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Abstract—In this paper, the problem of short-term prediction
of traffic flow in a city traffic network is considered. This
prediction is performed in order to provide input data to a
dynamic control system for street lighting. The forecasting is
done by a multi-layer using artificial neural network. Because of
the limited number of sensors, the data is insufficient to describe
the relation between the traffic intensity at a given point and
the points in which the flow intensity is measured. The proposed
approach is tested by using data from the centre of Kraków. The
prediction error turned to be low.

I. INTRODUCTION

E
NERGY savings due to outdoor lighting optimisation

have tremendous impact on a city’s economy. This is

due to the effect of scale: an average city operates several

thousand light points. For security and safety reasons, as well

as compliance with standards, these light points are on all

night long. Reducing power consumption by even one watt at

each luminaire translates into substantial savings. This can be

achieved by optimising lighting infrastructure design (through

altering lamp placement and parameters [1], [2]) and by

introducing intelligent, dynamic control which adjusts lighting

levels to the actual needs.

This paper focuses on the latter aspect, i.e. increasing energy

savings with use of dynamic control. Dimming is performed

using sensor data, with traffic intensity being one of the main

factors. However, traffic sensors are not deployed at each inter-

section. Therefore, other methods must be used to estimate the

intensity on streets not equipped with measurement facilities.

This way, the control system can cover a wider area which

leads to more energy savings [3].

The research described in this paper is part of an innovative

lighting infrastructure modernisation project in the city of

Kraków, Poland. The project involved replacing almost 4,000

HPS (high-pressure sodium-vapour) lamps with LED ones,

equipped with a central management system to provide low-

level communications. On top of that, a prototype dynamic

control system has been developed to derive and transmit
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as a part of the statutory project.

control decisions to each lamp in real time. An outline map

of the project is presented in Figure 1.

Fig. 1. Outline map of the dynamic lighting project in Kraków.

II. MOTIVATION

The concept of Smart Cities is based on the idea of applying

technological solutions, mainly IT-based, to areas such as

transport, energy, healthcare, water and waste management,

with a projected market of $400 billion by 2020 [4], [5],

[6], [7], [8]. It is closely related to the vision of Internet of

things (IoT) [9], which involves various systems communi-

cating in a semantic and secure manner to allow interchange

of information between devices and systems. According to

a report by the International Energy Agency [10], lighting

consumes 19% of the electricity produced globally. Therefore,

even though lighting affects many areas within the Smart City

concept – including safety, comfort and transportation – the

main contribution to this paper lies in the field of energy.

Questions may arise as to whether utilisation of renewable

energy-powered lighting may be an alternative to the presented
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Fig. 2. An off-grid autonomous lamp, equipped with a solar
panel and an underground battery. Image courtesy of Wichary Technic,
http://www.wicharytechnic.pl/en/.

approach. In fact, off-grid, renewable-based luminaires are

being produced and used in many places around the World.

An example of such luminaire is presented in Figure 2. Such

devices are ideal for locations with no power infrastructure

or as temporary lighting for events, etc. However, their large-

scale utilisation for urban street lighting has two problems:

• The cost. Autonomous, self-sufficient off-grid devices

must be equipped with means of generating energy —

usually a solar panel and/or a wind turbine – as well as

some energy storage devices. That makes the cost of an

individual lamp much higher than with traditional, grid-

connected hardware.

• Lighting standards (such as CEN/TR 13201-1:2004 [11])

strictly define the parameters of light to be fulfilled to

achieve a given so-called lighting class, and conditions

when a given lighting class should be applied. Off-

grid devices may be inherently unable to provide ad-

equate lighting due to possible insufficient generation

and storage capacity. Recent advances in off-grid de-

vice operation optimisation mainly focus on replacing a

simple, reactive strategy with a more advanced dispatch

plan, based on foreseen power generation capabilities and

output (lighting) requirements, with methods including

simulation [12] and a hybrid neural network/fuzzy logic

approach [13]. Therefore, the strategy used to control off-

grid lamps is based on providing satisfactory lighting as

long as possible, not to always fulfil the requirements of

the norm, which is the case in this paper.

In the Smart City context, utilisation of renewable sources is

much more efficient with dedicated, more centralised instal-

lations of solar panels or wind turbines. Of course, that may

cause problems on other levels, such as integration with the

existing city power grid or with vehicle charging stations [14].

This paper concerns only grid-connected light points.
Outdoor lighting optimisation can have a significant impact

on economy [15]. As mentioned in the introduction, it is due

to two factors. First, lights stay on all night, which translates

to over 4,000 hours of operation in a year. Second, the number

of light points is significant, which gives an effect of scale.
Research indicates that there is a need for intelligent con-

trol systems for street lighting. There have been multiple

experiments and assessments conducted so far. These include

highway lighting [16], tunnels [17] and urban areas [15], [18].

However, there still is much room for improvement.
Technically, so-called Central Management Systems

(CMSs) are commonly used to provide communications with

the fixtures, support inventory and monitor their operations.

They are very efficient in providing insight into the operation

of lighting systems and providing basic control of the

infrastructure, actually moving it towards the aforementioned

concepts of Smart Cities and the Internet of things. Most

major manufacturers of lighting equipment now provide

CMSs integrated with their products. An example of such a

system – Owlet Nightshift by Schréder – has been presented

in Figure 3.
CMSs, however, do not support dynamic control: lamps

operate according to a predefined schedule rather than sensor

readings. However, a schedule must assume a worst-case

scenario, and that may lead to a solution far from optimal

due to large variations of traffic intensity on different days

(see Figure 4). Therefore, an external decision system has

been developed to generate control signals and transmit them

to the lamps via the CMS’s API (Application Programming

Interface).
Among available sensor data, traffic intensity has the biggest

impact on lighting control. From the economic point of view,

deploying traffic sensors solely for the purpose of street

lighting might be not feasible. Although most cities already

have a sensor infrastructure fit for this purpose as part of their

Intelligent Transportation Systems (ITSs), the data produced

is used mostly for controlling traffic lights at junctions. Of

course, the applications of ITS systems are much broader

and mostly concern traffic flow optimisation, with advanced,

state-of-the-art systems being able to analyse and simulate

traffic at a very high detail level [19]. Usually, a city will

already have several intersections at which traffic intensity is

already measured. However, there are many “white spots”,

especially in areas with little or no traffic lights. The main

motivation for this paper is therefore is to propose a viable

traffic flow prediction algorithms which in turn can be used
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Fig. 3. Owlet Nightshift as an example of an operational lighting Central Management System. Image courtesy of Schréder Polska Sp. z o.o.,
http://www.schreder.com/pl-pl.

Przykład: Al. Słowackiego

ME2 

ME3b 

ME4b

Fig. 4. Traffic intensity registered on different days in one of the streets within the Kraków project area. Horizontal lines denote the traffic level thresholds
which allow switching from the main lighting class (ME2) to a lower one (ME3b or ME4b). Lighting classes as defined by the CEN/TR 13201-1:2004
standard [11].
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by an intelligent street lighting control system to minimise

energy consumption.

III. STATE OF THE ART

Traffic flow prediction is a problem which has been inten-

sively studied for a long time [20], [21], [22], [23], [24], [25],

[26], [27], [28], [29], [30], [31], [32], [33]. Both the traffic

on highways and the traffic in city networks is considered.

Usually, the traffic intensity is predicted by using historical

data. In this approach, however, a few problems appear. First

of all, there number of traffic sensors in roads and streets

is still insufficient. Furthermore, random events, both on-road

and off-road, can impact the flow intensity [21]. Therefore, the

method which turned to be effective in traffic flow prediction

in a given place can be useless in other locations. For these

reasons, intensive studies are being carried out, concerning

new methods of prediction as well as application of known

methods in new places and contexts. Statistical tools as well

as artificial intelligence can be used to solve these problems.

In San Francissco [21], an autoregressive model was used to

predict traffic load in San Francisco in two time horizons: five

minutes and thirty minutes. The method was tested by using

a traffic flow simulator. The errors varied from 2% for five-

minute prediction to about 12% for thirty-minute prediction.

A support vector machine (SVM) regression algorithm was

used for traffic flow prediction under both typical and untypical

traffic conditions, where the term untypical denotes holidays

or traffic accidents [22]. The approach was tested by using

data from California state, USA.

A support vector regression model was also applied for

short-term traffic flow prediction in combination with the ant

colony optimisation algorithm [25]. The approach has been

tested on data from Taiwan.

Many authors reported the application of artificial neu-

ral networks for traffic flow prediction [23], [27], [28],

[32]. A standard multi-layer perceptron trained by using the

Levenberg-Marquardt algorithm with input data preprocessed

using the hybrid exponential smoothing method was applied

to predict short-term traffic conditions on the Mitchell freeway

in Australia [23]. The error varied from 6% to 12% and was

significantly smaller than for the reference methods: a wavelet

neural network and a Bayesian neural network.

In the paper [32], an interesting idea of application a genetic

algorithm is presented. It is used for optimal selection of both

the representation and the characteristics of the traffic flow

data. Furthermore, the genetic algorithm is also applied to

choose the optimal structure and training parameters of the

multi-layer neural network used for prediction.

A hybrid fuzzy-neural approach to traffic flow prediction in

a city network is described in [33]. The system consists of

two modules. The fuzzy module is responsible for clustering

of the traffic patterns into sets of similar characteristics. The

neural module finds relationships inside the clusters. The

effectiveness was tested using real data from Hong Kong.

The maximal prediction error was equal to four vehicles per

minute.

In the paper [26], deep learning methods for big data were

used for sixty-minutes traffic flow prediction at the roads. The

used method allowed the authors to detect nonlinear both the

spatial as well as the temporal correlations in the traffic data.

IV. PROBLEM STATEMENT AND METHODOLOGY

In this paper, the following general problem is considered.

The traffic flow at point A should be predicted provided that

the traffic flows at other points at the preceding time points are

given. The data is insufficient to create an analytical formula

which describes traffic flow intensity at point A as a function

of flows at the points for which data is given. This means that

junctions with other roads are situated between A and other

points. The problem is solved by using a multi-layer neural

network.

This general problem is considered for a small fragment

of Kraków city traffic network. The geometry of the studied

fragment is shown in Fig.5. The flow is predicted at the point

A. Two following tasks have been put forward.

1) The workday is divided into 48 half-hour time intervals.

The traffic flow is predicted at point B using data from

sensors at points F and G – see Figure 5. Two versions

of the input vector have been tested. The first one had

the following form: [t, Ft−1, ..., Ft−n, Gt−1, ..., Gt−n],
where t ∈ {1, ..., 48} denotes the time interval in which

the flow is predicted, Fk and Gk, denote the traffic flow

intensity at the points B and C respectively, at the time

intervals k ∈ {t − 1, ..., t − n.}. In the second version,

the number of the day d was given as an additional

component of the input vector.

2) Each day of the week is divided into ninety-second

time intervals. The traffic flow is predicted at the point

B by using data from the sensor at point A or F –

see Figure 5. The input vector had the following form:

[dc, t, At−1, ..., At−m], where dc encoded the type of a

day: Sunday, Saturday or ordinary day and this data was

optional; t ∈ {1, ..., 960} denotes the time interval of the

day in which the flow is predicted and was optional as

well, Al, Fl denote the traffic flow intensity at the point

A or F at the time interval l ∈ {t− 1, ..., t−m}.

Let us remark that according to the geometry of the street

connections, the traffic flow at point B in which the flow

intensity is predicted does not depend directly on the flows

at the point in which sensors A, F and G are situated.

V. RESULTS

Each experiment was done by using a multi-layer neural

network with one hidden layer and one output neuron. In the

hidden layer the neurons had sigmoidal activation function

whereas the output neuron was linear. In the description of

experiments the components of the input vector are specified

as well as the mean error i.e. e := |y−z|
N

, where y is the

measured number of vehicles at the point B, z is the predicted

number at the point B and N denotes number of events.

Furthermore, the correlation coefficient ry−z between z and y

is specified as well. The input vector is denoted as x. In each
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Fig. 5. Geometry of the studied fragment of the city traffic network. The points in which sensors are situated are marked by filled circles whereas crossings
are marked by empty circles. Sensors G, F and A are situated at the three-lane fragment of a one-way road, each at the separate traffic lane. Sensors G and
F are at the lanes from which cars can go only straight ahead whereas sensor G is at the lane from which buses ant taxi cars can go straight ahead whereas
other cars have to turn right. Sensor B is situated at the one-way road which has two traffic lanes. It is at the lane from which all vehicles have to turn right.

experiment several trials with neural networks having various

number of neurons in hidden layer have been performed. The

results are described for the most effective neural network. In

each experiment the intensity of the traffic flow at the point

B at the time t is predicted.

In the frame of the task 1 – see section IV (a workday

is divided into 48 half-hour time intervals) – the following

experiments have been performed with input vectors (x) as

stated.

1) x = [t, Ft−1, Ft−2, Ft−3, Gt−1, Gt−2, Gt−3], t ∈ {1, ...,
48}.
The number on neurons in the hidden layer was equal

to 10.
Mean error e = 6.7, ry−z = 97%.

2) x = [d, t, Ft−1, Gt−1], t ∈ {1, ..., 48}, d ∈ {1, 2, 3, 4,
5}.
The number on neurons in the hidden layer was equal

to 10.
Mean error e = 5.2, ry−z = 98%.

3) x = [d, t, Ft−1, Ft−2, Gt−1, Gt−2], t ∈ {1, ..., 48}, d ∈
{1, 2, 3, 4, 5}.
The number on neurons in the hidden layer was equal

to 10.
Mean error e = 4.3, ry−z = 99%.

In the frame of the task 2 – see section IV (a workday is

divided into 960 ninety-seconds time intervals) – the following

experiments have been done performed input vectors (x) as

stated.

1) x = [At−1, At−2, At−3, At−4, At−5], t ∈ {1, ..., 960}.
The number on neurons in the hidden layer was equal

to 12.
Mean error e = 1.12, ry−z = 68%.

2) x = [dc, At−1, At−2, At−3, At−4, At−5, At−6, At−7,

At−8, At−9], t ∈ {1, ..., 960}.

The number on neurons in the hidden layer was equal

to 18.
Mean error e = 1.10, ry−z = 70%.

3) x = [dc, t, At−1, At−2, At−3, At−4, At−5, At−6, At−7],
t ∈ {1, ..., 960}.
The number on neurons in the hidden layer was equal

to 20.
Mean error e = 1.04, ry−z = 72%.

4) x = [dc, t, At−1, At−2, At−3, At−4, At−5, At−6, At−7,

At−8, At−9], t ∈ {1, ..., 960}.
The number on neurons in the hidden layer was equal

to 18.
Mean error e = 1.02, ry−z = 74%.

5) x = [dc, t, At−1, At−2, At−3, At−4, At−5, At−6, At−7,

At−8, At−9, At−10], t ∈ {1, ..., 960}.
The number on neurons in the hidden layer was equal

to 30.
Mean error e = 0.95, ry−z = 78%.

6) x = [dc, t, At−1, At−2, At−3, At−4, At−5, At−6, At−7,

At−8, At−9, At−10, At−11], t ∈ {1, ..., 960}.
The number on neurons in the hidden layer was equal

to 30.
Mean error e = 0.99, ry−z = 77%.

7) x = [dc, t, Ft−1, Ft−2, Ft−3, Ft−4, Ft−5, Ft−6], t ∈ {1,
..., 960}.
The number on neurons in the hidden layer was equal

to 10.
Mean error e = 1.70, ry−z = 95%.

8) x = [dc, t, Ft−1, Ft−2, Ft−3, Ft−4, Ft−5, Ft−6, Ft−7,

Ft−8, Ft−9, Ft−10, Ft−11, Ft−12, Ft−13], t ∈ {1, ...,
960}.
The number on neurons in the hidden layer was equal

to 25.
Mean error e = 1.90, ry−z = 92%.
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VI. CONCLUDING REMARKS

The experiments have shown that the proposed method

yields very good results even with little reference data.

Moreover, the algorithms are quickly saturated with regard

to the length of the history provided. For task 1, the optimal

number of time units provided is 2; for task 2, no significant

improvement is noticeable beyond 10 historical time units.

It must be noted that the presented research is performed

with a well-defined application in mind, which is dynamic

control of street lighting. In particular, the algorithms are used

to provide accurate estimates of traffic intensity in streets not

equipped with sensor devices. The presented work does not

try to compete with Intelligent Transportation Systems, as they

have a different purpose. In particular, the algorithms do not

attempt to optimise urban traffic; they are only used to try

to reflect the actual situation. However, the proposed methods

can find broad application to predict flows in any graph-like

structures.

Since deployment of traffic intensity sensors is a costly

operation, such methods play a crucial role in lowering the

energy consumptions of lighting infrastructure. They allow for

a vast increase of the scope of dynamic control, thus leveraging

the effect of scale. As most energy used in Poland (as well as

many other countries) originates from fossil fuel-based power

plants, any reduction of its consumption leads to significant

reduction of carbon dioxide emission. Furthermore, saving

energy also has obvious economic benefits. It should also be

noted that the estimated traffic intensity data can also be used

for other types of Smart City solutions.
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