
CloudLightning: a Self-Organized Self-Managed

Heterogeneous Cloud

Huanhuan Xiong1, Dapeng Dong1, Christos Filelis-Papadopoulos2, Gabriel G. Castañé1,

Theo Lynn3, Dan C. Marinescu4, John P. Morrison1

1Department of Computer Science, University College Cork, Cork, Ireland

{h.xiong, d.dong, g.gonzalezcastane, j.morrison}@cs.ucc.ie

2Department of Electrical and Computer Engineering, Democritus University of Thrace, Xanthi, Greece

cpapad@ee.duth.gr

3Dublin City University, Dublin, Ireland

theo.lynn@dcu.ie

4Department of Computer Science, University of Central Florida, Orlando, FL 32814, USA

dcm@cs.ucf.edu

Abstract—The increasing heterogeneity of cloud resources, and
the increasing diversity of services being deployed in cloud envi-
ronments are leading to significant increases in the complexities of
cloud resource management. This paper presents an architecture
to manage heterogeneous resources and to improve service deliv-
ery in cloud environments. A loosely-coupled, hierarchical, self-
adapting management model, deployed across multiple layers,
is used for heterogeneous resource management. Moreover, a
service-specific coalition formation mechanism is employed to
identify appropriate resources to support the process parallelism
associated with high performance services. Finally, a proof-
of-concept of the proposed hierarchical cloud architecture, as
realized in CloudLightning project, is presented.

Index Terms—Hierarchical architecture, heterogeneity, cloud
computing, resource management, coalition formation

I. INTRODUCTION

O
VER the last decade, large scale cloud services have

been created by service providers such as Amazon,

Microsoft, Google and Rackspace. In order to meet the

needs of their consumers, cloud service providers have built

data centers at unprecedented scales. In 2013 Steve Ballmer

estimated that Google, Microsoft and Amazon are running

roughly one million servers each [1]. These data centers are

large industrial facilities containing computing infrastructure:

servers, storage arrays and networking equipment. This core

equipment requires supporting infrastructure in the form of

power, cooling and external networking links. Reliable service

delivery depends on the holistic management of all of this

infrastructure as a single integrated entity: the warehouse-scale

computer (WSC) [2].

The WSC design suggests that a hierarchical top-down

model is used to manage large-scale cloud infrastructures.

Meanwhile, the growth in cloud raises the question of how

far we can push the limits of computing and communication

systems, while still being able to support effective policies for

resource management and their implementation mechanisms.

Software running on cloud environments is becoming increas-

ingly complex, consisting of more and more layers. Thus, the

challenge of controlling these large-scale systems is exacer-

bated. Control theory tells us that accurate state information,

and a tight feedback loop, are critical elements for effective

control of a system. In a traditional hierarchical organization,

the quality of state information degrades as it is propagated

from the bottom to the top; only local information about the

state of a server is, by definition, accurate. Moreover, the value

of this information is time sensitive, it must be acted upon

promptly because the state changes rapidly. WSC-like archi-

tectures employ centralized resource management associated

with the upper layers of the hierarchy. These models, based

on monitoring, are costly, since the communication overhead

can be more than two orders of magnitude higher than that

required by decentralized resource management strategies as

illustrated in [3].

The increasing heterogeneity of cloud servers, and the

diversity of services demanded by the cloud user community,

including access to High Performance Computing (HPC),

are some of the reasons why it is imperative to devise

new resource management strategies. These strategies should

aim to significantly increase the average server utilization

and the computational efficiency measured as the amount of

computations per Watt of power, make cloud computing more

appealing and lower the costs for the user community. Finally,

they should simplify the mechanisms for cloud resource man-

agement.

Current cloud infrastructures are mostly homogeneous, cen-

trally managed and made available to the end user through

the three standard delivery models: Infrastructure as a Service

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 749–758

DOI: 10.15439/2017F274

ISSN 2300-5963 ACSIS, Vol. 11

IEEE Catalog Number: CFP1785N-ART c©2017, PTI 749

(IaaS), Platform as a Service (PaaS) and Software as a Service

(SaaS). In the traditional PaaS and SaaS models, the user is

completely unaware of the physical resources being used to

run services. This is also the case for IaaS (if bare metal

offerings are ignored), since the infrastructure offered is most

often virtualized on top of commodity hardware. The drive

towards connecting specialized hardware to the cloud (such

as dedicated HPC machines and servers clustered on dedi-

cated high-speed networks) and towards augmenting servers

with specialized accelerators (such as Graphics Processing

Units - GPUs, Many Integrated Cores - MICs, and Field

Programmable Gate Arrays - FPGAs) has the potential to

shift the operational dynamics of the cloud. By incorporating

diverse hardware, the cloud becomes heterogeneous and an

opportunity is created for offering discriminated services based

on the operational characteristics of these different hardware

types. Thus, the possibility exists for realizing the same service

at different costs and at different performance levels. However,

exploiting different architectures poses significant challenges.

To efficiently access heterogeneous resources, to exploit these

resources to reduce application development effort, to make

optimizations easier and to simplify service deployment, re-

quires a re-evaluation of our approach to service delivery.

In this paper, a hierarchical cloud architecture is proposed

to address heterogeneous resource management and advanced

service delivery. The remainder of the paper is organized as

follows. Section II reviews the related work from the literature,

while Section III introduces the hierarchical cloud architecture

for heterogeneous resource management and service delivery.

A self-organizing self-managing system is presented as a

proof-of-concept of our proposed hierarchical cloud architec-

ture in Section IV, and concluding remarks and future work

are presented in Section V.

II. RELATED WORK

A. Hierarchical frameworks in cloud

Warehouse Scale Computers (WSCs) consist of thousands

of commodity parts including processors, memory, disk, net-

work, servers, etc., which are attached together to form a

warehouse of interconnected machines [4]. The WSC is widely

used as large-scale datacenter by Google, Yahoo, Amazon,

Facebook, Microsoft and Apple [5]–[7].

In a WSC the hierarchical architecture is formed from a

collection of physical machines and interconnects. A server

is composed of a number of processor sockets, local shared

and coherent DRAM, and a number of directly attached disks.

The DRAM and disk resources within a rack are connected

via a first-level rack switch, and all resources in all racks are

connected through a cluster-level switch.

Within the physical hierarchy of a WSC, control theoretic

feedback loop techniques are often used to enable system

stability [8] and effective resource allocation [9], as well as to

improve system performance [10] and power efficiency [11],

[12]. The previous study [8] of using queuing theory with

feedback control theory for performance guarantees in QoS-

aware systems shows that the combined schemes perform

significantly to achieve QoS specifications in highly unpre-

dictable environments. Performance control of a web server

by using classical feedback control theory was studied in [10],

achieving overload protection, performance guarantees, and

service differentiation in the presence of load unpredictability.

Wang et al. [11] proposed a cluster-level control architecture

that coordinates individual power and performance control

loops for virtualized server clusters. The higher layer controller

determines capacity allocation and VM migration within a

cluster, while the lower layer controllers manage the power

level of individual servers.

B. Heterogeneity in cloud

Limitations on power density, heat removal and related

considerations require a different architecture strategy for

improved processor performance by adding identical, general-

purpose cores [13]. Unlike traditional cloud infrastructure built

on an identical processor architecture, heterogeneity assumes

a cloud that makes use of different specialist processors that

can accelerate the completion of specific tasks or can be

turned off when not required, thus maximizing both perfor-

mance and energy efficiency [14]. Another previous study [15]

proposes a resource allocation strategy in a heterogeneous

cluster (integration of core nodes and accelerator nodes) to

realize a scheduling scheme that achieves high performance

and fairness.

Very recently, larger cloud infrastructure providers have

been offering commercial heterogeneous cloud services, e.g.

Amazon Web Services offers a variety of GPU and FPGA

services [16]. Similarly, OpenStack also supports GPU and

FPGA accelerators on provisioned VM instances [17]. As

demand for better processor price and power performance

increases, it is anticipated that larger infrastructure providers

will need to cater for several of these processor types and

specifically for the emerging HPC public cloud market [18].

Currently, many EU-funded projects are attempting to

bring heterogeneous resources into cloud environments. The

Hardware- and Network-Enhanced Software Systems for

Cloud Computing (HARNESS) project [19] brings innovative

and heterogeneous resources (such as FPGAs, GPUs) into

cloud platforms by improving performance, security and cost-

profiles of cloud-hosted applications. Heterogeneous Secure

Multi-level Remote Acceleration Service for Low-Power In-

tegrated System and Devices (RAPID) [20] proposes the

development of an efficient heterogeneous CPU-GPU cloud

computing infrastructure, which can be used to seamlessly

offload CPU-based and GPU-based (using OpenCL API)

tasks of applications running on low-power devices(such as

smartphones, tablets, portable/wearable devices, etc.) to more

powerful devices over a heterogeneous network (HetNet).

Managing different architectures independently and inte-

grating with an existing general purpose cloud architecture can

be very challenging. The adoption of heterogeneous resources

dramatically increase the complexity of an already complex

cloud ecosystem.

750 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

C. Resource management frameworks in cloud

Apache Mesos [21] is a platform for abstracting compute

resources (e.g., CPU, memory, storage) away from machines

(physical or virtual) and sharing commodity clusters between

multiple diverse applications (e.g., Hadoop, Spark and MPI).

Aiming to share clusters efficiently between different appli-

cations, Mesos introduces a two-level scheduling mechanism

called resource offers. Over a series of resource allocation

steps, the Mesos master decides how many resources to offer

each application, while applications decide on which resources

to accept and which computations to run on them.

Google Borg system [22] is a cluster manager running

hundreds of thousands of jobs, from many thousands of

different applications, across a number of clusters each with

up to tens of thousands of machines. The Borg system consists

of a logically centralized controller called the Borgmaster and

an agent process called the Borglet that runs on each machine.

Mesos and Borg share the same fundamental approach

of a centralized resource manager and multiple application

frameworks are supported. Borg and Mesos work With bare-

metal machines and, as such, are not directly concerned

with virtualization. Furthermore, being monolithic schedulers,

scalability is an issue.

Google Omega [23] introduces a new cluster manager

scheduling architecture using shared state and lock-free op-

timistic concurrency control mechanisms.

Kubernetes [24] is an open-source platform for placing

applications in Docker containers onto multiple host nodes,

which runs both physical and virtual resources. The Kuber-

netes architecture is defined by a master server and multiple

minions (nodes). The command line tools connect to the API

endpoint in the master, which manage and orchestrate all the

minions, and Docker hosts that receive the instructions from

the master and run the containers.

Omega and Kubernetes have been developed to support mul-

tiple parallel schedulers and to place applications in Docker

containers separately. However, there are still many outstand-

ing issues with Omega and Kubernetes, such as massive

message passing between the parallel schedulers, many house-

keeping activities within each scheduler, without reference to

server utilization.

D. Self-organization self-management approach

Self-organization is a powerful technique for addressing

complexity and borrows heavily from the natural sciences and

the study of natural systems [25] [26]. It has been applied

successfully in complex engineering projects [27] [28]. In

the computing context, Heylighen and Gershenson [29] define

organizations as structure with function and self-organization

as a functional structure that appears and maintains sponta-

neously. Alan Turing [30] once observed that global order

arises from local interactions. In this context, global order is

achieved through propagation and adaptation. Components in

a self-organizing system are mutually dependent and typically

only interact with nearby components. However, the system

is dynamic and therefore the components can change state to

meet mutually preferable, satisfactory or stable states [29].

As they meet these states, they adapt and achieve fit and

this propagation of fit results in system growth. Structural

complexity is driven by increasing the interchangeability and

individuality of components capable of achieving fit. As more

and more components adapt and become assimilated within

the system, complexity increases to incorporate the individ-

ual characteristics of components. Growth only stops when

resources have been exhausted and self-maintenance is the de

facto purpose of the system. As such, self-organizing systems

are defined by their robustness, flexibility, and adaptivity [31].

Self-management has been posited as a solution to com-

plexity in IT infrastructure development generally and cloud

computing specifically [32] [33]. It has its roots in autonomic

computing. Such systems are designed to react to internal and

external observations without human intervention to overcome

the management complexity of computer systems [34]. As

such, self-managing systems are described in terms of four

aspects of self-management, namely, self-configuration, self-

optimization, self-protection and self-healing [35].

The application of self-organization and self-management

principles to cloud computing is at an early stage. Zhang

et al. [34] posit that cloud computing systems are inherently

self-organizing and while they exhibit autonomic features are

not self-managing as they do not have reducing complexity

as a goal. Marinescu et al. [36] argue that cloud computing

represents a complex system and therefore self-organization is

an appropriate technique to address this complexity. They pro-

pose an auction-driven self-organizing cloud delivery model

based on the tenets of autonomy of individual components,

self-awareness, and intelligent behavior of individual com-

ponents. Extending work on self-manageable cloud services

by Brandic [37] at an individual node level, Puviani and

Frei [33] propose self-management as a solution for managing

complexity in cloud computing at a system level. They propose

using a catalog of adaptation patterns based on requirements,

context and expected behavior. These patterns are further

classified according to the service components and autonomic

managers.

III. HIERARCHICAL CLOUD ARCHITECTURE

An overview of a hierarchical cloud architecture for het-

erogeneous resource management and service delivery in

shown in (see Fig.1). The resource management framework

is composed of a logical hierarchy and is described in Sec-

tion III-A. At the bottom level of this hierarchy a service-

specific coalition formation mechanism is used to support the

process parallelism of high performance services and this is

presented in Section III-B.

A. Hierarchical resource management

Our resource management framework is based on a loosely

coupled, logically hierarchical, decentralized management

model across multiple layers. Each layer can be considered as

a self-contained system/component, which may be influenced

HUANHUAN XIONG ET AL.: CLOUDLIGHTNING: A SELF-ORGANIZED SELF-MANAGED HETEROGENEOUS CLOUD 751

Fig. 1: Hierarchical cloud architecture for heterogeneous

resource management and service delivery

by its neighboring layers for the purposes of system adaption

and evolution overtime.

1) Cell Manager: At the top of the hierarchy, a Cell

Manager partitions the space of heterogeneous resources into

multiple zones. Each zone is composed of homogeneous hard-

ware types and an associated resource abstraction method. In

the CloudLightning architecture, heterogeneous resources are

managed using various frameworks and platforms which are

widely recognized to be effective and efficient for managing

virtualized, containerized and bare metal resources, respec-

tively [38]. For example, CloudLightning may use OpenStack

Nova [39] to manage virtual machines on commodity servers,

it may use Kubernetes [40], Mesos [41], and/or Docker

Swarm [42] to manage containers on GPUs and MICs, and it

may use OpenStack Ironic [43] to manage bare metal deployed

on FPGAs.

The Cell Manager aims to make an optimal match between

service requests and available resources based on multiple

objectives, such as service level agreements (SLA), quality

of service (QoS), and specific application constraints (e.g.,

high performance computing or high throughput computing).

Fuzzy pattern recognition [44], heuristic algorithms [45], [46]

and evolutionary algorithms [47] are commonly used in multi-

objective optimization for high-level (i.e., coarse-grained) re-

source allocation, which attempt to find an appropriate solution

between system performance (e.g., response time) and user-

oriented constraints (e.g., SLAs). Similarly, liner programming

or dynamic programming can be used to solve VM placement

problems [48]–[50] for low-level (fine-grained) resource place-

ment, focusing on optimizing resource utilization and power

consumption [51].

2) vRack Managers within a zone: Each zone contains

a group of vRack Managers (vRMs), each of which is a

local resource manager sitting at the bottom of the local

resource management hierarchy. Within a zone, vRMs can

interact with each other using shared or distributed state

information. In the shared state approach, vRMs communicate

with each other through a locally centralized mechanism to

decide on the best candidate to host the next service. This

mechanism may use multi-objective optimization algorithms,

and bidding algorithms, for example. In the distributed state

approach, vRMs cooperate with neighbors to relocate/reassign

the management of physical resources between/among dif-

ferent vRMs to maximize utility for each individual vRM

involved. This mechanism may use cooperative game theory

and self-organization approaches, for example.

Our previous work suggested using a market-based combi-

national auction [52] mechanism for delivering an appropriate

set of resources in response to service requests. In this work,

which is an example of the shared state approach, servers of a

WSC bid to host services based on the requirements of those

services. This approach was shown to out-perform traditional

centralized resource management techniques. However, this

study did not take account of resource virtualization, nor were

critical problems like overbidding and temporal fragmentation

addressed in previous studies.

The work presented in Section IV, which is an example of

the distributed state approach, examines a self-organizing and

self-managing system developed to demonstrate how vRMs

compete and cooperate with in order to achieve local goals

while managing virtualized resources.

3) vRack Manager: The layers of the hierarchy between the

Cell manager and the vRMs are designed to guide resource

requests associated with specific services to locations within

the cloud that would be ”most suitable” to host them. This

suitability is determined by the availability of resources and

the selection of those resources to maximize the nonfunctional

behaviors of the cloud. These behaviors include maximizing

service delivery, resource utilization and quality of service and

minimizing power consumption. The resource request guiding

process is implemented using the concept of Perception (see

Section IV-B1).

At the bottom level of the hierarchy, vRMs act as local

resource managers, each managing a set of physical machines

752 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

(PMs). Since the number of these machine is limited and since

their associated state information can be monitored frequently

and accurately, tight feedback control loops can be established,

resulting in efficient resource management. vRMs can make

use of the state-of-the-art cloud techniques (e.g., virtualiza-

tion, and containerization) and can tailor resource allocation

to meet the need of specialized application workloads (see

Section III-B).

B. Service-specific coalition formation

In general, a description of the resources needed to execute

an associated service is created by the Cell Manager and

propagated downward though the hierarchy. This request is

called a resource prescription - since it prescribes the resources

needed to execute a particular service. Some services are

capable of exploiting process parallelism and to facilitate an

efficient execution, it is necessary to identify a number of

independent, co-located, resources that can be used for their

execution. When a prescription associated with such a high-

performance service is received by a vRM, an appropriate

group of physical/virtual resources, known as coalition, are

identified and managed by the associated vRM as a coherent

compound resource dedicated to delivering the associated

service.

There are several strategies for forming coalitions in terms

of the application workload characterization. For example,

an HPC workloads may require an isotropic distribution of

resources for maintaining a balanced execution, since the

efficient execution of an application depends solely on the

slowest component, due to the tightly coupled execution path.

An isotropy preserving strategy in a vRM can be realized by

spreading the required VMs among available servers. An ex-

ample of this strategy is algorithmically given in Algorithm 1.

However, if the application’s internal communication is

intensive, using a single physical server to accommodate all

of the VMs the associated with the resource prescription

may be more appropriate. This strategy can be described by

Algorithm 2.

IV. PROOF-OF-CONCEPT: A SELF-ORGANIZED,

SELF-MANAGED, SYSTEM

Fig. 2 depicts the high level architecture for the proposed

self-organized, self-managed (SOSM) system.

The Gateway is a front-facing component of the SOSM

system, abstracting the inner workings of the back-end com-

ponents and providing a unified access interface to the SOSM

system. The lifecycle of a Blueprint is initiated when a

Blueprint is chosen from the Blueprint Catalog, possibly

augmented with specific constraints, compiled into a set of

Blueprint Requirements and sent via the Gateway to a Cell

Manager. The Cell Manager (CM) identifies one or more

solutions meeting those requirements. It then chooses one of

these solutions and subsequently sends it to the corresponding

vRack Manager Group (vRMG). vRack Managers (vRMs)

in the same Group are capable of self-organizing to meet

specific objectives, such as reducing power consumption. To

Algorithm 1

1: Let C = ∅ be an empty coalition

2: Let Nv be the number of VMs required by a resource

prescription

3: Let Nc be the number of vCPUs per VM

4: Let Nm be the amount of memory per vCPU

5: function CFSYMMETRY(Nv, Nc, Nm)

6: Let Nfree
vCPU be a vector of the free vCPUs per server

arranged in descending order

7: Let I be the set with the indices of servers arranged

with respect to Nfree
vCPU

8: Let Nfree
memory be a vector of the available memory per

server with respect to order of Nfree
vCPU

9: counter = 0
10: while |C| ≤ Nv and counter ≤ Nv do

11: for i← 1 to Nv − |C| do

12: for j ∈ I − C do

13: if
(

Nfree
vCPU

)

j
≥ Nc and

(

Nfree
memory

)

j
≥

NcNm then

14: C = C ∪ {j}

15:

(

Nfree
vCPU

)

j
=

(

Nfree
vCPU

)

j
−Nc

16:
(

Nfree
memory

)

j
=

(

Nfree
memory

)

j
−NcNm

17: counter = counter + 1
18: break

19: if counter = Nv then

20: break

21: Reorder Nfree
vCPU , N

free
memory and I with respect to

free vCPUs

22: if |C| = Nv then

23: return C
24: else

25: C = ∅
26: return C

do this, they take action based on their local knowledge of

underlying resource utilization. vRMs are aware of changes

in the environment including new and disappearing resources

and adapt, on a negotiated basis, with other vRMs within the

same vRMG to meet system objectives.

A. CL-Resource

In pursuit of a service oriented architecture for the hetero-

geneous cloud, the SOSM system attempts to eliminate the

concept of resource from its interactions with users. Instead,

a service interface is created and utilization of all resources

is the sole concern of SOSM system. To simplify the process

of dealing with multiple physical and virtual resources based

on commodity hardware in addition to specialized hardware

resource types, the SOSM system uses a single abstract

concept of resource, known as a CL-Resource. In response to

a service request, the SOSM system identifies a specific CL-

Resource that will be used for the delivery of that service. The

physical realization of a CL-Resource depends on a number

of factors. When dealing with commodity hardware, CL-

HUANHUAN XIONG ET AL.: CLOUDLIGHTNING: A SELF-ORGANIZED SELF-MANAGED HETEROGENEOUS CLOUD 753

Algorithm 2

1: Let C = ∅ be the an empty coalition

2: Let Nv be the number of VMs required by a resource

prescription

3: Let Nc be the number of vCPUs per VM

4: Let Nm be the amount of memory per vCPU

5: function CFDEPMIN(Nv, Nc, Nm)

6: Let Nfree
vCPU be a vector of the free vCPUs per server

ordered with the servers that are not independent first

7: Let I be the set with the indices of servers arranged

with respect to Nfree
vCPU

8: Let Nfree
memory be a vector of the available memory per

server with respect to the order of Nfree
vCPU

9: for i← 1 to Nv do

10: for j ∈ I do

11: if
(

Nfree
vCPU

)

j
≥ Nc and

(

Nfree
memory

)

j
≥

NcNm then

12: C = C ∪ {j}

13:

(

Nfree
vCPU

)

j
=

(

Nfree
vCPU

)

j
−Nc

14:
(

Nfree
memory

)

j
=

(

Nfree
memory

)

j
−NcNm

15: break

16: Reorder Nfree
vCPU , N

free
memory and I with respect to

free vCPUs

17: if |C| = Nv then

18: return C
19: else

20: C = ∅
21: return C

Resources can be bare metal, virtual machines, or containers.

In addition, these virtual machines or containers may be

created dynamically to suit specific services or they may be

persistent and used to host a number of different services at

different times. In the latter case, the CL-Resource is con-

sidered to be a static virtual resource. Networked commodity

hardware may also be treated a single CL-Resource and either

offered as a bare metal cluster or as a cluster pre-configured

to host distributed applications, for example. Clusters of this

type sitting on a dedicated high speed network constitute

a specialized CL-Resource that may be employed to host

distributed applications having a special requirement for low

latency communications.

Servers with attached accelerators such as GPUs, MICs and

FPGAs typically can not be virtualized due to the specific

nature of the accelerators. As such, the server-accelerator pair

are only offered currently as bare metal by cloud service

providers. In the SOSM system, these server-accelerator pairs

also constitute CL-Resources. In some cases, it may be pos-

sible to virtualize the server and to associate a partition of its

accelerator with that virtualized component. In that case, the

virtual component and the accelerator partition may be seen

as a single CL-Resource. The granularity of a CL-Resource

is thus dependent on what aspect of the underlying physical

Fig. 2: Proof-of-concept: a self-organizing self-managing

(SOSM) system overview

hardware is being exposed to the SOSM system.

An example of this can be seen in Fig. 3 which shows a

MIC-world composed of four server-MIC pairs connected on

a dedicated local network. The complete MIC-world may be

exposed via its local resource manager to the SOSM system

where it is seen as a single CL-Resource capable of running

MIC-world services. In other configurations, the cluster of

servers may be exposed as a networked cluster as described

above. Yet, another option is to present collection of virtual-

ized containers to the SOSM system, each representing a dif-

ferent CL-Resource. This concept of attaching resources to the

SOSM system can be taken to the extreme by connecting spe-

cialized high performance machines, which may be composed

of their own dedicated resource fabric. The characteristics of

the resulting CL-Resources depend on how these machines

are attached to the SOSM system. E.g., if they are attached

in bare metal mode, they can be discovered and used to host

services written explicitly to run on that bare metal hardware.

If they are attached differently, the resulting CL-Resources

may constitute entry points into the queuing systems of the

local resource managers running on those machines.

Thus, CL-Resources can be categorized as follows:

754 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

MIC-World Container/VM Cluster of Servers

MIC

Local Resource Manager

Resource Partitioning Possibilities

Svr

1 2 3

MIC

MIC

MIC

Svr

Svr

Svr

MIC-World

Fig. 3: CL-Resource Concept

1) Physical hardware as a single CL-Resource. This assumes

that an appropriate management software exists for each

hardware type within the SOSM system. The SOSM

system can then use the corresponding APIs to manage

this hardware resource.

2) Resource Manager (RM) as a single CL-Resource. A

CL-Resource can be a resource manager, exposing the

capacity and availability of its subsystem or cluster to the

SOSM system. However, in this case, the SOSM system

does not manage the subsystem or the cluster behind

the resource manager directly. Instead, the SOSM system

simply passes the appropriate resource prescriptions to

the resource manager according to its real-time available

capacities, and the resource manager takes care of the

subsequent execution independently of the SOSM system.

3) A networked group of physical hardware as a single CL-

Resource. There is benefit in representing hardware re-

sources, of the same type, i.e. T, situated on a low-latency

network, as a single CL-Resource under the control of

the same vRM in the SOSM system. CL-Resources of

this type can be placed under the same vRMG hosting

CL-Resources representing individual physical hardware

of type T. However, the CL-Resources representing the

networked group and those representing the individual

physical hardware, will usually be placed under different

vRMs.

B. Self-organized, self-managed framework

A framework for a self-organized, self-managed, hierarchi-

cal architecture was proposed in [53].

1) Self-management mechanism: The CloudLightning

SOSM system is composed of a number of components

in each level in the hierarchy. Each of these components

manages its own activity and communicates with neighboring

components higher-up and further-down the hierarchy. Thus, a

perception reflecting the ability of a component to accept new

work is passed upwards and an impetus biasing the evolution

of the system is passed downwards, where it becomes part

of a weighted calculation affecting the future behavior of

the system. The activities associated with self-management

include the local calculation of perception and impetus based

on the information received from components higher-up

and lower-down in the hierarchy. These two concepts are

integrated into a single value, known as a Suitability Index.

The goal of each component is to maximize its Suitability

Index such that perception and impetus achieve dynamic

status. In practice, this status can never be achieved since the

arrival of resource requests continually perturb the system.

At lowest-level in the hierarchy, vRMs manage collections

of physical machines under their control. At this level,

perceptions are derived from monitoring information and

impetuses become associated with weighted assessment

functions [53], determining the relative important of these

functions in achieving the global system objectives.

Metrics, Weights, Perception, Impetus and Suitability Index

can be expressed more formally as:

• A metric (m) is a measure of a particular aspect of a

components state.

• A weight (w) is an influencing factor, usually towards a

local goal.

• Suitability Index is a measure of how close a component

is to the desired state, and hence how suitable its operat-

ing characteristics are for contributing to the global goal.

argmax
~w,~m∈IRN

η
(

~I(~w), ~P (~m)
)

(1)

where ~w is an N-dimensional vector of weights corre-

sponding to the Impetus and ~m is an N-dimensional

vector of metrics obtained from the lower levels.

• Perception is a function of the metrics from the imme-

diate lower level in the hierarchy.

~mℓ =
1

Nℓ−1

Nℓ−1
∑

i=1

~mℓ−1

i , ℓ > 1 (2)

where Nℓ is the number of components in the ℓ-th level.

For simplicity we choose the Perception of a component

to be a function that averages metrics of its underlying

components. The mean of the metrics of the underlying

level is an approximation of the state of the underlying

resources.

• Impetus is a function of the weights obtained from the

immediate upper level in the hierarchy.

~wℓ =
1

2
(~wℓ+1 + ~w′

ℓ
), 0 ≤ ℓ < 3, (3)

where ~w′
ℓ

are the weights in the previous state and ~wℓ+1

are the weights propagated from the upper level. For

simplicity, we choose the Impetus to be the average of

the weights obtained from the upper level with the current

weights of the component. The averaging function is used

to attenuate the influence of upper levels to lower levels

in order for the system to undergo a smoother transition

towards the global goal.

HUANHUAN XIONG ET AL.: CLOUDLIGHTNING: A SELF-ORGANIZED SELF-MANAGED HETEROGENEOUS CLOUD 755

The ℓ + 1, ℓ and ℓ − 1 represents the Cell Manager, the

vRMGs and vRMs separately. The Cell Manager specifies a

global goal state (e.g., to meet a specific business case), which

can be expressed as weights and applied to the underlying

vRMGs to steer their behavior in a particular direction, repre-

sented as ~wℓ+1 in Eq.3. An analogous process takes place in

each level in the hierarchy.

2) Self-organization mechanism: To achieve local goals and

to accommodate resource requests, it is sometimes necessary

for components in the same level of the hierarchy to cooperate

and to exchange the management role of certain resource.

This self-organizing process is driven specific, reconfigurable,

strategies. Some self-organization strategies include:

• Dominate: the component with the greater suitability

index has precedence and can demand another component

of the same type, but with a lower suitability index, to

transfer some resources.

• Win-Win: components may cooperate to exchange re-

sources to maximize the suitability index of each.

• Least Disruptive: minimize disruption with respect to

management and administration

• Balanced: maximize load-balancing among each cooper-

ating component

• Best Fit: minimize server fragmentation and/or minimize

network latency (this strategy may come from some vRM

specific objectives)

• Any meaningful combination of the above.

An example strategy demonstrating ”Win-Win” shows how

the self-organization works within the SOSM system. The

”Win-Win” strategy is triggered by service request arriving

at a certain vRM, which has the largest Suitability Index,

but lacks the available resources to fulfill this prescription.

However, available resources will be present in the same

Cooperative. Thus, the vRM initiates the procedure of sending

requests to the other vRMs to transfer their resources. If the

available resources, before acquiring the new ones are less

than half of the prescribed, then the vRM will not acquire

them. Instead it initiates the creation of a new vRM which

will manage the available free resources, if any, together with

any newly acquired resources. The aforementioned process can

be described by the following algorithmic procedure:

However, this self-organization strategy can be improved

by acquiring resources, when necessary, by the vRacks with

the maximum Suitability Indices. By using this technique the

suitability index of the vRacks that are required to provide

resources is enhanced, because their management costs are

minimized. Thus, increasing performance and reducing frag-

mentation. This process can be described by the following

algorithmic procedure:

V. CONCLUSION

This paper presented a design for a service oriented archi-

tecture of a heterogeneous cloud. The cloud, once a collection

of commodity hardware, is becoming more and more het-

erogeneous with the addition of hardware of different types.

The trend for hardware vendors to create more and more

Algorithm 3

Let j be the index of the vRack with maximum suitability

index

Let rp be a resource prescription arriving to vRMj

Let pj be the set of free resources belonging to vRMj

function MINADMINCOSTS(rp)

a = ∅
t = ∅
if |pj | < rp then

required = rp− |pj |
for i← 1 to Nv with i 6= j do

send request to acquire free resources from

vRMi

receive pi from vRMi

required = required− |pi|
a = a

⋃

{i}
t = t

⋃

pi
if required ≤ 0 then

remove exceeding resources from t
required = 0
break

send request to vRMs in a to acquire resources in t
receive resource handlers from vRMs in a
if |pj | ≥ rp/2 then

return resource handles to Gateway Service

else

create new vRMk with resources pj
⋃

t
return resource handles to Gateway Service

else

return resource handles to Gateway Service

specialized offering, capable of providing faster, more accurate

and more power efficient solutions, looks set to continue. The

increasing demand for this hardware and for access to high-

performance computing is driving Cloud Service Providers

(CSPs) to make evermore exotic IaaS offering available as

bare metal. In this type of transaction, the CSP effectively rents

the hardware to the customer. In this transaction, the financial

interests of both parties are presumably met. However, from a

resource utilization perspective, nothing definitive can be said:

the customer has no incentive to use the resource efficiently so

long as his needs are being met; the CSP no longer has control

over the hardware for the duration of the rental period.

In the CL system, CSPs no longer offer Infrastructure as a

Service. Instead the CSP undertakes to provide software ser-

vices to the customer - effectively executing services on their

behalf. From this perspective, the hardware is hidden from

the customer. The customer no longer is concerned with how

solutions are provided, they specify only what they want done.

Hiding the hardware from the customer gives control back to

the CSP to decide on how best to respond to customer needs

and to balance these needs with its own, such as maximizing

resource utilization. If the cloud is heterogeneous, that is, if it

is composed of hardware of different types, and if the same

756 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

Algorithm 4

Let j be the index of the vRack with maximum suitability

index

Let rp be a resource prescription arriving to vRMj

Let pj be the set of free resources belonging to vRMj

Let s be a vector containing the suitability indices of all

vRMs sorted in descending order

Let Is be a vector containing the indices of vRMs with

respect to vector s
function MAXSUITABILITYINDEX(rp)

a = ∅
t = ∅
if |pj | < rp then

required = rp− |pj |
for k ← 2 to Nv do

i = Is(k)
send request to acquire free resources from

vRMi

receive pi from vRMi

required = required− |pi|
a = a

⋃

{i}
t = t

⋃

pi
if required ≤ 0 then

remove exceeding resources from t
required = 0
break

send request to vRMs in a to acquire resources in t
receive resource handlers from vRMs in a
if |pj | ≥ rp/2 then

return resource handles to Gateway Service

else

create new vRMk with resources pj
⋃

t
return resource handles to Gateway Service

else

return resource handles to Gateway Service

service solution is available on a multiplicity of these hardware

type, solutions with different cost/performance characteristics

can potentially be offered to the customer. The complexity

of managing resources in this way in an heterogeneous cloud

environment should not be underestimated. An heterogeneous

cloud at scale embodies many hardware types, each with

different cost/performance/power profiles. This, together with

attempting to satisfy the disparate needs of a large and varied

customer community make the heterogeneous cloud a complex

system. Complex systems cannot be managed effectively using

a central resource manager. They need to employ tools suited

for addressing complex systems. Self-organization and self-

management are such tools and this is the approach taken by

CloudLightning.

ACKNOWLEDGMENT

This work is funded by the European Union’s Horizon 2020

Research and Innovation Programme through the CloudLight-

ning project under Grant Agreement Number 643946.

REFERENCES

[1] Microsoft, “Steve Ballmer: Worldwide partner conference 2013
keynote,” Press Release, Houston, Texas, Jul. 2013.

[2] L. A. Barroso and U. Hölzle, “The case for energy-proportional com-
puting,” Computer, no. 12, pp. 33–37, 2007.

[3] D. C. Marinescu, A. Paya, J. P. Morrison, and P. Healy, “Distributed
hierarchical control versus an economic model for cloud resource
management,” arXiv preprint arXiv:1503.01061, 2015.

[4] L. A. Barroso, J. Clidaras, and U. Hölzle, “The datacenter as a computer:
An introduction to the design of warehouse-scale machines,” Synthesis

lectures on computer architecture, vol. 8, no. 3, pp. 1–154, 2013.

[5] L. Tang, J. Mars, X. Zhang, R. Hagmann, R. Hundt, and E. Tune, “Op-
timizing google’s warehouse scale computers: The numa experience,”
in High Performance Computer Architecture (HPCA2013), 2013 IEEE

19th International Symposium on. IEEE, 2013, pp. 188–197.

[6] M. Ahuja, C. C. Chen, R. Gottapu, J. Hallmann, W. Hasan, R. Johnson,
M. Kozyrczak, R. Pabbati, N. Pandit, S. Pokuri et al., “Peta-scale data
warehousing at yahoo!” in Proceedings of the 2009 ACM SIGMOD

International Conference on Management of data. ACM, 2009, pp.
855–862.

[7] J. Hauswald, M. A. Laurenzano, Y. Zhang, C. Li, A. Rovinski, A. Khu-
rana, R. G. Dreslinski, T. Mudge, V. Petrucci, L. Tang et al., “Sirius: An
open end-to-end voice and vision personal assistant and its implications
for future warehouse scale computers,” in Proceedings of the Twentieth

International Conference on Architectural Support for Programming

Languages and Operating Systems. ACM, 2015, pp. 223–238.

[8] J. C. Doyle, B. A. Francis, and A. R. Tannenbaum, Feedback control

theory. Courier Corporation, 2013.

[9] Y. Lu, T. Abdelzaher, C. Lu, L. Sha, and X. Liu, “Feedback control
with queueing-theoretic prediction for relative delay guarantees in web
servers,” in Real-Time and Embedded Technology and Applications

Symposium, 2003. Proceedings. The 9th IEEE. IEEE, 2003, pp. 208–
217.

[10] T. F. Abdelzaher, K. G. Shin, and N. Bhatti, “Performance guarantees
for web server end-systems: A control-theoretical approach,” IEEE

transactions on parallel and distributed systems, vol. 13, no. 1, pp. 80–
96, 2002.

[11] X. Wang and Y. Wang, “Coordinating power control and performance
management for virtualized server clusters,” IEEE Transactions on

Parallel and Distributed Systems, vol. 22, no. 2, pp. 245–259, 2011.

[12] X. Wang, M. Chen, C. Lefurgy, and T. W. Keller, “Ship: A scalable
hierarchical power control architecture for large-scale data centers,”
IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 1,
pp. 168–176, 2012.

[13] S. Crago, K. Dunn, P. Eads, L. Hochstein, D.-I. Kang, M. Kang,
D. Modium, K. Singh, J. Suh, and J. P. Walters, “Heterogeneous
cloud computing,” in 2011 IEEE International Conference on Cluster

Computing. IEEE, 2011, pp. 378–385.

[14] T. R. Scogland, C. P. Steffen, T. Wilde, F. Parent, S. Coghlan, N. Bates,
W.-c. Feng, and E. Strohmaier, “A power-measurement methodology
for large-scale, high-performance computing,” in Proceedings of the

5th ACM/SPEC international conference on Performance engineering.
ACM, 2014, pp. 149–159.

[15] G. Lee and R. H. Katz, “Heterogeneity-aware resource allocation and
scheduling in the cloud.” in HotCloud, 2011.

[16] J. Novet. (2016, November) Aws launches elastic gpus for ec2,
fpga-backed f1 instances, r4 and refreshed t2, c5 and i3 coming in q1.
[Online]. Available: http://venturebeat.com/2016/11/30/aws-launches-
elastic-gpus-for-ec2-fpga-backed-f1-instances-r4-and-refreshed-t2-c5-
and-i3-coming-in-q1/

[17] OpenStack Heterogeneous Accelerator Support ,
https://wiki.openstack.org/wiki/HeterogeneousInstanceTypes.

[18] S. Conway, C. Dekate, and E. Joseph, “Worldwide highperformance data
analysis 2014–2018 forecast,” IDC, Doc, vol. 248789, 2014.

[19] J. G. F. Coutinho, O. Pell, E. ONeill, P. Sanders, J. McGlone, P. Grigoras,
W. Luk, and C. Ragusa, “Harness project: Managing heterogeneous
computing resources for a cloud platform,” in International Symposium

on Applied Reconfigurable Computing. Springer, 2014, pp. 324–329.

[20] L. López, F. J. Nieto, T.-H. Velivassaki, S. Kosta, C.-H. Hong, R. Mon-
tella, I. Mavroidis, and C. Fernández, “Heterogeneous secure multi-
level remote acceleration service for low-power integrated systems and
devices,” Procedia Computer Science, vol. 97, pp. 118–121, 2016.

HUANHUAN XIONG ET AL.: CLOUDLIGHTNING: A SELF-ORGANIZED SELF-MANAGED HETEROGENEOUS CLOUD 757

[21] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H.
Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained
resource sharing in the data center.” in NSDI, vol. 11, 2011, pp. 22–22.

[22] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at google with borg,” in
Proceedings of the Tenth European Conference on Computer Systems.
ACM, 2015, p. 18.

[23] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes,
“Omega: flexible, scalable schedulers for large compute clusters,” in
Proceedings of the 8th ACM European Conference on Computer Sys-

tems. ACM, 2013, pp. 351–364.
[24] D. Bernstein, “Containers and cloud: From lxc to docker to kubernetes,”

IEEE Cloud Computing, no. 3, pp. 81–84, 2014.
[25] “Simplicity and complexity in the description of nature,” Engineering

and Science, vol. 57, no. 3, pp. 2–9, 1988.
[26] P. Schuster, “Nonlinear dynamics from physics to biology,” Complexity,

vol. 12, no. 4, pp. 9–11, 2007.
[27] Y.-Y. Liu, J.-J. Slotine, and A.-L. Barabasi, “Controllability of complex

networks,” Nature, vol. 473, no. 7346, pp. 167–173, May 2011.
[28] P.-A. Noël, C. D. Brummitt, and R. M. D’Souza, “Controlling self-

organizing dynamics on networks using models that self-organize,” Phys.

Rev. Lett., vol. 111, p. 078701, Aug 2013.
[29] F. Heylighen and C. Gershenson, “The meaning of self-organization in

computing,” in IEEE Intelligent Systems, Section Trends & Controversies

- Sel-Organization and Information Systems, 2003.
[30] A. M. Turing, “The chemical basis of morphogenesis,” Philosophical

Transactions of the Royal Society of London B: Biological Sciences,
vol. 237, no. 641, pp. 37–72, 1952.

[31] F. Heylighen et al., “The science of self-organization and adaptivity,”
The encyclopedia of life support systems, vol. 5, no. 3, pp. 253–280,
2001.

[32] J. Kramer and J. Magee, “Self-managed systems: an architectural
challenge,” in Future of Software Engineering, 2007. FOSE’07. IEEE,
2007, pp. 259–268.

[33] M. Puviani and R. Frei, “Self-management for cloud computing,” in
Science and Information Conference (SAI), 2013. IEEE, 2013, pp.
940–946.

[34] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-the-art
and research challenges,” Journal of internet services and applications,
vol. 1, no. 1, pp. 7–18, 2010.

[35] M. Parashar and S. Hariri, “Autonomic computing: An overview,” in
Unconventional Programming Paradigms. Springer, 2005, pp. 257–
269.

[36] D. C. Marinescu, A. Paya, J. P. Morrison, and P. Healy, “An
auction-driven self-organizing cloud delivery model,” arXiv preprint

arXiv:1312.2998, 2013.
[37] I. Brandic, “Towards self-manageable cloud services,” in 2009 33rd

Annual IEEE International Computer Software and Applications Con-

ference, vol. 2. IEEE, 2009, pp. 128–133.
[38] D. Dong, H. Xiong, P. Stack and J. P. Morrison, “Managing and Unifying

Heterogeneous Resources in Cloud Environments,” The 7th International

Conference on Cloud Computing and Services Science (CLOSER 2017),

24-26 April 2017, Porto, Portugal.
[39] OpenStack Nova, http://docs.openstack.org/developer/nova/.
[40] Kubernetes, http://kubernetes.io/.
[41] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,

R. Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained
resource sharing in the data center,” in Proceedings of the 8th USENIX

Conference on Networked Systems Design and Implementation (NSDI

2011), 2011, pp. 295–308.
[42] Docker Swarm, https://github.com/docker/swarm.
[43] OpenStack Ironic, http://docs.openstack.org/developer/ironic/deploy/user-

guide.html.
[44] Z. Wang and X. Su, “Dynamically hierarchical resource-allocation algo-

rithm in cloud computing environment,” The Journal of Supercomputing,
vol. 71, no. 7, pp. 2748–2766, 2015.

[45] A. Konak, D. W. Coit, and A. E. Smith, “Multi-objective optimization
using genetic algorithms: A tutorial,” Reliability Engineering & System

Safety, vol. 91, no. 9, pp. 992–1007, 2006.
[46] T. Saber, A. Ventresque, J. Marques-Silva, J. Thorburn, and L. Murphy,

“Milp for the multi-objective vm reassignment problem,” in Tools with

Artificial Intelligence (ICTAI), 2015 IEEE 27th International Conference

on. IEEE, 2015, pp. 41–48.
[47] E. Zitzler and L. Thiele, “Multiobjective optimization using evolutionary

algorithmsa comparative case study,” in International Conference on

Parallel Problem Solving from Nature. Springer, 1998, pp. 292–301.
[48] A. Beloglazov and R. Buyya, “Energy efficient resource management

in virtualized cloud data centers,” in Proceedings of the 2010 10th

IEEE/ACM international conference on cluster, cloud and grid com-

puting. IEEE Computer Society, 2010, pp. 826–831.
[49] X. Li, Z. Qian, S. Lu, and J. Wu, “Energy efficient virtual machine

placement algorithm with balanced and improved resource utilization in
a data center,” Mathematical and Computer Modelling, vol. 58, no. 5,
pp. 1222–1235, 2013.

[50] J. Dong, X. Jin, H. Wang, Y. Li, P. Zhang, and S. Cheng, “Energy-saving
virtual machine placement in cloud data centers,” in Cluster, Cloud

and Grid Computing (CCGrid), 2013 13th IEEE/ACM International

Symposium on. IEEE, 2013, pp. 618–624.
[51] S. Srikantaiah, A. Kansal, and F. Zhao, “Energy aware consolidation

for cloud computing,” in Proceedings of the 2008 conference on Power

aware computing and systems, vol. 10. San Diego, California, 2008,
pp. 1–5.

[52] D. C. Marinescu, A. Paya, and J. P. Morrison, “Coalition formation
and combinatorial auctions; applications to self-organization and self-
management in utility computing,” arXiv preprint arXiv:1406.7487,
2014.

[53] C. Filelis-Papadopoulos, H. Xiong, A. Spataru, G. Castane, D. Dong,
G. Gravvanis and J. P. Morrison, “A Generic Framework Supporting
Self-organisation and Self-management in Hierarchical Systems,” The

16th International Symposium on Parallel and Distributed Computing

(ISPDC 2017), 3-6 July 2017, Innsbruck, Austria.

758 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

