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Abstract—This article presents a new SVM classifier for the
prediction of the extended early-stage (ES) protein structures.
The classifier is based on physicochemical features and position-
specific scoring matrix (PSSM). Experiments have shown that
prediction results for specific classes are significantly better than
those already obtained.

I. INTRODUCTION

T
HE INTEREST of biologists is to determine the shape

of amino acid chains that make up proteins. Accurate

measurement methods involving the observation and measure-

ment of real chains are troublesome, so the shape is often

predicted basing on the amino acid sequence itself. In addition

to methods that simulate the behavior of atoms and larger

particles in accordance with known physical laws, methods

based on machine learning are used. The shape of an unknown

protein is predicted on the basis of the assumption of a similar

effect of the amino acid sequence on the shape of the different

proteins.

The shape of the chain may be predicted with less details

than exact coordinates of atoms in the three-dimensional space.

The concept of secondary structure concerns the local shape of

the chain, classified as a helix, strand and similar cases, defined

by biologists. Predicting the secondary structure consists in

assigning individual segments of the chain to one of several

classes describing the local shape of the chain. The number

of classes may vary in different algorithms. For example,

the DSSP algorithm defines eight different classes. Methods

operating on the so-called structural code define seven classes.

A review of methods used to predict the shape of proteins

can be found in the literature. As mentioned in [1], identical

sequences of pentapeptides exist with completely different

tertiary structures in proteins. On the other hand, different

amino acid sequences can have approximately the same three-

dimensional structure. However, the patterns of sequence con-

servation can be used for protein structure prediction. The

secondary structure local shape is commonly used for “ab

initio” methods as a common starting conformation for precise

protein structure prediction. A large number of experiments

and theoretical evidence suggests that local structure is fre-

quently encoded in short segments of protein sequence. A

definite relation between the amino acid sequences of a region

folded into a supersecondary structure has been found. It

was also found that they are independent of the remaining

sequence of the molecule. Early studies of local sequence-

structure relationships and secondary structure prediction were

based on either simple physical principles or statistics. Nearest

neighbor methods use a database of proteins with known three-

dimensional structures to predict the conformational states of

test proteins. Some methods are based on nonlinear algorithms

known as neural nets or Hidden Markov Models. In addition

to studies of sequence-to-structure relationships focused on

determining the propensity of amino acids for predefined local

structures, others involve determining patterns of sequence-to-

structure correlations. The evolutionary information contained

in multiple sequence alignments has been widely used for

secondary structure prediction. Prediction of the percentage

composition of α-helix, β-strand and irregular structure based

on the percentage of amino acid composition, without regard

to sequence, permits proteins to be assigned to groups, as all α,

all β, and mixed α/β. Structure representation is simplified in

many models. Side chains are limited to one representative

virtual atom; virtual Cα-Cα bonds are often introduced to

decrease the number of atoms present in the peptide bond. The

search for structure representation in other than the φ, ψ angles

conformational space has been continuing. Other models are

based on limitation of the conformational space. One of them

divided the Ramachandran map into four low-energy basins.

In another study, all sterically allowed conformations for short

polyalanine chains were enumerated using discrete bins called

mesostates. The need to limit the conformational space was

also asserted.

The model introduced in [1] is based on limitation of

the conformational space to the particular part of the Ra-

machandran map. This part is represented by an elliptical

path which traverses areas corresponding to well defined

secondary structural motifs on the Ramachandran plot. The

structures created according to this limited conformational

subspace are assumed to represent early-stage structural forms

of protein folding in silico. In contrast to commonly used base

of final native structures of proteins, the early-stage folding

conformation of the polypeptide chain is the criterion for

structure classification.

This article presents two methods for predicting structural

codes and results for selected classes of the structural code.

The methods assume the possibility of determining the local

protein structure only on the basis of a known sequence of
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amino acids, without implementing any physical or chemical

relationships between the particles other than precomputed

features for specific amino acids. The sequence of amino acids

is described by strings of symbols (letters) representing 20

amino acids, while the structural code with a sequence of

symbols denoting individual classes of the local shape. For

structural code, there are seven classes. Thus, the task of

predicting a secondary structure can be defined as a search

for a function mapping a set of words over a 20-character

alphabet into a set of words over a 7-character alphabet. There

is a set of learning data, containing proteins with known shape.

Methods for predicting the secondary structure do not usually

produce accurate results and are therefore evaluated by quality

measures that specify the fraction of correctly-enrolled classes

for experiments involving previously examined proteins. For

the secondary structure prediction, modern methods achieve

accuracy of about 80%. Achieving high accuracy (over 90%)

is hampered by the ambiguous classification of the local shape,

especially at the ends of the chain fragments belonging to one

class. For the structural code, the most commonly method uses

contingency tables described later.

II. METHODS AND ALGORITHMS

A. The structural code

Predicting the three-dimensional shape of proteins may be

implemented as a simulation of atoms and particles, where all

known physical forces are involved and influence the dynamics

of the whole system. This approach is called “ab initio”. The

final shape of the protein is a result of minimizing the energy

of the whole system. However, the number of variables to

take into account is enormous and the time complexity of

algorithms implementing this idea makes it difficult to use

this approach for longer chains of amino acids. The “ab initio”

method needs a starting point - an initial conformation of the

chain. Good starting point results from predicted secondary

structure or structural codes. In our experiments we have tried

to predict the structural code, which is described in [1], [2].

The local shape of amino acid chain results from the values of

the φ and ψ dihedral angles. Observations of angles occurring

in chains are presented in the so-called Ramachandran graph.

Observations show that in that two-dimensional space (φ, ψ)

clusters are formed describing possible pairs of angular values.

A method used to classify angle pairs (φ, ψ) into one of those

clusters defines an ellipse in the plane (φ, ψ), divides it into

seven segments, and determines which segment is the closest

to the sample. The structural code does not directly map into

classes defined for secondary structures. For certain codes

there is a rough mapping: the code C corresponds to an α-

helix, E and F represent β-sheets while other codes correspond

to a loop.

B. The SVM method applied to the structural code

The SVM (support vector machine) ([3]), method is widely

used in machine learning and protein shape prediction [4].

This method allows to classify vectors in a multidimensional

feature space. However, the method was mainly applied to the

secondary structure of proteins, not to the structural code.

As stated in the paper [4], SVM has shown promising

results on several biological pattern classification problems.

This method became a standard tool in bioinformatics. SVMs

have been successfully applied to the recognition of protein

translation-initiation sites in DNA sequences and functional

annotation of genes from expression profiles.

C. Feature extraction

For predicting the shape of proteins, we have tried to

used different features, mapped to numbers. Our experiments

involve some physicochemical features and features based on

statistics.

Physicochemical features have been already used to predict

the protein secondary structure, as described in [6]. Following

features have been used: hydrophobic values (F1), net charge

(F2), side chain mass (F3), probabilities of conformation for

the three secondary structures H, E and C (F4, F5, F6). The

values have been defined for each of 20 amino acids and are

presented in table I.

1) Hydrophobic values: For protein folding, polar residues

prefer to stay outside of protein to prevent non-polar (hy-

drophobic) residues from exposing to polar solvent, like water.

Therefore, hydrophobic residues appearing periodically can be

used to predict protein secondary structure. In general, the

residues in α-helix structure are made up of two segments:

hydrophobic and hydrophilic. However, β-sheet structure is

usually influenced by the environment, so this phenomenon

is not obvious. In other words, hydrophobic residue affects

the stability of secondary structure. The hydrophobic values

of amino acids can also be obtained from Amino Acid index

database (or AAindex, [5]). Higher positive values mean, that

the residue is more hydrophobic.

2) Net charges: There are five amino acids with charges:

R, D, E, H and K. Because residues with similar electric

charges repel each other and interrupt the hydrogen bond

of the main chain, they are disadvantageous for α-helix

formation. Besides, succeeding residues of β-sheet cannot be

with similar charges. This information helps to predict the

secondary structure. The net charge of amino acids can be

taken from the Amino Acid index database (or AAindex). The

value 1 represents positive charge, the value -1 represents a

negative charge.

3) Side chain mass: Although the basic structure is the

same for 20 amino acids, the size of the side chain group

still influences protein folding. First, the side chain R group

is distributed in the outside of the main chain of α-helix

structure, but the continuous large R groups can make α-helix

structure unstable, thereby disabling amino acids from forming

α-helix structure. Next, the R group with ring structure like

proline (P) is not easy to form α-helix structure. Proline is

composed of 5 atoms in a ring, which is difficult to reverse

and is also not easy to generate a hydrogen bond. Finally, we

observe that the R group of β-sheet structure is smaller than

those of other structures, in general.
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TABLE I
FEATURE VALUES FOR INDIVIDUAL AMINO ACIDS

AA F1 F2 F3 F4 F5 F6

A 1.8 0 15.0347 0.49 0.16 0.35

R -4.5 1 100.1431 0.42 0.19 0.39

N -3.5 0 58.0597 0.27 0.13 0.60

D -3.5 -1 59.0445 0.31 0.11 0.58

C 2.5 0 47.0947 0.26 0.29 0.45

E -3.5 -1 73.0713 0.49 0.15 0.36

Q -3.5 0 72.0865 0.46 0.16 0.38

G -0.4 0 1.0079 0.16 0.14 0.70

H -3.2 1 81.0969 0.30 0.22 0.48

I 4.5 0 57.1151 0.35 0.37 0.28

L 3.8 0 57.1151 0.45 0.24 0.31

K -3.9 1 72.1297 0.40 0.17 0.43

M 1.9 0 75.1483 0.44 0.23 0.33

F 2.8 0 91.1323 0.35 0.30 0.35

P -1.6 0 41.0725 0.18 0.09 0.74

S -0.8 0 31.0341 0.28 0.19 0.54

T -0.7 0 45.0609 0.25 0.27 0.48

W -0.9 0 130.1689 0.37 0.29 0.35

Y -1.3 0 107.1317 0.34 0.30 0.36

V 4.2 0 43.0883 0.30 0.41 0.29

4) Conformation parameters: Conformation parameters are

the probabilities of creating particular types of the secondary

structure by a given amino acid. In general, protein secondary

structure is divided into three types: α-helix (H), β-sheet (E)

and coil (C), so that there are three values for each amino acid.

In the feature extraction, all the conformation parameters are

calculated from a data set. The conformation parameters for

each amino acid Sij are defined as follows: Sij =
aij

ai
, where

i = 1, . . . , 20, j = 1, 2, 3. In that formula, i indicates one of

20 amino acids, j indicates the 3 types of secondary structure:

H, E and C. Here, ai is the amount of the i-th amino acid in a

data set whereas aij is the amount of the i-th amino acids with

the j-th secondary structure. The conformation parameters for

each amino acid in a data set are shown in table I as F4, F5 and

F6. The reason of using conformation parameters as features

is that the folding of each residue has some correlation with

forming a specific structure.

5) PSSM profiles: The position-specific scoring matrix

(PSSM) is a commonly used representation of motifs in

biological sequences. The matrix is defined for a given set

of proteins and specifies the probability of finding a given

amino acid at a given position. There are 20 amino acids, so

there are 20 values from the PSSM matrix for each position.

When generated for a sliding window of the length 15, we

have additionally 20 · 15 = 300 features.

To use the SVM method, we need a feature vector for

each position of the amino acid chain. The feature vector

should include information about the context in which a

given amino acid occurs. To get a clear result for a given

position in the chain, we choose a window of 15 elements

and describe feature for the element in the middle of it (at

the 8th position). Therefore, we construct a feature vector

using a sliding window of 15 elements. We slide it through

the amino acid chain and for each position, we retrieve six

features from the table I. In this approach, we get a vector

of 90 features. The window size (15) was chosen arbitrarily

after experimenting with shorter and longer windows. With

additional PSSM features, we get a vector of 390 features for

each position of the chain. Initial values at the ends of the

chain, where the windows contains positions outside of the

chain, are impossible to compute. So we have decided to cut

the analyzed part of all chains by 7 positions from both sides,

obtaining full coverage of data and complete feature vectors.

D. Contingency tables

The structural code for amino acid chains may be predicted

using statistical methods, as described in [1]. The idea of

contingency tables described in this article assumes, that the

sequence of amino acids determines or at least influences the

local shape of the protein chain. To reduce the complexity of

computations it was assumed, that a sequence of only four

amino acids (so called tetrapeptide) influences the secondary

code within this sequence. Unfortunately the tetrapeptide does

not strictly determine the shape, because there are cases,

where identical tetrapeptides lead to different shapes. The

contingency table collects information about tetrapeptides-

shape relation in a given set of training data (over 1.5 million

of tetrapeptides in the cited paper [1]). There are 7 structural

codes and 20 different amino acids, so the table is a matrix

of the size 74 × 204 = 2401 × 160000 elements. Based on

the training set, statistics are generated to describe how many

times a given 4-element structural code occurred for a given

tetrapeptide (so we have 2401 × 160000 counters). Then,

probability values are computed and stored in the array to

predict structural codes. After collecting data, regularities may

be observed in the contingency table. Results of structural code

prediction using contingency tables are presented e.g. in [7]

and summarized in table III (in the first row).

III. TRAINING AND TEST DATA

To test the performance of the SVM classifier, we have taken

a set of proteins called CB513 (http://comp.chem.nottingham.

ac.uk/disspred/datasets/CB513). Training and testing sets in

such experiments should contain carefully selected proteins

to avoid distortion in results of experiments. If the training

set contained proteins similar to proteins selected for testing,

results of prediction would be distorted, possibly improved.

The presence of training samples similar to testing sam-

ples makes the classification task easier for the classifier

and thus is avoided in experiments. The CB513 is a set

of selected proteins, where no pair of proteins shares more

than 25% sequence identity over a length of more than 80

residues. All proteins are available in the PDB protein database

(http://www.rcsb.org/pdb/home/home.do) with precise three-

dimensional shape.
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TABLE II
RESULTS OF STRUCTURAL CODE PREDICTION WITH SVM ON CB513, 9-FOLD EXPERIMENT

S. code s1 s2 s3 s4 s5 s6 s7 s8 s9 Total

A 17.39% 18.29% 12.90% 17.86% 18.37% 15.38% 19.35% 22.86% 12.90% 17.28%

B 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

C 62.37% 64.19% 61.13% 54.75% 65.68% 64.02% 66.62% 60.30% 62.95% 62.45%

D 14.77% 18.51% 19.78% 13.07% 17.33% 14.97% 17.65% 17.64% 15.24% 16.55%

E 87.73% 83.33% 85.94% 88.57% 90.27% 88.07% 86.30% 87.87% 86.59% 87.19%

F 0.97% 1.14% 0.86% 0.94% 0.51% 0.73% 0.71% 0.56% 0.68% 0.79%

G 15.31% 19.45% 18.29% 17.87% 12.39% 16.20% 20.22% 19.72% 20.16% 17.74%

Total 51.25% 51.17% 49.96% 47.57% 53.65% 51.68% 55.06% 51.22% 49.74% 51.26%

TABLE III
COMPARISON OF STRUCTURAL CODE PREDICTION WITH CONTINGENCY TABLES AND SVM

S. code A B C D E F G

Accuracy cont. table 2.26% 1.95% 82.32% 5.95% 38.05% 17.56% 10.95%

Accuracy SVM 17.28% 0.00% 62.45% 16.55% 87.19% 0.79% 17.74%

IV. EXPERIMENTS AND EVALUATION OF THE RESULTS

For the secondary structure prediction, the traditional mea-

sure of the prediction quality is called Q3, which is defined

as the number of correctly predicted residues divided by

the length of the chain. However, it was shown, that the

evaluation should be more specific. For seven codes, a slightly

modified version of Q3 called Q7 has been uses. Q7 was

described in [8]: Q7 = Nr7

N
·100, where N expresses the total

number of amino acids in the polypeptide under consideration,

Nr7 expresses the number of correctly predicted amino acids

representing the structural form r.

Experiments have been implemented in the R language with

the Machine Learning package (mlr). A set of precomputed

PSSM matrices was used. The Radial Basis Function kernel

(RBF, Gaussian kernel) was used in the SVM classifier -

classif.ksvm from the mlr package, which implements multi-

class classification. The RBF kernel for two samples y and y′

representing feature vectors, is defined as:

K(y, y′) = exp

(

−
||y − y′||2

2σ2

)

.

The term ||y − y′||2 is a squared Euclidean distance between

feature vectors y and y′. Values of the RBF kernel are in the

range from 0 (for very distant samples, in the limit) to 1 (for

equal samples). It is interpreted as a measure of similarity.

Results of experiments on the CB513 set are shown in the

table III. As this table shows, the results on some structural

codes differ significantly for two tested methods. Especially,

the code A, D and E are predicted better by the SVM method.

Code E is usually found at the end of β-twists, which may

lead to the conclusion, that SVM is better at borders of motifs.

Reasons of differences on other codes need further research.
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