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Abstract—A challenging task in numerical programming mod-
ern computer systems is to effectively exploit the parallelism
available in the architecture and manage the CPU caches to
increase performance. Loop nest tiling allows for both coarsening
parallel code and improving code locality. In this paper, we
explore a new way to generate tiled code and derive the free
schedule of tiles by means of the transitive closure of loop
nest dependence graphs. Multi-threaded code executes tiles as
soon as their operands are available. To design the approach,
loop dependences are presented in the form of tuple relations.
Discussed techniques are implemented in the source-to-source
TRACO compiler. Experimental study, carried out on multi-core
architectures, demonstrates the considerable speed-up of tiled
numerical codes generated by the presented approach.

I. INTRODUCTION

O
N MODERN architectures, the cost of moving data

from main memory can be higher than the cost of

computation. This disparity between communication and com-

putation prompts that designing algorithms for better locality

and parallelism exploiting even with simple memory models is

a challenging task. Loop nest tiling allows for both coarsening

parallel code and improving its locality that leads to increasing

parallel code performance.

Widely known tiling techniques use the polyhedral model

and affine transformations of program loop nests [1], [2], [3],

[4], [5]. State-of-the-art automatic parallelizers, such as PLuTo

[1], have provided empirical confirmation of the success of

polyhedral-based optimization.

Techniques based on the polyhedral model and affine

transformations include the following three steps: i) program

analysis aimed at translating high level codes with data depen-

dence analysis to their polyhedral representation, ii) program

transformation with the aim of improving program locality

and/or parallelization, iii) code generation [1].

To implement the second step of the approach mentioned

above, PLuTo and similar optimizing compilers apply the

affine transformation framework (ATF), which has demon-

strated considerable achievement in obtaining high perfor-

mance parallel codes. However, this framework is not able

to parallelize some classes of serial code.

Wonnacott and Strout outlined limitations of tiling trans-

formations that have been released in tools like PLuTo [6].

Techniques involve pipelined execution of tiles, which prevents

full concurrency from the start and do not allow full scaling.

Neverthless, there are known some attempts to enhance the

power of ATF. In paper [7], tiling for dynamic scheduling

is discussed. Wonnacott et al. [8] introduce the definition of

mostly-tileable loop nests for which classic tiling is prevented

by an asymptotically insignificant number of iterations.

Our research is concerned with alternative approaches that

allow us to tile bands of non-permutable loops [9] and find

parallelism when affine solutions miss it. These algorithms are

implemented in the source-to-source compiler, TRACO1.

TRACO realizes all the three steps of the approach men-

tioned above. However, the tool does not find and use any

affine function in the second step to transform the loop nest.

TRACO is based on the idea of the Iteration Space Slicing

Framework introduced by Pugh and Rosser [10] and applies

the transitive closure of a program dependence graph to extract

independent subspaces in the original loop nest iteration space.

In paper [11], we proposed a technique to find the tile free

schedule2 adopting parallelization based on the power k of

relation R, Rk. Unfortunately, when relation Rk cannot be

calculated exactly, the value of k in the Rk constraints is

usually unbounded and valid code generation is impossible.

It is worth to mention that computing exact Rk guarantees

computing exact R+, but not vice versa [12].

In this paper, we show how this limitation can be overcome

by means of applying positive transitive closure, R+, and

transitive closure, R∗, (instead of the power k of relation R,

Rk) to form the free schedule of valid tiles. The proposed

approach generates parallel tiled code even when producing

a band of fully permutable loops with ATF is not possible.

We present the performance of eight real-life parallel tiled

numerical programs generated by TRACO and executed on

modern multi-core processors and co-processors.

II. BACKGROUND

The polyhedral model is a mathematical formalism for

analyzing and transforming program loop nests whose all

bounds and all conditions are affine expressions in the loop

iterators and symbolic constants called parameters [13]. Loop

transformations based on transitive closure [9], [10], [14] are

mainly focused on representation and manipulation of sets

and relations. A set contains integer tuples that satisfy some

1traco.sourceforge.net
2tiles are executed as soon as it is possible (their operands are available)
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Presburger formula built from affine constraints, conjunctions

(and, ∧), disjunctions (or, ∨), projections (exists, ∃) and

negations (not, ¬). Relations are defined in a similar way,

except that the single space is replaced by a pair of spaces

separated by the arrow sign “→”, see paper [12].

The considered approach uses an exact dependence analysis

[15] which returns dependences in the form of relations. The

pairs of input and output spaces represent loop statement

instances corresponding to data dependence sources and des-

tinations, respectively.

Basic operations on sets and relations include intersection

(∩), union (∪), difference (−), composition (◦), domain (dom),

range (ran), relation application (R(S)). Manual [12] describes

the operations in detail.

In the sequential loop nest, the iteration i executes before j

if i is lexicographically less than j, denoted as

i ≺ j, i.e., i1 < j1 ∨ ∃k ≥ 1 : ik < jk ∧ it = jt, for t < k.

The positive transitive closure of a lexicographically for-

ward relation R, R+, is defined as follows [16]:

R+ = {e → e′ : e → e′ ∈ R∨∃e′′s.t. e → e′′ ∈ R∧e′′ →
e′ ∈ R+}.

It describes which vertices e′ in a dependence graph (rep-

resented by relation R) are connected directly or transitively

with vertex e. Transitive closure, R∗, additionally includes the

identity relation, I = {e → e}.

An ultimate dependence source is a source that is not the

destination of another dependence. Set, UDS, comprising all

ultimate dependence sources, can be found as domain(R) –

range(R), where R represents all loop nest dependences.

Let IS be a polytope representing the loop nest iteration

space while the tuple (IS,E) represents a dependence graph,

where E is the set of edges defining dependences. The function

t : IS → Z, which assigns time execution to each loop nest

statement instance, is called a valid schedule if it preserves all

data dependences: (∀x, x′ : x, x′ ∈ IS ∧ (x, x′) ∈ T : t(x) <
t(x′)) [17]. The schedule that maps every x ∈ IS onto the

first possible time allowed by the dependences is called the

free schedule.

III. FREE SCHEDULING ALGORITHM

We use the technique, presented in paper [14], to extract

fine-grained parallelism based on the free schedule which

represents unique time partitions; statement instances within a

time partition are independent. Let us remind the idea of that

approach. First, we calculate relation, R′, by inserting variables

k and k+1 into the first position of the input and output tuples

of relation R which is the union of all dependence relations.

Variable k defines execution time for each partition including

a set of independent statement instances. Next, we find the

transitive closure of relation R′, R′*, and form the following

relation

FS = {[X] → [k, Y] : X ∈ UDS(R) ∧ (k, Y)

∈ Range((R′)∗\{[0, X]}) ∧ ¬(∃ k′>k s.t. (k′, Y) ∈
Range(R′)+\{[0, X]})},

where (R′)∗\{[0, X]} defines the domain of relation R′*

restricted to the set including only ultimate dependences

sources (the first time partition); the constraint ¬(∃ k′>k s.t.

(k′, Y) ∈ Range(R′)+\{[0, X]}) guarantees that partition k

includes only those statement instances whose operands are

available, and each statement instance belongs to only one

time partition [14].

The first element of the tuple of the set Range(FS) points

out the time of partition execution. Parallel code that visits

each element of the set Range(FS) in lexicographical order

can be obtained by applying any well-known code generator,

for example, [18], [19]. The outermost sequential loop of

such code scans the values of variable k (representing the

time of partition execution) while inner parallel loops scan

independent instances of partition k.

IV. THE LOOP NEST TILING ALGORITHM

To improve code locality, we apply loop tiling. In paper

[9], we demonstrated how to generate valid tiled code using

the transitive closure of dependence graphs. That approach

envisages forming the following sets:

• TILE(II, B) includes iterations belonging to a parametric

tile: TILE(II, B) = {[I] | B*II +LB ≤ I ≤ min( B*(II

+1) + LB −1, UB) ∧ II ≥ 0}, where vectors LB and

UB include the lower and upper loop index bounds of

the loop nest, respectively; matrix B defines the size of

original tiles; elements of vector I represent the statement

instances contained in the tile whose identifier is II; 1 is

the vector whose all elements have value 1,3

• TILE LT(GT ) are the unions of all the tiles whose

identifiers are lexicographically less (greater) than that

of TILE(II, B): TILE LT(GT ) ={[I] |∃ II′ s. t.

II′ ≺ (≻) II ∧ II ≥ 0 ∧ B*II+LB ≤ UB ∧ II′ ≥ 0

and B*II′+LB ≤ UB ∧ I in TILE(II′, B)},4

• II SET ={[II] | II≥0 ∧ B*II+LB ≤UB } represents all

tile identifiers,

• TILE ITR = TILE − R+( TILE GT ) does not include

any invalid dependence target, i.e., it does not include any

dependence target whose source is within set TILE GT,

• TVLD LT = ( R+(TILE ITR) ∩ TILE LT) −
R+(TILE GT) includes all the statement instances that i)

belong to the tiles whose identifiers are lexicographically

less than that of set TILE ITR, ii) are the targets of

the dependences whose sources are contained in set

TILE ITR, and iii) are not any target of a dependence

whose source belong to set TILE GT,

• TILE VLD = TILE ITR ∪ TVLD LT defines target tiles,

• TILE VLD EXT is built by means of inserting i) into

the first positions of the tuple of set TILE VLD elements

of vector II: ii1, ii2, ..., iid; ii) into the constraints of set

TILE VLD the constraints defining tile identifiers II ≥
0 and B*II+LB ≤ UB. This set represents valid target

tiles. To scan their elements in lexicographic order, we

3The notation x ≥ (≤) y where x, y are two vectors in Z
n corresponds

to the component-wise inequality, that is, x ≥ (≤) y ⇐⇒ xi ≥ (≤) yi,
i=1,2,...,n.

4“≺” and “≻” denote the lexicographical relation operators for two vectors,
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can appy any code generator, for example, CLooG [18]

or the isl AST generator [19].

V. THE FREE SCHEDULE OF TARGET TILES

The approach, presented in this paper, combines the ap-

proaches presented in the two previous sections. We generate

valid tiles and next apply the free schedule for those tiles. For

this purpose, relation, R TILE, is computed which describes

dependences among generated tiles but ignores dependences

within each tile as follows

R TILE:={[II]−>[JJ]: ∃ I, J s.t. J ∈ R(I) ∧ (II, I) ∈
TILE VLD EXT(II) ∧ (JJ, J) ∈ TILE VLD EXTi(JJ)},

where II, JJ are the vectors representing tile identifiers;

vectors I, J comprise the statement instances belonging to

the tiles whose identifiers are II, JJ, respectively.

Next, we calculate relation, R TILE′, by inserting variables

k and and k+1 into the first position of the input and output

tuples of relation R TILE, respectively. In the following steps,

we calculate the transitive closure of this relation and form

set, UDS TILE, including the tile identifiers which are not

dependence destinations.

We use sets R TILE′ and UDS TILE to calculate relation,

FS. Then, we form the free schedule for generated target tiles.

Finally, we generate code scanning statement instances within

the set Range(FS) in lexicographical order.

Algorithm 1 presents the discussed above approach in

details. The proof of its correctness is presented in papers

[9], [14].

VI. EXPERIMENTAL STUDY

To evaluate the performance of tiled code generated by

means of Algorithm 1, we have considered the following eight

numerical polyhedral programs5:

• floyd - Floyd-Warshalls all-pairs shortest-paths from

PolyBench/C6,

• trmm - Triangular matrix-multiply from PolyBench/C,

• k23 - 2-D implicit hydrodynamics fragment from Liver-

more Loops7,

• wz - WZ factorization: dense, square, non-structured

matrix factorization algorithm [20],

• edge detect - 2D-convolution routine to expose edge

information from the UTDSP Benchmark suite8,

• trisolv - Triangular solver from PolyBench/C,

• corcol, covcol - Correlation and Covariance Computa-

tions, data-mining programs from PolyBench/C.

The programs floyd, wz, and k23 cannot be parallelized by

the algorithm based on the power k of relations R, Rk [11]

because ISL returns only an approximation of Rk, where k

is unbounded that prevents code generation – the number of

time partitions is unbounded. Whereas, the transitive closure

5Source and target codes of the examined programs are available in the
repository https://sourceforge.net/p/traco/code/HEAD/tree/

6http://web.cse.ohio-state.edu/ pouchet/software/polybench/
7http://www.netlib.org/benchmark/livermorec
8http://www.eecg.toronto.edu/ corinna/DSP/infrastructure/UTDSP.html

Algorithm 1: Parallel tiled code generation

Input: A loop nest and its all dependences represented with

relation R; diagonal matrix B, defining the size of rectangular

original tiles.

Output: Code generated according to the free schedule of

target tiles: tiles for each time partition are enumerated in

parallel whereas statement instances in each tile are scanned

serially.

Method:

1) Calculate sets II SET, TILE VLD, and TILE VLD EXT

according to the loop nest tiling algorithm [9].

2) Form relation R TILE and transform it into relation

R TILE′ as follows

R TILE′:={[k, II]−>[k+1, JJ]: ∃ I, J s.t. (II, I) ∈
TILE VLD EXT(II) ∧ (JJ, J) ∈ TILE VLD EXT(JJ) ∧
J ∈ R(I) AND k ≥ 0 },

where II, JJ are the vectors representing tile identifiers.

3) Calculate set, UDS TILE, as follows

UDS TILE:=II SET − range (R TILE).

4) Form the following relation

FS = {[X] → [k, Y] : X ∈ UDS TILE ∧ (k, Y) ∈
Range((R TILE′)∗\{[0, X]}) ∧ ¬(∃ k′>k s.t. (k′, Y) ∈
Range(RTILE′)+\{[0, X]})},

where the first element of the second tuple is a parameter

k defining time under the free schedule while the next

elements (represented with Y ) identify tiles.

5) Calculate the set Range(FS) and extend this set by insert-

ing in its last tuple positions the elements of the tuple of set

TILE V LD, returned by step 1, and insert the constraints

of set TILE V LD into the constraints of set Range(FS).

6) Apply to the set, returned by step 5, CLooG [18] or the

isl code generator [19], and postprocess the code to a

compilable form of the following structure:
seqfor // enumerating time partitions

parfor // enumerating tile identifiers

// for a given time partition

seqfor // enumerating statement instances within

// the tiles whose identifiers are

// defined by the previous parfor loop
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Fig. 1. Speed-up of tiled programs executed on Intel Xeon E5-2695
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Fig. 2. Speed-up of tiled programs executed on Intel Xeon Phi 7120P

of R TILE′ can be calculated exactly for those programs as

well as for the rest of the examined loop nests.

To carry out experiments, we have used a computer with the

following features: Intel Xeon CPU E5-2695 v2, 2.40GHz, 12

cores, 24 Threads, 30 MB Cache, 16 GB RAM. We examined

parallel code performance using also a coprocessor Intel Xeon

Phi 7120P (16GB, 1.238 GHz, 61 cores, 30.5 MB Cache).

Programs were compiled with the Intel C Compiler (icc 15.0.2)

and optimized at the -O3 level.

Figures 1 and 2 depict the speed-up of the programs

executed on Xeon E5-2695 v2 and Xeon Phi 7120P cores,

respectively. The speedup, S=T(1)/T(P), is defined as the ratio

of the time of an original program execution to that of the

corresponding parallel tiled one on P processors. The baseline

S=1 presents the speed-up equal to 1.

Analyzing the results, we may conclude that for the studied

programs, performance improvement is achieved by means

of the presented algorithm. For some programs due to con-

siderable increasing program locality super-linear speed-up is

observed.

VII. CONCLUSION

In this paper, we presented a novel approach based on the

transitive closure of dependence graphs to form tiles and their

free schedule. The algorithm was implemented in the open

source TRACO compiler. Experiments demonstrated that the

speed up of examined parallel numerical codes generated by

the approach can be achieved on shared memory machines

with multi-core processors. The usage of the free schedule of

tiles instead of that of loop nest statement instances improves

memory utilization and allows us to adjust the parallelism

grain-size to match the inter-processor communication capa-

bilities of the target architecture.

In future, we plan to study parametric tiling based on

transitive closure aimed at generating more flexible code for

affine loop nests in numerical programs.
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