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∗LIPN, UMR 7030, Université Paris 13, Sorbonne Paris Cité
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Abstract— In this paper we present MLTBiqCrunch, a hi-
erarchically parallelized version of the open-source solver
BiqCrunch [1]. More precisely, this version has two levels of
parallelization: a coarse grain, assigning a thread to a node
evaluation and a fine grain, parallelizing a node evaluation when
some threads are not busy. We present experiments on some clas-
sical binary quadratic optimization problems with comparison of
their scalability and raw performance. In particular, we obtain
a superlinear speedup for some of the most difficult instances.

I. INTRODUCTION

BiqCrunch [1] is a full open-source solver (publicly avail-

able online) for binary quadratic optimization problems. Such

problems can be stated as 0-1 quadratic programs with mI

inequality constraints and mE equality constraints:














max zTS0z + sT
0
z

s.t. zTSiz + sTi z ≤ ai, i ∈ {1, . . . ,mI}
zTSiz + sTi z = ai, i ∈ {mI + 1, . . . ,mI +mE}
z ∈ {0, 1}n

(1)

where the Si’s are real symmetric n × n matrices, the si’s

are vectors in R
n, and the ai’s are real numbers. Note that

if all Si = 0 then one gets a 0–1 linear program. BiqCrunch

requires the objective value of (1) to be integer for any feasible

solution.

Many optimization problems can be stated as (1), for further

details about applications and solvers the reader is referred to

[2], [3]. A vast majority of solvers for continuous, mixed or

integer problems, even to solve special cases (e.g. [4]) or re-

laxations of (1) (e.g. [5]) are multithreaded. Designing parallel

versions is especially useful for Branch-and-Bound-like algo-

rithms (e.g. [6]), and several authors investigated sophisticated

approaches to take advantage of various architectures (e.g. [7],

[8]). Other authors proposed approaches to provide a more

general framework to design such parallel Branch-and-Bound

algorithms (e.g. [9]). Some specific softwares are specialized

to design this type of solvers, such as the COIN-OR High-

Performance Parallel Search Framework [10] which provides

a base layer of a hierarchy consisting of implementations of

various tree search algorithms for specific problem types.

BiqCrunch uses sophisticated high-quality semidefinite

bounds [11] and automatically sets the tightness of its

bounding procedure node by node in the search tree. Moreover,

triangle inequalities are dynamically added and removed from

the underlying nonlinear relaxations in order to obtain stronger

bounds. A complete description of the solver is given in [1] as

well as its mathematical background. The BiqCrunch website

is http://lipn.univ-paris13.fr/BiqCrunch/,

where the source code, numerical results for several classical

combinatorial problems and related papers can be downloaded.

The distribution also includes converters and heuristics for

some specific problems.

The evaluation of each node can be made independently

from the other ones, making BiqCrunch a good candidate

for parallel computing. However, the shape of the search

tree developed by the branch-and-bound procedure does not

immediately extract an optimal level of parallelism.

In this paper, we propose a two-level parallel execution,

mixing parallel, low-level computation kernels and task-based,

coarser-grained parallelism, to adapt the degree of parallelism

at each level of granularity. After a quick review of the

literature on related works, we describe BiqCrunch and how it

can be parallelized in section II. We evaluate the performance

exhibited by each level of parallelism, and its consequence on

the overall performance (including the numerical effects of the

reorganization of the computation) in section III. Moreover, we

compare the new parallel version with the sequential version

of the solver by solving three classical NP-hard combinato-

rial problems (Max-Cut, Max-Independent-Set, and Max-k-

Cluster). Last, we discuss the results and open perspectives in

section IV.

II. MULTITHREADED BRANCH-AND-BOUND

The choices we made for MLTBiqCrunch are inspired by

previous works. For instance, a performance comparison is

available in [12] between multi-core and many-core systems

by solving big optimization problems with a Branch-and-

Bound algorithm. Another branch-and-bound implementation

is described in [8] using multi-GPU systems. While the

previous papers are related to multi-CPU systems on one hand

and to multi-GPU systems on another hand, [13] implements

a Branch-and-Bound for heterogeneous architectures (both

multi-CPU systems with GPU accelerators).

Nevertheless, the solver BiqCrunch has specific characteris-

tics and features that should be taken into account. First, it was

initially designed to be used on a standard personal computer,

i.e. with a limited amount of memory and up to 8 cores.

Second, the nonlinear relaxations used in BiqCrunch have a

higher computational cost (from several seconds to several

minutes) compared to other bounds used generally in Branch-

and-Bound-like algorithms (such as linear programming for
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instance). On the other hand, high-quality bounds are obtained

here and therefore one can expect a small number of nodes

to evaluate. Previous experiments with BiqCrunch2.0 show

that actually, even for difficult combinatorial problems, this

number is at most a few hundred. This means that the

communication cost will be limited in a parallel version if

the grain corresponds to one node evaluation.

However, the bounding procedure of BiqCrunch can be very

fast since the quality of the relaxation is adjustable. Thus it

may be hazardous to allocate many threads to evaluate a given

node if other nodes are ready to be evaluated.

A. Single-threaded branch-and-bound

BiqCrunch is mainly written in C, and makes calls to Fortran

libraries. The code actually makes heavy use of linear algebra

functions (LAPACK [14] or the Intel Math Kernel Library

(MKL)), it includes the nonlinear optimization routine L-

BFGS-B [15], [16], and it is provided with an updated version

of the branch-and-bound platform BOB [17]. Nevertheless, the

current version of BiqCrunch uses only the serial features of

the platform BOB (i.e. one core is used), although the latter

is precisely designed to implement Branch-and-Bound-like

algorithms that take advantage form the benefits of parallelism.

When branching on variable zi in problem (1), the BOB

branch-and-bound platform [17] creates two new subproblems

(nodes of the search tree), one where zi is fixed to 0 and

the other where zi is fixed to 1. The subproblem that has

the weakest bound (among all the nodes previously inserted

into the global priority queue) is then selected to be the next

subproblem to branch on. In the case of a tie, BOB selects the

subproblem which is lower in the search tree (i.e., having the

larger number of fixed variables).

At iteration k of the bounding procedure, the algorithm

computes a bound Fk of all the feasible solutions of the

subtree, and takes advantage of the fact that the optimal

value of the combinatorial problem is an integer. Hence, if

Fk < βk + 1, then the node of the branch-and-bound tree is

pruned, where βk is the current best feasible solution (since all

feasible solutions of the subproblem have an objective value

no better than βk). If this is not the case, then the branch-and-

bound tree needs to be explored further.

The bounding procedure of BiqCrunch enjoys some nice

features. It can actually be fast to run if the node is easy to

prune, but is also able to provide tighter but more expensive

bounds if necessary. Moreover, it stops when it is likely that

a bound which is lower than βk +1 cannot be reached within

a reasonable amount of time. The bounding procedure can

be stopped anytime and will always return a valid upper-

bound for the problem, thanks to duality properties (see [11]).

Therefore, the computation times to evaluate the nodes are

bounded, and this bound can be chosen. In addition, generic

or specific heuristics take advantage of the fractional solution

computed by the relaxation to build a feasible solution for the

initial combinatorial problem (1), in order to try improving

the current best feasible solution. This is done several times

in the bounding procedure (for further details see Section 4.2.
and Algorithm 3 in [1]).

The BiqCrunch solver stores the input problem matrices in

a sparse format in memory to keep its memory requirements

small. Moreover the memory usage of the nonlinear optimiza-

tion routine L-BFGS-B is very low and optimized. Typically,

a problem with 225 variables and 32206 constraints (which

involves a 226 × 226 symmetric matrix, i.e. 25425 variables,

to store the underlying relaxation variables) requires at most

32 MB to be solved. In order to design a parallel version

of BiqCrunch, thanks to this very limited amount of memory,

allocating a private working memory space for each thread is a

simple and still low-cost solution, even on a standard personal

computer.

B. Multithreaded computation kernels

BiqCrunch uses linear algebra kernels intensively: in par-

ticular, profiling data showed that it spends about 60% of

execution time in dsyevr, which is itself spending about

20% of the total execution time in dsytrd. Therefore, the

most basic step to take advantage of multicore architectures is

to use multithreaded routines.

This is a fine-grain, low-level parallelism. This approach

follows a fork/join model. Computation outside of the

BLAS/LAPACK routines is sequential. Besides, each call to

a routine has to pay the cost of spawning new threads and

joining them at the end. Therefore, this parallelization model

might not be sufficient.

C. Task-parallelism

We have seen in section II-A that the branch-and-bound

procedure creates a tree: the branch-and-bound search tree.

Each node of this tree can create (or not) subproblems. Each

of these subproblems forms a node, that can be computed in-

dependently from the other ones. Compared with the approach

using multithreaded computation kernels, this is a coarser-

grain parallelism.

When generated, nodes of the search tree are put in a queue.

When an idle thread is available, it pops a node from the

queue and evaluates it. Therefore, this approach follows a

task-based parallelism model. The priority system provided by

BOB handles different priorities between the different nodes

and, therefore, the different parallel tasks.

When the current best solution is updated (e.g. when an

optimal solution is found), nodes with a evaluation which is

not as good are removed from the queue by the BOB platform.

Moreover, the other threads that are working may also stop

their evaluation if their node can be pruned using this new

bound (since the bounding procedure provides valid bounds

during all the evaluation process : see remark section II-A).

At the beginning of the computation, only one node exists

and therefore, only one thread is computing. As new nodes

are generated, more threads can compute them in parallel.

Therefore, the level of parallelism increases as nodes are gen-

erated. This approach is efficient when the problem generates
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(b) Parallel execution on 4 threads.

Fig. 1: Computation of a tree that generates 7 tasks, where the

optimum is found on task T8.

a large number of nodes, in order to amortize the low level of

parallelism of the initial phase.

A short example is given in Figure 1. The initial node

T0 generates two nodes T1 and T4. The sequential version

(represented by the tree in Figure 1a) computes the nodes

in the numerical order indicated (from 1 to 9) if we assume

that the value of their evaluation implies it : the branch-and-

bound does a best-first search, so if T2 has a better evaluation

than T4, T2 will be chosen first. The optimum is found on

T8 : the sequential version has already evaluated T5, T6

and T7 whereas the parallel version (Figure 1b) has not, and

potentially stops the execution of T2, T3 and T9 because the

best solution has been updated.

A drawback of this approach is possible load unbalance.

If a node takes significantly longer than the other ones to be

computed, it can delay the whole computation while the other

threads are waiting for it to complete. However, in practice,

this case does not happen and several mechanisms guarantee

bounded evaluation times and roughly equivalent computation

time (see section II-A).

D. Two-level parallelization

In order to improve the exploitation of the multiple core

platform when the branch-and-bound tree has not generated

enough nodes to keep them all busy, both previous approaches

can be combined together in a hierarchical parallelization. The

core idea is to use multiple threads to evaluate a node when

threads are idle, and one thread when there are enough nodes

to assign one to each thread.

A possible schedule is given by Figure 2 (note that the

tasks are not necessarily related to the ones on Figure 1).

At the beginning of the computation, only one node exists

P0

P1

P2

P3

T0

T1

T2

T3

T4

T5

T6

T7

T8

Fig. 2: Possible (perfect) thread occupation of 9 tasks on 4

threads with hierarchical parallelism.

in the branch-and-bound tree. Therefore, all the threads are

used to evaluate it. It generates two nodes: each of them is

evaluated on two threads. These nodes generate four nodes in

total, which is equal to the number of threads: each node is

evaluated on a single thread. At the end, the tree narrows and

only two nodes are generated, evaluated on two nodes each.

Choosing the number of threads to evaluate a node is not

trivial. If some threads are idle when a node evaluation begins,

later during the evaluation of this node, other nodes might be

generated and need these threads to compute them. In our

system, coarse-grain parallelism has a higher priority than the

fine-grain one on thread occupation. Therefore, idle threads are

assigned to new node evaluation rather than on multithreaded

node evaluation. Various heuristics can be defined to determine

the number of threads to be used to compute a given task.

III. PERFORMANCE EVALUATION

We evaluated and compared the performance of our imple-

mentation of the algorithms described in section II. In partic-

ular, we compared their scalability and raw performance. The

problem instances are described thoroughly and the numerical

results obtained with the current version of BiqCrunch are

given on the BiqCrunch website.

A. Scalability

We limited the number of cores used by the multithreaded

BiqCrunch and multithreaded BLAS in order to avoid using

too many cores. In particular, if our heuristic makes BiqCrunch

choose to use a number of cores for the BLAS routines such

that, later, new tasks are executed and the total number of

threads used exceeds the number assigned to BiqCrunch, the

system limits BiqCrunch in such a way that it does not use

more cores than indicated.

We used a 32-core machine that features two Intel Xeon

CPU E5-2630 v3 running at 2.4 GHz and 32 GB of RAM. The

machine runs a Linux 3.16.0 kernel. All the code was compiled

using the GNU gfortran and gcc 4.9.2 compilers with -O3

optimization flag. We compiled the code against OpenBLAS

0.2.12 and LAPACK 3.5.0. BiqCrunch provides L-BFGS-B

version 3.0, that calls LINPACK and BLAS routines provided
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Fig. 3: Scalability with the brock-200-4 problem.

with the source code. We modified it in order to call routines

from the BLAS and LAPACK libraries installed on our system

(with a wrapper to call equivalent LAPACK routines instead

of the LINPACK ones).

a) Task parallelism: The performance of BiqCrunch

increases when threads are added to the computation (see

section III-C). We evaluated the scalability of the multi-

threaded computation (one thread per node of the search

tree) on various problems. For instance, Figure 3 presents the

scalability (Figure 3a) and the speedup (Figure 3b) obtained

by the computation of brock-200-4, a Max-Independent

Set problem with n = 200 issued from the DIMACS chal-

lenge that maximizes the total weight of the vertices in the

independent set.

We can see that it scales well, up to a certain number of

threads. Unlike small problems, this problem is not limited by

the number of nodes in the search tree: it evaluates 185 nodes.

Therefore we believe that the scalability is limited by thread

management and synchronization costs.

However, this approach faces a strong limitation: in practice,

some problems generate only a few nodes, or even only one.

If the optimal solution is found on the first node, evaluating

nodes in parallel is completely useless, because the one and

only node is evaluated by one thread.

b) Multithreaded computation kernels: In order to take

advantage of the multiple cores available even when the

structure of the search tree does not allow enough parallel

tasks (as described in section II-C), we called the BLAS

routines using multiple threads. However, on small instances,

experimentally, the performance is roughly the same using 1

to 10 threads.

c) Hybrid parallelism: We evaluated the performance of

the hybrid approach in two contexts: with a number of tasks

(used to evaluate the nodes) equal to the number of cores used

(a configuration similar to the one presented by Figure 2), and

with a number of nodes smaller than the number of cores

and several threads per node. The latter configuration tries

to scale beyond the scalability limits of the node parallelism

by assigning several threads to evaluate one node: if solving

the problem scales up to 16 node evaluations in parallel, we

assigned two threads per node in order to use 32 cores in

total: it is a nested parallelism approach. The former uses

several threads per node when some threads are idle because

the search tree has not generated enough nodes to keep them

busy: it is close to a greedy approach.

Figure 4 presents the scalability of solving the bqp-250-6

problem (a pure binary quadratic problem with n = 250,

available in the OR-library and BiqMac libraries, and used in

[18], [19]) using half of the idle threads per node evaluation.

We can see that it scales poorly. We have limited to 8 threads,

since the nodes’ queue list is never longer. We analyzed the

execution of BiqCrunch and we noticed that, because of the

asynchronous nature of the scheduling of the threads that

evaluate the nodes, BiqCrunch tends to use more threads than

the number of cores assigned to the computation (recall that

we limited the number of cores available for each run, for

fairness purpose).

In Figure 6, we are presenting the performance obtained

by the brock-200-4 problem with 2 threads per node

evaluation.

We can see that it “extends” the scalability of the parallel

implementation, but the overall performance is only a few

percent better than with one thread per node evaluation (Figure

3a). It can possibly be explained by the relatively small

speedup obtained by using multithreaded node evaluation in

general.

In order to set the balance between the two levels of paral-

lelism, we used performance profiles [20]. Figure 5 gives the

performance profiles obtained for a set of 45 Max-k-Cluster

problems with n = 100 used in several papers (e.g. [21]) and

publicly available on the BiqCrunch website. The number of

threads assigned to BLAS during the node evaluation ranges

from 1 (sequential BLAS) up to 8 (in this case all the nodes

are evaluated sequentially and BLAS uses all the cores). If one

considers a set S of problems used to benchmark the solvers,

then for each problem p ∈ S , we define tmin

p as the minimum

time required to solve p over all the solvers. Then, for each

solver, we consider the performance profile function θ, which

is defined as

θ(τ) =
1

|S|

∣

∣

{

p ∈ S : tp ≤ τtmin

p

}
∣

∣ , for τ ≥ 1, (2)

where tp is the time required for the solver to solve problem p.

448 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017



 0

 100

 200

 300

 400

 500

 600

 700

 0  1  2  3  4  5  6  7  8

T
im

e
 (

s
)

Number of cores used

Execution time

(a) Task scalability.

 0

 1

 2

 3

 4

 5

 6

 7

 0  1  2  3  4  5  6  7  8

S
p
e
e
d
-u

p

Number of cores used

Speed-up
Linear speedup

(b) Speedup.

Fig. 4: Scalability with the bqp-250-6 use-case with half of

the idle threads per node evaluation.

Fig. 5: Performance profiles using different balancings of the

hybrid approach. Each curve θ(τ) corresponds to a given

setting (from 1 up to 8 threads assigned to BLAS).

The function θ is therefore a cumulative distribution function,

and θ(τ) represents the probability of the solver to solve a

problem from S within a multiple τ of the minimum time

required by all solvers considered. These results confirm the

one obtained in Figure 6: the best choice is to run the BLAS
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Fig. 6: Scalability with the brock-200-4 problem with 2 threads

per node evaluation.

routines using at most two threads.

B. Numerical issues

For now, the two-level parallelism is still not fully satisfac-

tory. We have noticed that using the current parameters (e.g.

tolerance) of the linear algebra functions, the multithreaded

version of BLAS tends to be numerically unstable when

the underlying nonlinear relaxation is very tight (see [11]

for further details about how adjusting the tightness of the

relaxation). We have improved this stability by setting new

values, but a lot of factors come into play here.

First, there is a ”giving up” function in the bounding

procedure that stops the evaluation of a node when the progress

of L-BFGS is too small compared to the value of the best

current feasible solution. Consequently, this can occur at a

different moment of the computation if a different number of

threads are allocated to the BLAS functions.

Second, the branching procedure actually depends on the

fractional solution to select the variable to branch on, and these

values can be slightly different when using the multithreaded

version of BLAS. Nevertheless, for most problems, it must

be pointed out that this second parallelization level does not

improve a lot the solver performance. Indeed, the proportion

of computation time during which the number of nodes in

the queue is smaller than the number of threads is often

negligible (except for ”easy” problems). Consequently, for
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difficult problems (i.e. that require a large number of node

evaluations), each thread will be kept busy most of the time.

Hence, it is possible to avoid these issues by using only a

one-level parallelization (i.e. one thread corresponds to one

node evaluation). But of course, we must investigate in depth

the reasons behind this numerical instability to address the

problem: this is an ongoing work.

C. Performance comparison and computational results

In this section, we present computational results obtained

for three classical NP-hard combinatorial problems that can be

stated as 0-1 quadratic programs. All the tests are run using

the same computer: a DELL T-1600 equipped with an Intel

Xeon E3-1270 CPU running at 3.40GHz with 8 cores. The

same parameters (see the BiqCrunch documentation) are set

for both solvers except for the number of cores: BiqCrunch2.0

uses a single core and MLTBiqCrunch uses four cores (except

in Figure 7 where the number of cores ranges from two to

eight).

We chose instances that are not solved at the root of

the search tree by BiqCrunch, and thus are relevant in our

context. All the problems are publicly available and have been

used by several authors [18], [21] (see the BiqCrunch website

http://lipn.univ-paris13.fr/BiqCrunch/ for

further details and references).

In the Max-Independent-Set (MIS) problem (see Table I),

we are given a graph G = (V,E) with vertex weights wi, and

the objective is to maximize the total weight of the vertices in

an independent set (a set S of vertices having no two vertices

joined by an edge in E):

(MIS)
maximize

∑

i wizi
subject to zizj = 0, ∀(i, j) ∈ E

z ∈ {0, 1}
n

.

(3)

In the Max-k-Cluster problem (see Tables II, III), we are

given an edge-weighted graph with n vertices and a natural

number k, and the objective is to find a subgraph of k nodes

having maximum total edge weight:

(Max-k-Cluster)
maximize 1

2

∑

ij wijzizj
subject to

∑n

i=1
zi = k

z ∈ {0, 1}
n

.

(4)

In the Max-Cut problem (see Tables IV, IV, VI, VII,VIII,

IX), we are given an edge-weighted graph with n vertices,

and the objective is to maximize the total weight of the edges

between a subset of vertices and its complement:

(Max-Cut)
maximize

∑

ij wijzi(1− zj)

subject to z ∈ {0, 1}
n

.
(5)

MLTBiqCrunch is always faster and in some cases it

generates fewer nodes. In some other cases (for example

brock200 1) the optimal solution is found late in the traver-

sal of the search tree; that explains the much larger number of

nodes for MLTBiqCrunch. Let us to point out that solving this

problem requires only 47 MB with MLTBiqCrunch. It involves

200 binary variables (20 100 for the underlying relaxations)

and 5267 equality constraints.

When using MLTBiqCrunch, we have observed a super-

linear speedup for several problems, especially for the most

difficult instances (see Table III). Actually, as pointed out in

Section II-C, the current best feasible solution can be updated

earlier (maybe several times) and therefore, fewer nodes are

generated in the search tree. Moreover, since the bounding

procedure can be interrupted at any time, a superlinear speedup

can even occur with the same number of nodes in the search

tree when several bounding procedures are stopped earlier at

the same time.

Fig. 7: Performance profiles of BiqCrunch2.0 and

MLTBiqCrunch (each curve θ(τ) corresponds to a given

number of threads).

In Figure 7, we illustrate the expected performance from

a standard user point of view when using MLTBiqCrunch

instead of BiqCrunch (the current version is BiqCrunch2.0).

This figure gives the performance profiles [20] obtained for

the set of problems used in Figure 5. Obviously, increasing

the number of threads improves the performance profiles of

the solver. Recall that now BLAS uses at most two threads,

and thus all the additional free cores are assigned to evaluate

the available nodes in the queue.

TABLE I: CPU times and number of nodes in the search tree

to solve Max-Independent-Set problems (DIMACS library)

BiqCrunch 2.0

n m nodes time (s)

MANN a9 45 72 5 3.90

keller4 171 5100 155 155.24

brock200 1 200 5066 1393 1822.81

brock200 2 200 10024 53 87.01

brock200 3 200 7852 107 157.45

brock200 4 200 6811 185 263.32

MLTBiqCrunch

nodes time (s)

3 0.64

113 88.55

2861 747.38

79 73.78

321 113.04

185 77.51

IV. CONCLUSION

In this paper, we have analyzed and compared the perfor-

mance gain of two parallelization strategies for the BiqCrunch
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TABLE II: CPU times and number of nodes (in the search

tree) averaged over five instances for each triple (n,k,d) (d

is the graph density) required to solve medium-sized Max-k-

Cluster problems

BiqCrunch 2.0

n k d(%) nodes time (s)

120 30 25 64.6 133.04

50 110.6 177.20

75 236.6 297.84

60 25 28.6 59.09

50 43.8 90.66

75 19.0 38.95

90 25 1.0 3.53

50 6.2 28.79

75 1.0 2.38

MLTBiqCrunch

nodes time (s)

54.6 29.56

109.0 43.73

222.4 70.05

27.4 21.36

43.0 28.41

19.0 16.76

1.0 3.54

7.4 20.05

1.0 2.24

TABLE III: CPU times and number of nodes (in the search

tree) averaged over five instances for each triple (n,k,d) (d

is the graph density) required to solve to solve large Max-k-

Cluster problems

BiqCrunch 2.0

n k d(%) nodes time (s)

160 40 25 501.0 1927.53

50 6061.6 15411.70

75 4427.8 10798.50

80 25 207.4 854.28

50 505.8 1791.06

75 2017.4 7242.98

120 25 10.2 74.53

50 7.0 63.67

75 3.8 30.64

MLTBiqCrunch

nodes time (s)

535.4 397.59

6430.6 3731.51

5103.8 2624.43

195.4 177.25

536.6 471.94

2101.4 1786.57

10.6 38.75

6.2 30.95

5.0 28.39

TABLE IV: CPU times and number of nodes in the search

tree to solve the w100.d050 max-cut problems.

BiqCrunch 2.0

problem nodes time (s)

0 307 434.02

1 111 188.84

2 57 93.21

3 297 401.06

4 471 646.58

5 349 529.17

6 99 135.20

7 33 62.39

8 403 557.02

9 33 66.20

MLTBiqCrunch

nodes time (s)

345 121.88

109 53.47

59 32.07

319 115.11

451 168.42

363 147.94

99 49.42

31 21.14

401 149.92

31 25.49

branch-and-bound solver. We have seen that a coarse-grain,

task-based approach gives a satisfying speed-up, but is limited

by the start-up phase of the computation, when the search tree

is not wide enough to take advantage of all the available cores.

On the other hand, we have seen that a fine-grain, kernel-level

parallelization is too fine-grained to give a good speed-up,

even in these phases.

Although the evaluation of each node is hardly data-parallel,

parallelizing the evaluation of each node is an interesting

approach that deserves some consideration. The bigger gran-

ularity of this approach might give better results that the one

TABLE V: CPU times and number of nodes in the search tree

to solve the w100.d090 max-cut problems.

BiqCrunch 2.0

problem nodes time (s)

0 229 360.93

1 1555 2288.50

2 551 809.24

3 779 1080.00

4 321 491.79

5 7 16.96

6 55 118.44

7 185 283.12

8 93 192.86

9 259 368.84

MLTBiqCrunch

nodes time (s)

213 97.04

1559 646.63

529 215.36

879 312.68

297 136.62

7 14.33

63 43.40

171 77.38

99 57.93

297 111.79

TABLE VI: CPU times and number of nodes in the search

tree to solve the pw100.d050 max-cut problems.

BiqCrunch 2.0

problem nodes time (s)

0 945 1099.56

1 317 386.65

2 365 452.35

3 91 116.66

4 467 631.61

5 123 172.50

6 745 1054.98

7 149 227.40

8 43 86.13

9 203 278.38

MLTBiqCrunch

nodes time (s)

1121 415.40

293 112.24

399 148.70

93 43.31

373 162.82

115 52.99

663 283.41

139 71.93

43 31.13

241 100.75

TABLE VII: CPU times and number of nodes in the search

tree to solve the pw100.d090 max-cut problems.

BiqCrunch 2.0

problem nodes time (s)

0 291 407.79

1 523 674.41

2 135 197.70

3 111 158.40

4 235 316.92

5 307 502.81

6 221 264.78

7 503 687.72

8 181 316.72

9 137 227.82

MLTBiqCrunch

nodes time (s)

303 128.56

479 178.22

153 62.19

119 52.87

227 93.91

319 144.38

245 84.40

529 199.04

175 88.35

141 65.92

TABLE VIII: CPU times and number of nodes in the search

tree to solve the pm1d100.d090 max-cut problems.

BiqCrunch 2.0

problem nodes time (s)

0 635 796.95

1 1187 1464.82

2 885 1070.42

3 189 266.69

4 567 720.50

5 155 209.20

6 139 203.60

7 57 104.56

8 47 64.67

9 243 309.30

MLTBiqCrunch

nodes time (s)

739 235.88

1159 372.35

823 262.49

249 100.45

573 194.33

159 61.25

127 51.13

57 35.06

37 20.05

239 87.01
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TABLE IX: CPU times and number of nodes in the search

tree to solve the g05.n100 max-cut problems.

BiqCrunch 2.0

problem nodes time (s)

0 379 417.26

1 1683 1886.18

2 103 138.52

3 589 554.84

4 33 44.26

5 107 167.96

6 107 151.56

7 255 331.53

8 163 198.11

9 219 222.28

MLTBiqCrunch

nodes time (s)

387 129.32

1889 648.07

91 38.30

705 172.63

35 16.71

105 45.98

109 43.59

257 92.36

175 60.99

219 61.44

based on multithreaded computation routines, would the data

dependencies allow it.

Overall, the coarse-grain, node-level parallelization presents

good results, with a satisfying speed-up on large problems that

generate a non-trivial number of nodes. Large instances can

be solved in less than an hour, which is very positive: these

instances can be solved in reasonable time on a desktop work-

station. Smaller instances can already be solved in reasonable

time, so they are not the core target of MLTBiqCrunch, which

aims at making it possible to solve 0-1 quadratic problems

on mainstream desktop computers. In that sense, the multi-

threaded version we are presenting here fulfills this goal.

Quite surprisingly, we have noticed that the small loss of

precision suffered by parallel computation routines, due to the

reorganization of the computation in the kernels, can affect the

branch-and-bound computation dramatically, causing a slower

convergence or, more annoyingly, creating extra nodes in

the search tree. The numerical stability and accuracy of the

parallel computation routines is therefore of major importance.

Another perspective for future works consists in exploring

the gain provided by extended-precision or arbitrary-precision

routines, such as MPACK [22] or xBLAS [23].
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