on the real-time eye gaze of the user.

III. SYSTEM

A. Hardware Setup

We use two hardware setups. The first uses four workstations

with Dual-CPUs (Intel Xeon E5-2699 v3, 2.3 GHz, 18 physical

cores) with a NVidia GeForce 970. The workstations stream to

a desktop PC with an Intel Core i5-6500 (3.2 GHz, 4 cores). As

GPU we evaluate both the internal Intel HD 530 graphics and

a GeForce 970, connected to the Dell UP2715K 5K monitor

(5120× 2880 pixels). This setup is depicted in Figure 1. The

second setup uses of one of the workstations, streaming to the

desktop PC connected to either a self-built light field display

(2560×1440 pixels) or the low latency monitor Asus MG278Q

at the same resolution. All machines use 10 Gigabit Ethernet

over the Intel Ethernet Network Adapter X540-T1, connected

to the Netgear XS708E-100NES Switch.

B. Compression Setup

The open source framework [2] that our work extends,

supports ETC1 for encoding. In addition to this, we add ETC2

support for higher image quality. Prior to our work, there

have been no real-time ETC2 encoders suitable for in-home

streaming. Native ETC1 and ETC2 decoding in texture units

works very well on most smartphones and tablets. It has been

available in the form of OpenGL ES extensions and was made

Figure 1. Rendering from multiple machines and streaming the content
interactively to a thin client.

Table I
NATIVE DECODING OF COMPRESSED TEXTURES.

DXT1 ETC1/2

Mobile GPU

NVidia GPU, Maxwell GM20x

AMD GPU, GCN 1.2

Intel GPU, Broadwell

a requirement in the OpenGL ES 3.0 standard. On desktop

and notebook GPUs the situation is different. Despite ETC2

support being standardized in OpenGL 4.3 (ETC2 is backwards

compatible to ETC1), we found that most GPU vendors are

only doing a slow software decompression in the driver, which

is not satisfying for fast in-home streaming. However, on Intel

HD graphics (5th generation Core Broadwell and later), we

got fast native ETC1/2 displaying. To support more GPUs,

we provide a highly optimized DXT1 compression routine

based on FastDXT [13]. Just like ETC1 and ETC2, DXT1

uses a fixed compression ratio of 1:6 for RGB data. We highly

optimized these encoders for Advanced Vector Extensions 2

(AVX2). As AVX2 expands most integer commands to 256

bits, we packed 16 colors, each 16 bit signed integer, into the

256 bit AVX2 vector. That way, we were able to process more

data faster with the AVX2 instructions for multiply and mad.

In addition, we exploited the symmetry of look up tables.

As in the original framework, optional lossless LZ4 com-

pression1 of compressed blocks can be applied. We keep this

disabled except in one test case, where we mention it.

C. Light Field Setup

Our setup has a microlens sheet on top of an LG G3 mobile

phone screen with 2560× 1440 pixels, which allows to view

a light field on a horizontal autostereoscopic display with N

views (18 in our case). One lens covers N pixels and depending

1https://github.com/lz4
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on the direction the user looks on it, only one of these pixels

will be seen per eye. The image is created in a way that N

different views are rendered which are multiplexed together in

one final image with the following method: the 1st pixel of the

1st view is copied into the 1st pixel of the final image. The

1st pixel of the 2nd view is copied into the 2nd pixel of the

final image and so on. After N pixels, this pattern repeats with

the 2nd pixel of the 1st image. If the resolution is not evenly

dividable by the number of views, we fill the remaining pixels

in the image with black.

When we compress to ETC1/2, a decision is made if the

4× 4 pixel block should be split into two 4× 2 or 2× 4 sub-

blocks for better encoding properties. If encoding requires no

real-time, one could make a very careful analysis on which split

gives the closest match to the original data. However, as we

need fast performance, it could happen that after the repeating

pattern of N pixels, a hard transition is in the center of the 4×4

block and the encoder decides to split this into 4×2 subblocks.

Colors across that transition would get mixed together, even

though in the individual views they are not related. Our new

idea is to add optional flags to the function that encodes an

ETC1/2 block and forcing it to a split decision in these cases.

There are also light field display configurations where a lens

covers pixels in both horizontal and vertical directions. In that

case, our approach can also be used to force a 4× 2 split, if

appropriate. If in both directions a split happens within one

block, we use the default algorithm.

D. Rendering Setup

For generating 3D real-time rendered content that the client

can interact with, we use a self-written ray tracing platform

partly accelerated by Intel’s Embree [14]. As test scene we use

“island” from the game Enemy Territory: Quake Wars. The

rendering workload is distributed across multiple workstations

and parallelized on each node. Each workstation sends its

pixels back to the client after receiving input from the client.

The renderer can create out of a 3D scene description both 2D

images and multiplexed light field images. In the latter case,

the rays are directly shot in a way that multiplexed images are

created without individual views.

E. Foveated Compression

As DXT1, ETC1 and ETC2 share the same fixed compression

ratio of 1:6 for RGB data, the required data rate can become a

bottleneck. To facilitate data rate savings, we use a Tobii

Pro X120 eye tracker to get the current eye gaze of the

user and apply foveated compression depending on it. This

could be combined with foveated rendering, but we prefer to

stay independent of the image generation method. In more

detail, we divide the image into nine rectangular regions. One

region covers the foveated area, using the original resolution

for encoding. The other eight regions are resized to 50%

using a bilinear filter before encoding. We modify the network

protocol to send information about the number of bytes that are

about to be received, then information on the nine rectangular

regions and then the compressed image parts. The client reacts

Table II
ENCODING TIMES FOR 2560× 1440 PIXELS. LOWER IS BETTER.

DXT1 (ours) 0.5 ms

ETC1 (ours) 1.0 ms

ETC2 (ours) 1.3 ms

DXT1 (FastDXT) 1.6 ms

ETC1 (Pohl et al. [2]) 5.3 ms

Intel Media SDK, Software H.264 20 ms

Intel Media SDK, Software MVC H.264 60 ms

FFmpeg, H.264 60 ms

Intel Media SDK, QuickSync MVC H.264 120 ms

Intel Media SDK, QuickSync H.265 600 ms

accordingly, uploading the nine parts into individual textures.

The client combines them together and rescales them through

OpenGL, if required.

IV. EVALUATION

A. Performance

We achieve 35–55 frames per second, depending on the

rendering complexity of the view, using four workstations

streaming interactively to a desktop PC at 5K (5120× 2880

pixels) resolution with DXT1 compression. Considering a 20 ms

frame, 45% of the time is spent for rendering, 5% copying

internal buffers, 5% compressing to DXT1, 7% for sending data

over TCP. The remaining 38% is spent on waiting for command

updates from the client. Rendering one frame ahead using

double buffering could fill that gap, but would increase latency.

On the client side, 32% of the time is required for receiving

TCP data, 12% for texture upload to the GPU and drawing.

56% for waiting on image data from the servers. Again, double

buffering would help, but add latency. If the GPU has hardware

support in the texture units for the compressed format, decoding

does not consume any extra time when blitting data onto the

screen which makes this ideal for low latency.

For driving the light field display with streamed content

from one workstation, we achieve 50–70 frames per second.

In Table II, we compare the average encoding times for

the workload of images with 2560× 1440 pixels. For DXT1,

ETC1 and ETC2 it is performance-agnostic if we compress

individual views or multiplexed light field images. We use

the H.264 profiles for the highest quality as we assume the

availability of high data rate in the in-home setup.

B. 10 Gigabit Ethernet

Testing various network adapter driver options, we get

additional speed ups in the 10 GbE environment. The default

maximum transmission unit (MTU) is set to 1500 bytes for

Ethernet, which leads to much packet overhead when sending

big amounts of data. With the “Jumbo Frame” feature, we can

increase the MTU size to 9014 bytes, increasing the frame rate

in the 5K setup by five percent.
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Table III
IMAGE QUALITY COMPARISON FOR 2D IMAGE AND LIGHT FIELD IMAGE. PSNR/SSIM: HIGHER IS BETTER.

Original H.265 Intel H.264 Intel† ETC2 ETC1 DXT1 Steam Splashtop NVidia Shield

2D image
MBit/s 4752 248 290 792 792 792 55 4 12
PSNR – 38.6 38.6 37.4 37.1 36.9 34.9 28.4 26.4
SSIM 1.0 0.984 0.978 0.982 0.980 0.972 0.936 0.744 0.644

Reconstructed view of light field image
MBit/s 4752 183 566 792 792 792 55 4 12
PSNR – 39.8 39.7 36.8 36.4 35.9 20.4 24.7 23.8
SSIM 1.0 0.997 0.996 0.988 0.986 0.975 0.725 0.782 0.733

† Using the Multi View Coding (MVC) profile for light field images.

C. Image Quality

We compare the image quality of a compressed 2D image

and a reconstructed view of a compressed light field image

through PSNR [15] and SSIM [16] in Table III. To highlight

the difference, we show contrast-enhanced close up on the

images. Wherever possible, we set the quality / bit rate to

the highest modes for encoding. For Steam, we had to switch

back to the “balanced” settings to avoid frame drops. As the

metrics show, using high bit rate for H.264 [4] and H.265 [17]

achieves in most cases higher image quality than ETC2, but

only at higher encoding times (see Table II).

As described in Section III-C, it can happen in ETC1/2

encoding, that a wrong decision on splitting into sub-blocks

is made during hard transitions of the light field image. This

is exposed in the color bleeding in Figure 2, where we also

show the impact on the recovered individual view and how

our forced split fixes this.

D. Latency

We measure the motion to photons latency with a high speed

camera. The starting time is from the video camera frame in

which we first touch the mouse on the client for moving. The

ending time is when we see pixel changes, sent from the server,

displayed on the screen of the client. The results in Table IV.

We explain the difference to Pohl et al. [2] from our wired vs.

their wireless network.

E. Data Rate and Foveated Compression

While the latency of 40–60 ms of our pipeline is much better

compared to the approaches using H.264, the required data

rate is high. For our in-home streaming at 5120× 2880 pixels

at 55 frames per second, it is 3.1 GBit/s. For 2560 × 1440

pixels, 0.8 GBit/s. However, in an in-home network, there

is usually a lot of data rate available. Wired approaches like

Figure 2. a) multiplexed light field image; b) uncompressed close-up across
transitions (vertical red line added to mark the transition); c) compressed
with original ETC1 encoder, orange color is leaking across the transition; d)
compressed with our modified ETC1 encoder; e) impact on the reconstructed,
stretched individual view: orange leak inside the house; f) leak fixed through
forced split.

10 GbE and Gigabit Ethernet deliver up to 10 GBit/s and 1

GBit/s respectively. On the wireless side, data rates up to 3.5

GBit/s can be achieved for IEEE 802.11ac, 4x4 MIMO Wave

2. Looking ahead, 802.11ax will deliver 10–14 GBit/s and

802.11ay up to 100 GBit/s [18]. Nevertheless, we can reduce

the required data rate using foveated compression. Depending

on the size of the monitor, the distance from it or if an HMD
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Table IV
LATENCY COMPARISON. LOWER IS BETTER.

Our approach (DXT1/ETC1/ETC2) 40–60 ms

Pohl et al. [2] (ETC1) 60–80 ms

NVidia Shield Android TV (H.264/H.265) 100–120 ms

Steam in-home streaming (H.264) 140–150 ms

Splashtop (H.264) 450-550 ms

Figure 3. Foveated compression. Top: the center area around the eye gaze
is compressed in original resolution, while the eight other areas have been
resized by 2x in each dimension before compression. Bottom: close-up on the
green marked rectangle, showing on the left the high resolution image while
on the right the area with reduced pixel size is shown, upscaled with bilinear
filtering on the GPU.

is used instead of a regular 2D screen, the parameters for this

approach can be varied. For our desktop setup, we use 40% of

the horizontal resolution for the size of the squared, foveated

area (see Figure 3). Then, the required data rate for either

DXT1, ETC1 or ETC2 of one image at 2560× 1440 pixels is

reduced by a factor of 2.2 from 1.76 MB to 0.81 MB.

V. CONCLUSION

With our novel approaches, we bring in-home streaming

to the next generation. We support 5K resolution, improve

encoding algorithms for better image quality with light field

rendered content and significantly improve the encoding times

for ETC1. Furthermore, we design the first real-time ETC2

compression routine, enabling increased streamed image quality

over ETC1. A larger variety of thin clients is supported with

the option to use DXT1, for which we increase encoding

performance by more than 2x. With eye tracking, we show

that we can lower the required data rate by more than 2x. Our

contributions are put back into the open source community

under https://github.com/ihsf.
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