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Abstract—Spatial clustering is an important component of
spatial data analysis which aims in identifying the boundaries
of domains and their number. It is commonly used in disease
surveillance, spatial epidemiology, population genetics, landscape
ecology, crime analysis and many other fields. In this paper, we
focus on identifying homogeneous sub-regions in binary data,
which indicate the presence or absence of a certain plant species
which are observed over a two-dimensional lattice. To solve this
clustering problem we propose to use the change-point method-
ology. We develop new methods based on a binary segmentation
algorithm, which is a well-known multiple change-point detection
method. The proposed algorithms are applied to artificially
generated data to illustrate their usefulness. Our results show that
the proposed methodologies are effective in identifying multiple
domains and their boundaries in two dimensional spatial data.

I. INTRODUCTION

I
DENTIFYING homogeneous domains is of particular

interest in spatial statistics. It is often the case that spatial

data have pre-defined subdivisions of interest. For example,

data are often collected on non-overlapping administrative or

census districts and these districts are often irregular in shape;

see [1]. As a part of statistical modelling, spatial clustering

is also an important component of spatial data analysis since

spatial data may be heterogeneous and difficult to understand.

However, if we cluster the data into homogeneous domains,

then we can construct appropriate statistical models for

each cluster. The problem of finding regional homogeneous

domains is known as segmentation, partitioning or clustering.

The two main problems in spatial clustering are identifying

the number of domains, which is usually not known in

advance, and estimating the boundaries of such domains.

Many clustering algorithms have been developed in

the literature, ranging from hierarchical methods such as

bottom-up (or agglomerative) methods top-down (or divisive)

methods, to optimization methods such as the k-means

algorithm [2]. The algorithms have numerous applications in

pattern recognition, spatial data analysis, image processing,

market research; see [3]. Spatial clustering covers enormous

practical problems in many disciplines. For example, in

epidemiological studies and public health research, it is

known that the disease risk varies across space and it is

important to identify regions of safety and regions of risk.

A model using Bayesian approach for spatial clustering was

discussed in [4]. Recently, a two-stage Bayesian approach for

estimating the spatial pattern in disease risk and identifying

clusters which have high (or low) disease risks was proposed

in [5].

The homogeneity changes in space is an important research

subject in ecology. In a large area, the spatial distribution of

plant or animal species is never homogeneous. Studying these

kinds of changes is important in several ways. For example,

detecting early changes in vegetation improves productivity.

A class of Bayesian statistical models to identify thresholds

and their locations in ecological data was introduced in [6].

A method to estimate the change-point distribution between

two patches was presented in [7].

Studies of weather and climatic systems at a global

scale have become a prime area of research for a number

of reasons; one of these is the concern about global

climatic change. Mann-Kendall trend test, Bayesian change

point analysis and a hidden Markov model to find changes in

the rainfall and temperature patterns over India are used in [8].

There has also been extensive literature on image

recognition with some articles presenting statistical

approaches to the boundary identification in statistical

imaging. For example, [9] presented a Markov chain Monte

Carlo (MCMC) method to identify closed object boundaries

in gray-scale images. Change curve estimation problem

is also referred as multidimensional detection problem or

boundary estimation problem. A wavelet method to estimate

jumps and sharp curves in the plane was proposed in [10].

Even though there is wide range of applications to spatial

clustering, many statistical methods for detecting clusters have

some limitations: either they detect the number of clusters

and do not determine their locations, or they provide the

inference with no clustering. In this study, we are interested

in identifying the boundaries of domains and their number

with applications to an ecological landscape. In general, these

problems are typically challenging due to the multivariate

nature of the data which leads to complex and highly
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parametrized likelihoods. We use binary data indicating the

presence or absence of plant species, which are observed

over a two-dimensional lattice. We consider our problem as

a change-point detection problem, which is commonly used

in analysing time series to detect changes and their locations.

We develop new algorithms based on a binary segmentation

algorithm, which is a well-known recursive partitioning tool

in change-point literature and it leads to simple solutions for

such problems and it has an advantage on simplicity and less

computational cost compare to other methods.

Binary spatial data are commonly involved in various

areas such as economics, social sciences, ecology, image

analysis and epidemiology. Also, such data frequently occur

in environmental and ecological research, for instance, when

the data correspond to presence or absence of a certain

invasive plant species at a location or, when the data happen

to fall into one of two categories, say, two types of soil. The

general overview of spatial data can be found in [11–13].

This study aims to develop effective procedures based on the

binary segmentation method for estimating both the number

of domains and their locations in spatial data. This paper

is organized as follows. Section II describes the multiple

change-point problem. We provide the mathematical model

for our problem in section III. We explain both general binary

segmentation and new algorithms in section IV and section

V, respectively, and provide the numerical results in section

VI. Section VII gives a discussion. Section VIII concludes the

paper with the future directions.

II. MULTIPLE CHANGE-POINT PROBLEM

Let us formulate the general multiple change-point problem

in mathematical terms.

Let yn = (y1, . . . , yn) be a sequence of observations

of length n, y1, y2, . . . , yn be independent random variables

with the probability distribution functions F1, F2, . . . , Fn. Let

τ1, τ2, . . . , τm be unknown positions of m change-points,

where τ1 < τ2 < · · · < τm. We define τ0 = 0 and τm+1 = n.

The sequence of observations is divided into m+ 1 segments

based on m change-points. In general, the multiple change-

point problem involves the following null hypothesis,

H0 : F1 = F2 = · · · = Fn

versus

H1 : F1 = · · · = Fτ1 6= Fτ1+1 = · · · = Fτ2

6= Fτ2+1 = · · · = Fτm 6= Fτm+1 = · · · = Fn.

III. MATHEMATICAL MODEL

Let us assume that we have independent binary observations

on an n×m lattice. We assume the observations at each cell

are univariate. Let M be the number of domains and p =

(p1, . . . , pM ) be the parameters of Bernoulli distribution for

the domains. The likelihood function is given by:

L(X|p) =
M
∏

j=1

p
IDj

j (1− pj)
ODj , j = 1, 2, . . . ,M,

X is the data (a matrix of zeroes and ones),

M is the number of domains,

Dj is the j-th (rectangular) domain,

p = (p1, . . . , pM ) is the vector of probabilities,

IDj
is the number of ones in Dj ,

ODj
is the number of zeroes in Dj .

In order to estimate the boundaries of domains and their

number, we maximize the log-likelihood function

l(X|p) =
M
∑

j=1

IDj
log pj +ODj

log(1− pj).

A. Maximum Likelihood Framework

Let X is an n × m matrix. A natural approach to split a

domain into homogeneous sub-domains is to view it as the

following hypothesis testing:

H0 : No sub-domains; Vs H1 : Two domains.

Under the null hypothesis, the log-likelihood function for

the entire domain is given as

l(X|p̂),

where p̂ is the maximum likelihood estimate of the p. Under

the H1, the log-likelihood function given a change-point (in

our case, cut or boundary) c, which divides the domain into

two homogeneous domains D1 and D2, is

P (c) = l(D1|p̂1) + l(D2|p̂2),

where p̂1 and p̂2 are the maximum likelihood estimates

of the parameters for the first and the second domain,

respectively. To estimate the location of the change-point, the

log-likelihood function under H1 is maximized.

Test statistic:

λ(X) = 2[max
c

P (c)− l(X|p̂)],

where a threshold β is chosen such that if λ(X) > β, the

null hypothesis is rejected. The threshold could be based on

the use of an information criterion: AIC, β = 2k, and SIC,

β = k log n, where k is the number of extra parameters as a

result of adding another domain.

The likelihood ratio test statistic can be extended to

multiple change-point detection by summing the likelihood

for the m data segments.
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One way to detect multiple change-points is to minimize

m+1
∑

i=1

[C(y(τi−1+1):τi)] + βf(m), (1)

where C is a cost function for a segment and βf(m) is a

penalty term in order to avoid overfitting.

IV. THE BINARY SEGMENTATION METHOD

The binary segmentation is a well-known multiple change-

point method and has been studied by various authors. It was

first introduced in [14] in the context of cluster analysis. The

concept of binary segmentation in detecting changes in mean

was proposed in [15]. Later, this procedure was extended to

detect the number of change-points in a multidimensional

random process and proved the consistency of the estimates

produced by binary segmentation under mild conditions, the

first of which is based on the minimal distance between

change-points; see [16]. Similar results when the change-

points are allowed to approach one another are achieved in

[17]. Recent studies include many applications and it can

be found in [24–32]. Thus, this method is now the most

understood and widely cited search algorithm used within the

multiple change-point literature.

Binary segmentation can be used to extend any single

change-point method to multiple change-points. In the early

works, binary segmentation was performed using a simple

CUSUM test. It starts with applying the chosen single

change-point detection method to the entire data set y1:n,

sequence of observations of length n. If no change-point is

found, then the algorithm stops. If a change-point is detected,

say, τ , then the data set is split into two separate segments,

y1:τ and yτ+1:n. The single change-point method is applied

to two segments and the procedure is repeated iteratively.

Finally, we stop when no more change-points are detected.

The generic binary segmentation algorithm [18] is given

below.

One of the good features of the binary segmentation

algorithm is that it detects the number of change-points and

their locations simultaneously. It can be seen as an approach

with f(m) = m to minimize (1) by iteratively deciding

whether a change-point should be added or not. It is a

fast algorithm and saves lots of computational time and it

can be implemented with the computational complexity O(n).

There are some exact methods to minimize (1) but at a

higher computational cost (for example, see [33]). It is clear

that in many situations the number of change-points increases

as we collect more data and the computational burden in-

creases as well. Therefore, many authors are working on

developing new algorithms which are fast and exact. Recently,

a dynamic programming technique called PELT (Pruned Exact

Linear Time) which is O(n) under certain assumptions such

as the number of true change-points being linear with the data

Algorithm The Generic Binary Segmentation Algorithm

Input: A set of data of the form, (y1, y2, . . . , yn).
A test statistic λ(·) dependent on the data.

An estimator of change-point position τ̂(·).
A rejection threshold β.

Initialise: Let C = ∅, and S = [1, n]

Iterate: while S 6= ∅
1. Choose an element of S; denote this element as [s, t].
2. If λ(ys:t) < β, remove [s, t].
3. If λ(ys:t) ≥ β:

(a) remove [s, t] from S;

(b) calculate r = τ̂(ys:t) + s− 1, and add r to c;
(c) if r 6= s add [s, r] to S;

(d) if r 6= t− 1 add [r + 1, t] to S.

Output: The set of change-points recorded C.

length was introduced in [19]. Still, this method has O(n2)
complexity at the worst case.

V. THE BINARY SEGMENTATION METHOD FOR SPATIAL

CLUSTERING

We would like to identify the number of homogeneous

domains and their boundaries in binary lattice data. In this

case, the change-point locations are the points which is used

to draw a horizontal or vertical line to divide the domain into

two homogeneous rectangular segments. Here we present three

algorithms. Our proposed algorithms use maximum likelihood

test as described in the previous section.

A. Algorithm 1

The algorithm searches every column and row to detect the

change-point and selects the maximum test statistic for the

optimum cut. If the test statistic is greater than a threshold

value, it splits the domain according to the index (row or

column) and stores the obtained domains. Otherwise, the

algorithm stops. This procedure is repeated until a stopping

criterion is met. In this study, we consider rectangle shaped

domains.

We also propose two more algorithms with modifications.

In general, our method can be summarized by a three-step

iterative procedure (given in Algorithm 1).

B. Algorithm 2

We introduce a modification of Algorithm 1. It follows

the similar structure but at each iteration it identifies two

change-points and three domains. Here, all three segments

have different means.

C. Algorithm 3

Algorithm 3 is a modified version of Algorithm 1. The main

difference is that at each iteration it selects the bigger domain

for next iteration assuming that bigger domain has a higher
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Algorithm 1 Main Algorithm

Step 1: Given the data, search the change point column-wise

and find the optimal cut which maximizes the test statistic.

Repeat this procedure row-wise.

Step 2: Select the maximum of the two test statistics

for the optimal column and row cuts and compare with

the threshold value. If the test statistic is greater than the

threshold value, then split the data in two domains.

Step 3: Repeat steps 1 and 2 for each domain until no new

domains are identified.

chance to be split at the next iteration. Here, the “bigger”

means the area of the rectangle. This algorithm performs well

compare to Algorithm 1 and Algorithm 2. The great advantage

of this algorithm is that it performs fast because at each

iteration it selects only one domain to split. But in Algorithm

1, at each iteration it considers two segments in parallel. This

algorithm would be useful when we need to split the data into

major domains (few number of domains).

D. Model selection

Our objective is to estimate both the number of domains

and their boundaries. Thus, it can be formulated as a model

selection problem, which is usually done by using a specific

criterion. There are several popular model selection criteria

that have been proposed in different contexts; see [34–36].

The model selection criteria are mainly used for two different

purposes: first, to choose a model that well approximates the

true model; second, to find the true model in a list of candidate

models [20]. In this study, we use AIC [21], BIC [22] and

mBIC (modified BIC, defined for change-point problems) [23].

The AIC, BIC and mBIC for our model can be described as

below:

AIC(k) = −2 logL(Θ̂k) + 2k,

BIC(k) = −2 logL(Θ̂k) + k log n,

mBIC(k) = −2 logL(Θ̂k) + 2(k + 1) log n,

where L(Θ̂k) is the maximum likelihood for the model with

k parameters, k = 1, 2, . . . ,M , and n is the sample size.

A model that minimizes a criterion (for example, AIC) is

considered to be the most appropriate model.

E. Stopping criteria

In the binary segmentation, one has to define a stopping

criterion to terminate the iterative procedure. We use one of

two methods:

1) The algorithm is reiterated while we have significant cuts

based on the results of a hypothesis testing. Let us define

that number of cuts c = C, the process is stopped and

the corresponding solution is considered as the optimal

solution for the problem.

2) The decision to stop the algorithm is based on an

information criterion.

F. Likelihood test for spatial clustering

In this study, we use the likelihood ratio test to check

whether the domains obtained by the proposed algorithms are

homogeneous or not. The null hypothesis for this model is

given as:

H0 : Domain 1 and Domain 2 are homogeneous.

The alternative hypothesis is

H1 : Domain 1 and Domain 2 are not homogeneous.

The test statistic is:

LRT = −2 log

(

likelihood for null model

likelihood for alternative model

)

.

After the algorithm finishes, we obtain several homogeneous

domains. The next step is to perform a multiple comparison

test for all combinations of the domains. Further, we consider

the Bonferroni correction, which is used to control the family-

wise error rate when conducting multiple hypothesis tests. The

Bonferroni correction adjusts p-values when several statistical

tests are being performed simultaneously on a single data set.

To perform the Bonferroni correction, divide the critical p-

value (α) by the number of comparisons or the number of

hypothesis being made. For example, if we have M domains

for our data set and have to perform N comparisons, then the

Bonferroni correction would test each individual hypothesis at

α/N . Here we do not need to perform all comparisons since

we consider only rectangular domains in this study.

VI. RESULTS

In this section we include all numerical results to illustrate

and validate the proposed algorithms. A simulation study was

carried out to demonstrate the properties of our algorithms

and to analyse their segmentation capabilities. We present an

example to illustrate the usefulness of our method. Finally, we

compare our three algorithms using the Root Mean Square Er-

ror (RMSE) and information criteria. All proposed algorithms

have been implemented using the statistical software R.

A. Simulation study

To perform simulation study, we generate artificial matrices

using a Bernoulli distribution. We apply Algorithm 1,

record the position of the optimal cut and estimate the

parameter of the Bernoulli distribution for each domain.

Each time we calculate the RMSE and plot a kernel density

estimation curve to analyze the effectiveness of the algorithm.

Hereinbelow we denote the number of obtained domains by D.

The RMSE is calculated as

RMSE =

√

∑n

i=1

∑m

j=1(eij − tij)
2

N
,

where eij , tij denotes the estimated and the true values,

respectively, for each cell of the matrix; i, j indicate the

corresponding rows and columns; n × m is the size of the
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TABLE I
THE NUMBER OF DOMAINS WITH FREQUENCIES

D 1 2 3 4 5 5+

Frequency 0 0 0 316 529 155

matrix.

1) Case 1: Testing the performance of the binary

segmentation algorithm: Our aim is to find the optimal

number of domains for a particular data set. We generate

artificial data with four domains and run our algorithm

1000 times. We record the number of domains identified by

Algorithm 1.

Table I shows that the algorithm correctly found four

domains in 316 simulations (out of 1000). However, the

algorithm tends to overestimate the number of domains.

2) Case 2: Reporting the RMSE on the parameters of

the domains: We analyse how the RMSE depends on the

parameters of domains, that is, the probability of “1”. In this

study, we generate artificial data with two domains, where p1
and p2 are the parameters of the Bernoulli distributions for

the domains.

The algorithm performs well in identifying the correct

position of the cut when the difference between p1 and p2
is rather large (for example, p1 = 0.8 and p2 = 0.2). Note

that even if the difference is getting smaller, the algorithm

works quite well; in this situation the RMSE is slightly

higher compare to the case with the large difference of the

probabilities. Figure 2 shows a kernel density estimation for

three different cases. In the first row, we fix p1 = 0.8 and we

change p2 from 0.1 to 0.9. Likewise, in the second row, we

fix p1 as 0.5 and in the third row, p1 = 0.2. It is clear that

the effectiveness depends on the difference of the probabilities.

3) Case 3: Reporting the RMSE on the size of the

data: In this section, we analyse how the RMSE changes

depending on the size of the data. It is important to test

our algorithms for different sizes. We generate matrices of

different sizes (50 × 50, 100 × 100, 200 × 200) but with

the same probabilities p1 and p2 for domain 1 and domain

2, respectively. Here we restrict the number of domains to two.

Figure 1 shows the plot of kernel density estimation,

which illustrates that the average value of the RMSE is not

significantly influenced by the size of the data, whereas it is

clear that the variability in the RMSE is getting smaller when

the data size is becoming larger.

B. Example

We generate a 100×100 matrix using Bernoulli distributions

with four domains (all are vertical cuts); the parameters are

0e+00 1e−04 2e−04 3e−04 4e−04 5e−04

0
5
0
0
0

1
0
0
0
0

2
0
0
0
0

3
0
0
0
0

RMSE
D

e
n
s
it
y

size:(50*50)

size:(100*100)

size:(200*200)

Fig. 1. Kernel density estimation of the RMSE for different sizes

TABLE II
THE PARAMETERS OF THE GENERATED DATA MATRIX

Domains Coordinates (top left to bottom right) Probability (pi)

Domain 1 (1,1) — (100,20) p1 = 0.1

Domain 2 (1,20) — (100,60) p2 = 0.5

Domain 3 (1,60) — (100,90) p3 = 0.9

Domain 4 (1,90) — (100,100) p4 = 0.2

given in Table II. We apply our binary segmentation

algorithms, record the positions of the optimal cuts and

estimate the parameters of the Bernoulli distributions at each

iterations. Each time we calculate the RMSE, AIC, BIC and

mBIC.

1) Result on Algorithm 1: We applied our binary

segmentation algorithm to the data generated above (Table

II). Table III shows that the algorithm run up to four iterations

and at the end it identified seven domains. The RMSE value

attains its minimum at the third iteration (Number of domains

= 5), which coincides with the results given by the information

criteria AIC, BIC and mBIC.

Figure 3 plots the values of the information criteria versus

the number of domains; it shows that the minimal values for all

three criteria correspond to five domains. Now we examine the

obtained domains for their heterogeneity using the likelihood

ratio test. Here, we consider only rectangle shaped domains so

we do not need to check all possible comparisons. Therefore,

in this example, we perform only four comparisons.

Table IV shows the obtained domains for this example.

Table V illustrates the results of the likelihood ratio test.

According to Table V, Domain 4 and Domain 5 can be

considered as homogeneous. Thus, we combined those two

NISHANTHI RAVEENDRAN, GEORGY SOFRONOV: BINARY SEGMENTATION METHODS FOR IDENTIFYING BOUNDARIES OF SPATIAL DOMAINS 99



−0.6 −0.2 0.2 0.6

0
.0

1
.0

p1=0.8,p2=0.1

N = 1000   Bandwidth = 0.2261

D
e
n
s
it
y

0.000 0.015 0.030

0
4
0

p1=0.8,p2=0.5

N = 1000   Bandwidth = 0.001051

D
e
n
s
it
y

0.000 0.010 0.020

0
1
0
0

p1=0.8,p2=0.9

N = 1000   Bandwidth = 0.0006284

D
e
n
s
it
y

0.00 0.02

0
3
0

7
0

p1=0.5,p2=0.1

N = 1000   Bandwidth = 0.001233

D
e
n
s
it
y

0.000 0.010 0.020

0
1
0
0

p1=0.5,p2=0.5

N = 1000   Bandwidth = 0.0006748

D
e
n
s
it
y

0.00 0.02 0.04

0
4
0

8
0

p1=0.5,p2=0.9

N = 1000   Bandwidth = 0.001195

D
e
n
s
it
y

0.000 0.010 0.020

0
1
0
0

p1=0.2,p2=0.1

N = 1000   Bandwidth = 0.0006706

D
e
n
s
it
y

0.00 0.02 0.04 0.06

0
3
0

p1=0.2,p2=0.5

N = 1000   Bandwidth = 0.001853

D
e
n
s
it
y

−0.6 −0.2 0.2 0.6

0
.0

1
.0

p1=0.2,p2=0.9

N = 1000   Bandwidth = 0.2261
D

e
n
s
it
y

Fig. 2. Kernel density estimation of the RMSE
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Fig. 3. The values of the AIC, BIC and mBIC

TABLE III
RESULTS ON ALGORITHM 1

# Iterations D RMSE AIC BIC mBIC

1 2 0.217 11,987.2 11,989.2 12,007.2
2 3 0.164 11,141.5 11,144.5 11,167.5
3 5 0.007 9,789.8 9,794.8 9,815.8
4 7 0.019 9,807.9 9,814.9 9,857.9

TABLE IV
OBTAINED DOMAINS FOR ALGORITHM 1

Domains Coordinates (top left to bottom right)

D1 (1,1) — (100,20)
D2 (1,20) — (100,60)
D3 (1,60) — (100,90)
D4 (1,90) — (6,100)
D5 (6,90) — (100,100)

TABLE V
LIKELIHOOD RATIO TEST FOR ALGORITHM 1

Domain combinations p-value Results

D1 and D2 < 0.00001 Significant
D2 and D3 < 0.00001 Significant
D4 and D5 0.077242 Not significant

domains into one domain. Finally, we obtained the same

domains as in our generated data matrix (see Table II).

2) Results on Algorithm 2: We applied Algorithm 2 for

the same example described in the previous section and, as

before, we recorded the positions of cuts at each iterations. It

TABLE VI
RESULTS ON ALGORITHM 2

# Iterations D RMSE AIC BIC mBIC

1 3 0.146 10,838.1 10,859.7 10,864.1
2 9 0.004 9,974.5 10,039.4 10,036.5
3 17 0.030 18,840.4 18,857.4 18,950.4
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TABLE VII
RESULTS ON ALGORITHM 3

# Iterations D RMSE AIC BIC mBIC

1 2 0.217 11,987.2 11,989.2 12,007.2
2 3 0.164 11,141.5 11,144.5 11,167.5
3 4 0.000 9,790.9 9,794.9 9,822.9
4 5 0.017 9,880.5 9,885.5 9,918.5

is clear from Table VI that the RMSE, AIC, BIC and mBIC

values are lowest for the case when the number of domains is

equal to nine. Thus, Algorithm 2 identified nine domains for

the same example illustrated above. Furthermore, all obtained

domains identified by Algorithm 2 are significantly different.

3) Results on Algorithm 3: In this section, we applied

Algorithm 3 for the same example described in above section.

We recorded the positions of cuts at each iterations. Table VII

shows that the algorithm found five domains in four iterations.

The RMSE, AIC, BIC and mBIC values are lowest for the

case when number of domains equals four. Thus, Algorithm

3 identified four domains (the same domains as we expected)

in three iterations.

C. Comparison of the Algorithms

In this section, we compare our all algorithms. Final results

of all three algorithms in the form of the RMSE, AIC, BIC

and mBIC are given in Table VIII.

Our results show that the algorithms based on binary seg-

mentation work well in identifying correct number of domains

and their boundaries. Algorithm 2 finds more domains which

are buried within larger domains. Algorithm 3 is fast and it

is accurate in identifying major domains but overestimates the

total number of domains.

VII. DISCUSSION

There have been very few studies in the existing literature

that focus on the development of statistical segmentation

methods for spatial data. To address this issue, we have

generalised the binary segmentation method for identifying

the number of homogeneous domains and their boundaries

in spatial data. In particular, we have applied the modified

versions of the binary segmentation algorithms to binary

spatial data indicating the presence or absence of a certain

plant species, which are observed over a two dimensional

lattice. The numerical results have illustrated that the

algorithms work well under different scenarios; they

accurately identify both the expected number of domains and

their boundaries in few iterations.

Binary segmentation is described as “arguably the most

widely used change-point search method” [19] and it is used

for multidimensional data sequence. The benefits of binary

segmentation include low computational complexity (typically

of order O(n)), conceptual simplicity, the fact that it is usually

easy to code, even in more complex models, and at each stage

TABLE VIII
COMPARISON OF ALL THREE ALGORITHMS (A1, A2, A3)

# Iterations D RMSE AIC BIC mBIC

A1 3 5 0.007 9,789.8 9,794.8 9,815.8
A2 2 9 0.004 9,974.5 10,039.4 10,036.5
A3 3 4 0.000 9,790.9 9,794.9 9,822.9

it involves one-dimensional rather than multi-dimensional

optimization. On the other hand, the method is a “greedy”

procedure in the sense that it is performed sequentially, with

each stage depending on the previous ones, which are never

revisited.

Analysing literature on binary segmentation, we have found

out that it has been never discussed with respect to identifying

both number of domains and boundaries in spatial data. To fill

this gap, we develop effective procedures for estimating both

the number of domains and their locations in spatial data by

modifying the binary segmentation method. The applications

of the proposed procedures are not limited to analysing eco-

logical data. They can be easily extended and applied to other

spatial data. For instance, it can be applied to epidemiological

and economic data.

VIII. FUTURE DIRECTIONS

Over the last decades, spatial statistical models have

been studied by many authors from different angles and the

spatial clustering problem is one of main topics in spatial

statistics. However, the problem has not been considered as

a change-point detection problem. In this study, we have

demonstrated how spatial clusters can be identified by using

a new approach based on binary segmentation. At this stage,

we have considered a simple model which assumes that

observations are independent. However, statistical models

that involve spatial dependence are more realistic. Extension

to dependent data is considered as one of our future works.

Moreover, we have only considered rectangular shaped

domains and we plan to extend it to other more complex

shapes in the future.

In this work, we have used univariate binary data. It

is possible to consider multivariate case (for example, for

several species) and other types of data such as count or

continuous data as well. Furthermore, we have assumed that

data is observed over a regular shaped lattice but it is also

possible to consider a set of random points on a plane. The

problem that we consider can be seen as a model selection

problem and one of the major challenges is to determine

the optimal number of domains. We have used well-known

information criteria such as the AIC, BIC and modified BIC.

The criteria may not work well for spatial cluster models

because of irregularities in their likelihood functions. Our

intention is to develop new modified information criteria

particularly for specific spatial segmentation problems under

different assumptions.
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In this study, we have focused on constructing binary

segmentation methods because of their simplicity and low

computation cost. We plan to develop new spatial segmenta-

tions algorithms bases on well-known statistical computational

methods such as Cross Entropy (CE) [37], Markov chain

Monte Carlo (MCMC) [39], [40] and Sequentially Importance

Sampling (SIS) [38] methods.

REFERENCES

[1] T. Y. Yang and T.B Swartz, “Application of binary segmen-
tation to the estimation of quantal response curves and spa-
tial intensity,” Biometrical journal, vol. 4, 2005, pp. 489–501.
https://doi.org/10.1002/bimj.200310136

[2] S. S. Chen and P. S. Gopalakrishnan, “Clustering via the Bayesian
information criterion with applications in speech recognition,” In
Acoustics, Speech and Signal Processing, 1998. Proceedings of the

1988 IEEE International Conference on, vol. 2, 1998, pp. 645–648.
https://doi.org/10.1109/ICASSP.1998.675347

[3] A. K. Tung, J. Hou and J. Han, “Spatial clustering in the
presence of obstacles,” In Data Engineering, 2001. Proceedings.

17th International Conference on, IEEE, 2001, pp. 359–367.
https://doi.org/10.1109/ICDE.2001.914848

[4] R. E. Gangnon and M.K Clayton, “Bayesian detection and modeling
of spatial disease clustering,” Biometrics, vol. 3, 2000, pp. 922–935.
https://doi.org/10.1111/j.0006-341X.2000.00922.x

[5] C. Anderson, D. Lee and N. Dean, “Bayesian cluster detection via
adjacency modelling.” Spatial and spatio-temporal epidemiology, 2016,
pp. 11–20. https://doi.org/10.1016/j.sste.2015.11.005

[6] B. Beckage, L. Joseph, P. Belisle, D. B. Wolfson and W. J. Platt,
“Bayesian change-point analyses in ecology,” New Phytologist, vol. 2,
2007, pp. 11–20. https://doi.org/10.1111/j.1469-8137.2007.01991.x

[7] I. López, M. Gámez, J. Garay, T. Standovár and Z. Varga, “Applica-
tions of change-point problem to the detection of plant patches,” Acta

biotheoretica, vol. 1, 2010, pp. 51–63. https://doi.org/10.1007/s10441-
009-9093-x

[8] S. Tripathi and R. S. Govindaraju, “Change detection in rainfall and
temperature patterns over India,” In Proceedings of the Third Inter-

national Workshop on Knowledge Discovery from Sensor Data, ACM,
2009, pp. 133–141. https://doi.org/10.1145/1601966.1601988

[9] J. D. Helterbrand, N. Cressie and J. L. Davidson, “A statis-
tical approach to identifying closed object boundaries in im-
ages,” Advances in applied probability, vol. 4, 1994, pp. 831–854.
https://doi.org/10.1017/S0001867800026641

[10] Y. Wang, “Change curve estimation via wavelets,” Journal of the

American Statistical Association, vol. 441, 1998, pp. 163–172.
http://dx.doi.org/10.1080/01621459.1998.10474098

[11] G. J. Upton and B. Fingleton, “Spatial data analysis by example. vol.
1: Point pattern and quantitative data,” Chichester: Wiley, vol. 1, 1985.

[12] A. D. Cliff and J. K. Ord, Spatial processes: models & applications,

Taylor & Francis, 1981.
[13] N. Cressie, Statistics for spatial data, John Wiley and Sons, 2015.
[14] A. J. Scott and M. Knott, “A cluster analysis method for grouping

means in the analysis of variance,” Biometrics, 1974, pp. 507–512.
https://doi.org/10.2307/2529204

[15] A. Sen and M. S. Srivastava, “On tests for detecting change
in mean,” The Annals of statistics, vol. 1, 1975, pp. 98–108.
https://doi.org/10.1214/aos/1176343001

[16] L. Vostrikova, “Detection of the disorder in multidimensional random-
point problems,” Doklady Akademii Nauk SSSR, vol. 2, 1998, pp. 270–
274.

[17] I. A. Eckley, P. Fearnhead and R. Killick, “Analysis of changepoint
models,” Bayesian Time Series Models, 2011, pp. 205–224.

[18] E. S. Venkatraman, Consistency results in multiple change-point prob-

lems, PhD thesis, to the Department of Statistics. Stanford University.
1992.

[19] R. Killick, P. Fearnhead and I. A. Eckley “Optimal detection of
change-points with a linear computational cost,” Journal of the

American Statistical Association, vol. 500, 2012, pp. 1590–1598.
http://dx.doi.org/10.1080/01621459.2012.737745

[20] W. Li, “DNA segmentation as a model selection process,” In proceedings

of the fifth annual international conference on Computational biology,

ACM, 2001, pp. 204–210. http://dx.doi.org/10.1145/369133.369202

[21] H. Akaike, “A new look at the statistical model identification,”
IEEE transactions on automatic control, vol. 6, 1974, pp. 716–723.
http://dx.doi.org/10.1109/TAC.1974.1100705

[22] G. Schwarz, “Estimating the dimension of a model,”
The annals of statistics, vol. 2, 1978, pp. 461–464.
http://dx.doi.org/10.1214/aos/1176344136

[23] J. Chen, A. Gupta and J. Pan “Information criterion and change point
problem for regular models,” Sankhyā: The Indian Journal of Statistics,
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