
Implementation of a Simplified State Estimator for

Wind Turbine Monitoring on an Embedded System

Theis Bo Rasmussen, Guangya Yang

and Arne Hejde Nielsen

Department of Electrical Engineering

Center for Electric Power and Energy

Technical University of Denmark

2800, Kgs. Lyngby, DK

Email: {thras, gyy, ahn}@elektro.dtu.dk

Zhao Yang Dong

School of Electrical Engineering and Telecommunications

University of New South Wales

New South Wales 2052, Australia

Abstract—The transition towards a cyber-physical energy sys-
tem (CPES) entails an increased dependency on valid data. Simul-
taneously, an increasing implementation of renewable generation
leads to possible control actions at individual distributed energy
resources (DERs). A state estimation covering the whole system,
including individual DER, is time consuming and numerically
challenging. This paper presents the approach and results of
implementing a simplified state estimator onto an embedded
system for improving DER monitoring. The implemented state
estimator is based on numerically robust orthogonal factorization
and used on a set of state equations of a generic wind turbine
generator (WTG). The simplified state estimator is tested by
simulating a generic WTG model and evaluated based on its
execution time and estimation accuracy. Results show its fast
execution time, its accuracy in handling normal measurement
error and its ability to provide reliable data in the case of gross
errors in the set of measurements.

I. INTRODUCTION

T
HE traditional power system is mainly composed of

large centralized power plants, but since the turn of the

century, countries worldwide have increased the integration of

renewable energy sources (RES) [1]. At the same time, control

methods utilizing distributed energy resources (DERs), to en-

sure a reliable delivery of electricity, have been proposed and

included in grid codes [2], [3]. To manage the decentralization

of control decisions, investments in advanced information

and communication technology (ICT) infrastructure are made,

increasing the data acquisition and improving the visibility of

power system operation [4], [5].

Relying more on monitoring and control of DERs and

having a more complicated technology mix on both sides of

generation and consumption, the power system is transitioning

into a cyber-physical energy system (CPES) [5], [6], [7], [8].

Historically, the process of state estimation has been used to

remove measurement error within the boundaries of the power

system [9], but within the larger and more complex CPES,

centralized state estimation becomes computationally demand-

ing and numerically challenging. Instead, the physical system

at the boundaries of the power system could be observed

and used for local state estimation purposes, removing gross

measurements and assisting in the decision-making process of

determining appropriate distributed control actions. The aim

of this paper is to utilize this theory and implement a DER

monitoring system onto an embedded system and determine

its accuracy compared to that of raw measurements.

For this purpose, the generic wind turbine generator (WTG)

model described in [10] is modelled in Simulink and analyzed

with the purpose of developing a simplified state estimation

model. Considering the limited resources of an embedded

system, the simplified state estimator is implemented on a

commercially available embedded system. In this work, the

embedded system chosen is a National Instruments (NI)

compact-RIO (cRIO) 9074.

In previous work of applying state estimation techniques to

wind power plant monitoring [11], [12], the aim has been to

investigate the dynamics of the WTGs, for testing and develop-

ing control designs, and improving the transient performance

of WTGs. For these purposes, comprehensive dynamic models

of WTGs are necessary to give the required level of detail.

In this paper, the goal is to validate measurements in DER

supervisory control and data acquisition (SCADA) systems to

provide an accurate picture of the static operation of the DERs

that can be utilized from a system operations perspective.

Therefore, the accuracy and complexity of the WTG model

can be decreased to enable execution of the simplified state

estimator on an embedded system.

Results from testing the capability, accuracy and perfor-

mance of the monitoring system, show that the state estimator

is simple enough to be implemented onto an embedded sys-

tem and execute within appropriate timing, is fairly accurate

when normal measurement error is present and offers higher

accuracy compared to the utilization of raw measurement data

when gross measurement error is present.

The rest of the paper is organized as follows. In Section II

the chosen state estimator algorithm is described, followed

by a presentation of the derived state equations from the

WTG Simulink model used in the state estimator. The section

ends with a description of how the simplified state estimator

was implemented on the embedded system using LabVIEW

software. Section III presents the objective, analysis and eval-

uation of three test cases used to test the monitoring system.

Section IV concludes this paper.

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 1167–1175

DOI: 10.15439/2017F250

ISSN 2300-5963 ACSIS, Vol. 11

IEEE Catalog Number: CFP1785N-ART c©2017, PTI 1167



II. METHOD

The concept of state estimation in power system application

was presented in [9]. The purpose of the state estimation is

to reduce measurement error e by estimating a set of state

variables x related to the set of measurements z by a set of

state equations h(x) as shown in Eq. (1).

z = h(x) + e (1)

Since the concept was introduced, numerous different algo-

rithms have been proposed in literature, some of which are

described in [13]. Most of these methods are based on the

formulation of a set of non-linear equations, where the solution

is found by solving a weighted least squares (WLS) problem

[14]. The WLS problem is formulated as a optimization

problem as described in (2).

minimize J (x) = 1/2
m
∑

j=1

(

r2j
σ2
j

)

(2)

where J(x) is the weighted sum of square residuals, m is

the number of measurements, rj = zj − hj(x) is the residual

and σ2
j is the variance of the j-th measurement. The variance

of the measurements is based on the characteristics of the

measurement devices. As measurement are devices are less

than 100% accurate, it is assumed that its error is normal

distributed with zero mean and variance σ2 [14].

As the objective of this paper is to implement the state

estimator on an embedded system, two requirements for the

state estimation method are considered. The chosen methods

have to 1) be numerically robust, as rounding errors are more

likely in the embedded system compared to a control center

computer, due to the limited bit number of the embedded

operating system (OS) compared to general purpose OS,

and 2) ensure an accurate convergence within the timing

requirements set by the system.

The state estimation method used in this work is formulated

around an iterative process where the updated state variables

are calculated using orthogonal factorization, also referred

to as QR factorization, which has been widely accepted in

practice [14]. The stability of the factorization method comes

from avoiding the formation of the gains matrix and thereby

alleviating the numerically ill-conditioned state estimation

problem. In [15] a comparative study has shown that the QR

factorization is the most numerically robust, but at the same

time has the highest computational requirements. To ensure

convergence within the timing requirements, the complexity of

the state equations, representing the WTG, is formulated from

a trade-off between accuracy and computation requirements.

An added feature in power system state estimators, that

improves the removal of measurement error, is the threefold

process of bad data detection, identification and elimination

that together form a bad data detector.

A. Bad data detection, identification and elimination

Mili, Van Cutsem and Ribbens-Pavella defined the task of

the bad data detector, in the content of state estimation, as "Its

task is to guarantee the reliability of the data base generated

through the estimator." in [16, p.3037].

Bad data can occur in a monitoring system because of

faulty measurement devices, faulty communication or even in-

terference from adversaries [7]. In [17] measurement error has

been characterized into three groups based on their magnitude

compared to the standard deviation of the measurement device.

Normal measurement error is expected to have a magnitude of

up to 5σ, gross measurement error has a magnitude between

5σ and 20σ, and extreme measurement error has a magnitude

larger than 20σ.

There exist multiple different bad data detection algorithms

in literature [16], [18], [19]. In this work, a simple bad data

detector is implemented and designed to run after each itera-

tion of the state estimation algorithm. The detection algorithm

chosen is introduced in [9] and based on the concept of

hypothesis testing and J(x) tests. The method is based on an

assumption that the weighted sum of square residuals, J(x),
follow a chi-square distribution, χ2, with a degree of freedom,

f, equal to the number of measurements m minus the number

of state variables n.

By analyzing the chi square probability density function, P,

a probability, α, is chosen between 1% and 10% as a trade-off

between the number of false positives and negatives [20] as

indicated by Eq. (3).

P
[

J (x) > K|J (x) ∼ χ2
]

= α (3)

where the weighted sum of square residuals, J(x) is calculated

using Eq. (2). K is characterized as the (1−α) quantile of the

chi-square probability distribution with a degree of freedom

equal to (m− n) and is calculated using Eq. (4) [20].

K = χ2
(m−n):α (4)

The hypothesis of whether or not bad data is present in the

set of measurements z is evaluated by comparing J(x) to the

detection threshold K with a chosen α-value. If J(x) > K bad

data is detected and vice versa. In the case of bad data being

detected, the process of bad data identification is initiated.

A widely used identification method of sorting the weighted

residuals in J(x) in a descending order and determining the

measurement with the largest weighted residual as the bad

measurement, is implemented in the bad data detector [18].

After detecting and identifying the bad data, the bad mea-

surement must be eliminated to make sure the state estima-

tor will converge towards an accurate solution. There exists

multiple different techniques in eliminating bad data, with

different computational requirements [16], [19]. As DERs are

operating in a highly dynamic system, the process of simply

replacing the bad data by the measurement from the last

period is unreliable. Instead a similar approach as the one

used in [19] is utilized, where the bad measurement is replaced
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by a pseudo measurement based on the estimated value and

the gains matrix. In the simplified state estimator, the gains

matrix is avoided, therefore the identified bad measurement is

calculated using Eq. (5).

znewb = zoldb − sign
(

zoldb − hb(x)
)

· |a| (5)

where the subscript b represents the index of the identified

bad data, and |a| represents the absolute value of a normal

distributed random number with zero mean and a standard

deviation of σ = 0.01. The idea behind the value subtracted

from the bad data to form the new data in Eq. (5), is that the

sign of difference between the bad data and the estimated value

is assumed to represent the sign of the difference between the

bad data and the correct data. By simply pushing the bad data

in the direction of the estimated value, the new data should

be closer to the correct data, assuming the estimated value is

closer to the correct data.

After safely eliminating the identified bad data, the state

estimator executes its algorithm once again and the process of

bad data detection, identification and elimination is repeated.

It might be necessary to execute the bad data detector several

times until the hypothesis of bad data being present is thrown.

B. WTG state model

The state estimator of the WTG generic model requires the

three sets composing Eq. (1):

• A set of measurements z

• A set of state variables x

• A set of state equations h(x) relating the state variable

to the measurements and the measurement error e.

The SCADA system of a single wind turbine communi-

cate more than 150 different values including temperature

measurements, alarm state signals, and mechanical as well as

electrical measurements of the wind turbine and the equipment

connecting it to the collector system [21]. For the generic

WTG model, 9 relevant mechanical and electrical properties

are listed in Table I and used as inputs for the state estimation

model.

TABLE I
WIND TURBINE SCADA MEASUREMENTS IN THE WTG STATE

ESTIMATION MODEL

Mechanical Electrical

Signal Description Unit Signal Description Unit

Vw Wind speed [m/s] P Active power [W]

θ Pitch angle [◦] Q Reactive power [var]

ωr Rotor speed [pu] Urms Phase a rms voltage [V]

Irms Phase a rms current [A]

Ua Phase a voltage [V]

Ia Phase a current [A]

For the DER monitoring system implemented in this work,

a measurement frequency of 1 Hz is chosen as it complies

with the normal practice in SCADA systems [22], [23].

Simultaneously, this entails that the timing requirements of the

state estimator is well below 1 second, as the embedded system

has to acquire the measurement signals before executing the

state estimator, and allow time for data communication and

processing at control centers.

For all the measurements in Table I the normal measurement

error is assumed to have zero mean and a standard deviation

of σ = 0.01, which corresponds to the measurement error

introduced by measurement transformers for the electrical

measurements and the errors entailed when measuring the

mechanical system [24]. From the set of measurements in

Table I, an appropriate set of state variables is identified. From

state-space analysis theory [25], the state variables have to

enable an estimation of all the input signals at any instance

in time t. In the mechanical system, there is a relationship

between the wind speed, the turbine rotational speed and the

geometry of the wind turbine. If a steady wind is blowing, the

tip speed ratio λ defines this relationship through a constant

Kb as shown in Eq. (6).

λ =
Kb · ωr

Vw

(6)

For this project, the parameters given for a General Electric

(GE) 1.5MW DFIG in [10] are used to represent the generic

WTG. Due to the simplicity of the generic WTG model, a

single mass model is used to represent the shaft connecting

the rotor hub to the generator as recommended in [10].

The tip speed ratio can be used to estimate the pitch angle

of the blades θ. According to [26] the aerodynamic design

of the wind turbine blades and their pitch angle has a certain

relationship with the power coefficient Cp (θ, λ). These power

coefficient curves are confidential and extremely difficult to

access, therefore [10] has defined a relationship used in the

generic GE 1.5MW DFIG WTG representation.

The built-in pitch controller of the generic WTG model

attempts to maximize the power output according to the tip

speed ratio. At very low wind speeds, the pitch controller

keeps the pitch angle at 0◦. When the wind speed increases,

the pitch controller regulate the appropriate pitch angle in

order to keep the power output at rated power. To get the

relationship between tip speed ratio and pitch angle expressed

as an equation, the WTG model is implemented in MATLAB

Simulink, and simulated with a gradually increasing wind

speed. Fig. 1 shows the resulting pitch angle as a function

of tip speed ratio. At λ > 6, the pitch angle is 0.

From this discussion, it can be argued that from the wind

speed and the rotational speed, it is possible to estimate the

blade pitch angle. Therefore, the first two state variables of the

state model are chosen as x1 referring to Vw and x2 referring to

ωr. In the electrical system, assuming availability of accurate

voltage and current angles through phasor measurement units

(PMU) [27], all the input signals can be estimated from the

root-mean-square (rms) current and voltage. Therefore x3 is

chosen equal to Urms, likewise x4 is chosen equal to Irms.

To improve the reliability of the state estimator, all the

measurements are converted into the per unit (pu) scale, which

decreases the differences in the non-zero elements of the
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Fig. 1. Simulation results of the generic WTG model in MATLAB Simulink
with graduate increasing wind speed, giving a relationship between pitch
angle, θ, and tip speed ratio, λ.

Jacobian matrix of the state equations. All measurements are

converted into per unit using the base values shown in Table II.

TABLE II
PER UNIT BASE VALUES OF THE WTG MEASUREMENTS

Mechanical Electrical

Signal Base value Signal Base value Signal Base value

Vw 12 m/s P 3 MVA Irms 2 886.75 A

θ 10.42 ◦ Q 3 MVA Ua 346.41 V

ωr 1 pu Urms 346.41 V Ia 2 886.75 A

The per unit base values of the mechanical system are

chosen based on the parameters of the GE 1.5MW WTG from

[10], Eq. (6), and the relationship between λ and θ illustrated

in Fig. 1.

For the electrical system, the apparent power and voltage per

unit base values are chosen based on the test system shown by

the one line diagram in Fig. 2, created based on the benchmark

tests performed in [10] and the cable data found in [28].

External grid
230 kV

230/34.5 kV
3 MVA

34.5/0.6 kV
1.75 MVA

WTG
1.5 MW

Fig. 2. Single line diagram of test grid used to simulate the WTG model
connected to an external grid.

The highest rated equipment is the 230/34.5 kV transformer

with an apparent power rating of 3 MVA. From the second

transformer, it can be observed that the terminal voltage in

line to line rms is 0.6 kV. Therefore the per unit values of the

electrical system are calculated as in Table II.

After defining the per unit bases, the λ, θ relationship found

in Fig. 1 is converted to per unit and analyzed through the

MATLAB curve fitting tool to give the four term Gaussian

function representing the state equation in Eq. (8).

Vw = x1 (7)

θ = 2.778 · exp

(

−

( x2

x1

− 0.4469

0.3078

)2
)

+ 0.8212 · exp

(

−

( x2

x1

− 0.8423

0.2008

)2
)

+ 0.4885 · exp

(

−

( x2

x1

− 1.037

0.1354

)2
)

+ 0.2784 · exp

(

−

( x2

x1

− 1.169

0.08579

)2
)

(8)

ωr = x2 (9)

P = x3 · x4 · cos (φ) (10)

Q = x3 · x4 · sin (φ) (11)

Urms = x3 (12)

Irms = x4 (13)

U = x3 ·

√

2 · sin (2πft+ δ) (14)

I = x4 ·

√

2 · sin (2πft+ β) (15)

The equations in Eq. (7) to (9) are the mechanical state

equations and together with Eq. (10) to (15), they form the

complete set of state equations h(x). The set of electrical state

equations, in Eq. (10) to (15), are found from power system

theory [29].

C. LabVIEW implementation

The DER monitoring system is tested by implementing

a simulation model of the WTG onto the cRIO through

the LabVIEW programming tool. The Simulink WTG model

is built as a C code, using the compiler in Simulink, and

implemented on the cRIO through the model interface toolkit

(MIT) in LabVIEW.

The added computational burden on the cRIO is considered

by lowering the simulation of the WTG model. To include

necessary details of voltage and current waveforms from the

WTG model, the simulation frequency is set to 2500 Hz. On

the cRIO, each simulation step will be executed 25 times

slower than real time, this will however not affect the execution

time evaluation of the state estimator.

With the Simulink model implemented on the cRIO, the

simplified state estimator and integrated bad data detector are

programmed in LabVIEW, as described in Section II and II-A,

and shown in the process diagram in Fig. 3, which contains

additional information about the inter-process and inter-target

communication.

To allow control of the wind speed, a real-time (RT) target

process is created to simulate wind speed according to the

model described in [30]. The wind speed Vw and WTG

simulation model are executed in synchronized while loops on

the RT target to make sure that the calculations are executed

in a deterministic fashion. Before executing the state estimator

in the process of Fig. 3, each Simulink signal is distorted by

a normal distributed measurement error with zero mean and

variance equal to σ2 = 10−4. After completing an iteration

of the state estimation process, the updated state variables are
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System Diagram cRIO

Real Time Target FPGA Target

System monitoring

State estimator

h(x) (stream)

BD

Bad data detector
h(x)
(stream)

Communication
with Host

status
(stream)

(stream)

WTG simulation

Simulate Wind speed

(tag)Vw

z (stream)

Fig. 3. System diagram of the cRIO with the Simulink model of the generic
WTG implemented in LabVIEW.

communicated to the field-programmable gate array (FPGA)

target where bad data is detected and identified.

The information about bad data is returned to the state

estimator, which eliminates the bad measurements through

Eq. (5). When the Euclidean norm of the state variables have

converged below the tolerance xconvergence and no bad data is

detected, the information is returned to the host and visualized

for the system operator.

III. RESULTS

To evaluate the application of the embedded system for DER

monitoring the following three factors are considered:

1) Its ability to solve the WLS problem within a short time

frame.

2) Its accuracy in estimating the solution to the state

estimation model compared to raw measurements when

subject to normal measurement error.

3) Its performance in terms of detecting, identifying and

eliminating gross measurements errors.

Each factor is evaluated through a test scenario. In the

following, three test cases are introduced, the results are

analyzed and the system is evaluated.

A. Test 1: Execution time

The purpose of the first test is to evaluate how fast the

simplified state estimator with integrated bad data detector

can solve the WLS problem. This objective is reached by

implementing tick counts in the LabVIEW data flow before

and after the state estimator and bad data detector process in

Fig. 3.

Under normal conditions, with a standard deviation equal

to the assumed measurement device accuracy of σ = 0.01,

the QR factorization algorithm only requires a single or two

iterations to solve the WLS problem. To evaluate the execution

time of the DER monitoring system at different number of

0 2 4 6 8 10 12
0

10

20

30

40

50

No. Iterations

E
x
ec

u
ti

o
n

ti
m

e
[m

s]

Average

Fig. 4. Average, minimum and maximum execution time of the state estimator,
with integrated bad data detector, as a function of the number of iterations
needed before converging.

iterations, the standard deviation of the measurement error is

increased to σ = 0.02. This results in a higher chance of the

measurement error causing a detection of bad data, while using

a detection probability of α = 5%, and thereby increases the

number of iterations needed to solve the WLS problem.

The cRIO is run for a time series where the state estimator

executes in total 162 times. The resulting execution time data

is separated based on the number of iterations needed before

finding a solution to the WLS problem, reached after the

Euclidean norm of the change in state variable value between

two iterations is below the convergence threshold chosen as

xconverge = 0.01.

The number of iterations ranges from 0 to 13. In the

case where no iterations are needed, the first solution of the

state estimator is close enough to the final solution of the

previous execution, used as the starting point for the following

execution. The minimum, average and maximum execution

time is calculated and presented in Fig. 4 as a function of the

required number of iterations before converging.

A linear relationship between the number of iterations and

the average execution time is observed in Fig. 4. For the

executions with 1 to 3 executions, the maximum observed

execution is around 5 ms slower than the average execution

time. At the same time, the average value is observed closer

to the minimum execution time, which indicates that the

occurrence of large execution times is rather limited.

From Fig. 4 the execution time of the embedded DER

monitoring system can be evaluated. As previously mentioned,

the system is intended to run between acquisition and com-

munication of data, and the added timing requirements of

validating the data should be low enough to allow further

data handling. For an iteration count between 0 and 13, the

execution time varies from around 5 ms to 45 ms.

Considering the case of two iterations, the average execution

time is calculated in Fig. 4 as approximately 10 ms, this cor-

responds to an execution frequency of 100 Hz. An execution

frequency of 100 Hz satisfies current SCADA requirements
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Fig. 5. The value of the nine measurements in z, represented by the true simulated signal (blue line), the distorted signal (red line) and the estimated signal
(yellow line).

and offers possibilities in terms of allowing a faster data

acquisition for future SCADA systems.

B. Test 2: Estimation accuracy

In the second test, the objective is to compare the accuracy

of the estimated and disturbed signals to the correct signals

from the Simulink model. In this test case, all measurements

are disturbed by normal measurement error with zero mean

and σ = 0.01.

The cRIO is run and the accuracy of the simplified state

estimator is analysed by comparing the estimated signals h(x)
to the correct simulated signals z and the distorted signals zd.

These three results are found for each measurement in Table I

represented by their per unit value corresponding to Table II,

and shown in Fig. 5.

From the nine plots in Fig. 5 the dynamics of the system

are observed from changes in z during the time period. This

is especially visible for the wind speed Vw, the blade pitch

angle θ and the instantaneous voltage U and current I . For

all the measurements, h(x) is closer to or similarly distanced

from z compared to the disturbed measurements zd.

A numerical comparison of the results in Fig. 5 is performed

by calculating the average Euclidean error (AEE) over the

executed time period τ , using Eq. (16), as introduced in [31].

AEE(di) =
1

τ

τ
∑

t=1

||dt,i||2 (16)

where d = z − v, v is a set of values who’s difference from

the correct measurements is desired, and i is the index of the

measurements in Table I. The AEE is calculated for both zd
and h(x) and is shown in Table III.

TABLE III
AVERAGE EUCLIDEAN ERROR OF ESTIMATED AND DISTURBED VALUES

FOR THE TIME SERIES RESULTS IN FIG. 5

v = zd h(x)

AEE(di)

i = 1 0.0067 0.0085

i = 2 0.0067 0.0064

i = 3 0.0095 0.0074

i = 4 0.0074 0.0055

i = 5 0.0070 0.0004

i = 6 0.0061 0.0057

i = 7 0.0090 0.0052

i = 8 0.0084 0.0056

i = 9 0.0085 0.0053

The small values of all the AEE results in Table III show

the similarity of the average error of zd and h(x). Evaluating

the accuracy of the simplified state estimator based on these

results gives an indication that h(x) offers similar accuracy in

situations with normal measurement noise as the raw measure-

ments. The state estimator could be improved by utilizing a

more detailed set of state equations as in [11] or [12], however

this would simultaneously change the execution time as the

1172 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017



10 20 30 40 50
0.95

1

1.05

1.1

1.15

Time [s]

V
w

[p
u
]

z zd h(x)

10 20 30 40 50
0.00

0.05

0.10

0.15

Time [s]

|d
(V

w
)|

[p
u
]

|z-zd| |z-h(x)|

10 20 30 40 50
0.45

0.5

0.55

0.6

0.65

Time [s]

P
[p

u
]

10 20 30 40 50
0.00

0.05

0.10

0.15

Time [s]

|d
(P

)|
[p

u
]

10 20 30 40 50
0.45

0.5

0.55

0.6

Time [s]

I r
m

s
[p

u
]

10 20 30 40 50
0.00

0.05

0.10

0.15

Time [s]

|d
(I

r
m

s
)|

[p
u
]

Fig. 6. Left: The wind speed, active power and rms current in per unit when subject to gross measurement error. Right: The absolute error between the true
simulated signal and the distorted signal (blue line) and the estimated signal (red line), for the three measurements subject to gross error.

detailed model requires an increased number of calculations

in finding the solution to the WLS problem.

C. Test 3: Gross error performance

After testing the accuracy of the state estimators when

measurements are subject to normal measurement error only,

this test case evaluates the performance of the embedded DER

monitoring system when gross measurement errors are injected

into a set of target measurements. For this purpose, a testing

interface is implemented in the LabVIEW user interface that

allows specification of scalar measurement error and the index

of the target measurement.

Three different measurements are chosen as targets and

injected with the gross measurement error ε at the time tε
as presented in Table IV.

TABLE IV
GROSS MEASUREMENT ERROR INJECTION SCHEDULE FOR TEST CASE 3.

tε 8 s 13 s 18 s 38 s 33 s 38 s

zi Vw P Irms Vw P Irms

ε 5σ 5σ 5σ 10σ 10σ 10σ

From Table IV the magnitude of the gross measurement

error injected is chosen as 5 and 10 times the standard

deviation of all the measurements σ = 0.01. The schedule

is used while running the cRIO, giving the results illustrated

in Fig. 6.

In Fig. 6, the left hand side shows the pu value of the

wind speed, the active power and the rms current during

the time period of execution. From these plots, zd is clearly

affected by the gross measurement error injected two times for

each measurement. In comparison to zd, the estimated results

in h(x) are closer to the correct measurements, z for each

injection of gross measurement error.

In the right hand side plot of Fig. 6, the absolute error

between z, zd and h(x) is shown for each of the three

measurements. Here the performance, of the simplified state

estimator, in handling gross measurement errors is easily

visible, as it is able to detector, identify and eliminate the error

and estimate a better signal value than the raw measurements.

The error in Irms after 33 s in the right hand side of

Fig. 6, equal to approximately 0.04 pu indicates room for

further improvements of the system. The cause of the large

error is that the embedded monitoring system first correctly

identifies the active power as the bad measurement, and after

eliminating the error, it wrongly identifies a bad data at the

rms current as well. This increases the difference between the

pseudo measurement value and the correct value. This could

possibly be avoided by finding the optimal trade-off between

false positives and negatives, thereby fine tuning the detection

threshold K, or refining the methods used in the bad data

detector.

Besides the false identification of the rms current as con-

taining a bad data, the results confirm the added accuracy

of using the embedded DER monitoring system compared to
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using raw measurements when monitoring the performance of

DERs. This accuracy could be valuable when considering the

utilization of measurements in determining control actions in

the CPES.

IV. CONCLUSION

The growing implementation of distributed energy resources

and the increased focus on distributed control of these re-

sources entails added challenges in the cyber-physical energy

system. With the added dependency on distributed control

comes dependency on valid data from distributed energy

resource measurement systems.

This paper describes the development, implementation and

testing of a simplified state estimator, capable of efficiently

removing gross measurement errors from distributed energy

resource data measurements. The simplified state estimator

is implemented on an embedded system and simulated in

connection to a simulation model of a generic wind turbine

generator. With the embedded system implementation, the

measurements from the distributed energy resources can be

processed and validated between data acquisition and data

communication.

Simulation results show that the simplified state estimator

has a fast execution time which offers utilization in current

and future measurement systems. Compared to utilizing raw

measurement data, the simplified state estimator has similar

average Euclidean error as normal measurement error and

can remove gross measurements, which shows its application

potential in the cyber-physical energy system.

For future work, the bad data detector of the embedded

monitoring system could be improved in terms of its ability

to accurately identify bad data. A second proposed further

research could be to try and validate the efficiency of the

simplified state estimator by using real wind turbine measure-

ments, and in the end, try to implement the system on a real

wind turbine. A third possibility is to test the generality of

the monitoring system by replacing the WTG state estimation

model and applying the system on a different type of, such as

a photovoltaic system.
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