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Abstract—Recursive Filters (RFs) are a well-known way to
approximate the Gaussian convolution and, due to their compu-
tational efficiency, are intensively used in several technical and
scientific fields. The accuracy of the RFs can be improved by
means of the repeated application of the filter, which gives rise
to the so-called K-iterated Gaussian recursive filter. In this work
we propose a parallel algorithm for the implementation of the K-
iterated first-order Gaussian RF for multicore architectures. This
algorithm is based on a domain decomposition with overlapping
strategy. The presented implementation is tailored for multicore
architectures and makes use of the Pthreads library. We will
show through extensive numerical tests that our parallel imple-
mentation is very efficient for large one-dimensional signals and
guarantees the same accuracy level of the sequential K-iterated
first-order Gaussian RF.

I. INTRODUCTION

NOWADAYS, the recursive filters (RFs) have become a

useful computational tool in several fields. For exam-

ple, Gaussian RFs are usually involved in image processing

[1], [2], in data assimilation for solving three-dimensional

variational analysis schemes [3], [4] and in advanced signal

processing such as other class of RFs has been recently

constructed specifically for the electrocardiogram (ECG) de-

noising [6], [7], [8]. The idea of a recursive filter is to

provide a more efficient approximation either to a given filter

operator, or to the convolution with the impulse response of

the filter. Gaussian RFs are basically designed to approximate

Gaussian-based convolutions and can be built in many ways

(see [9] and the references therein). It is well-known that

Gaussian RFs, when applied to signals with support in a finite

domain, generate distortions and artifacts, mostly localized at

the boundaries. This issue is known as edge effect and heuristic

and theoretical tools, namely boundary conditions, have been

proposed in literature to remove it [9], [10]. These tools can be

used even in the more general case in which a Gaussian RF is

repeatedly applied, i.e. the so-called K-iterated Gaussian RFs

[3] where K denotes the number of filter iterations. In this

paper, we consider K-iterated first-order Gaussian recursive

filters. The analysis of such filters has been recently provided

in terms of accuracy [3], [5].

Although Gaussian RFs have low computational complexity,

they may become inapplicable in practice when the size of

the input signal is very large, so that there is the need of

their parallel implementation. A thorough survey on parallel

implementations of RFs is in [11]. The aim of our work

is to introduce a new parallel algorithm for the K-iterated

first-order Gaussian RF for 1D signals, based on a suitable

domain decomposition with overlapping. Our approach is

specifically designed for multicore architectures and is based

on the Pthreads library. The paper is organized as follows. In

Section II we briefly recall some mathematical preliminaries

about the K-iterated first-order Gaussian RFs. Section III deals

with the structure of the parallel algorithm and the underlying

domain decomposition strategy. In Section IV we give some

details about the implementation of the parallel algorithm

in a multicore environment. Moreover, we discuss results of

numerical tests that show that our parallel algorithm reaches

the same accuracy of the sequential one, and we provide

evidence of the gain obtained by the parallel implementation

in terms of performance. Finally conclusions and future work

are drawn in Section V.

II. PRELIMINARIES

In the following we recall some preliminaries, notations

and results presented in [5], [9]. We limit our description to

the arguments needed for the understanding of the parallel

approach proposed in next section. We first introduce the

K-iterated n-order Gaussian RFs and in particular exhibit a

sequential algorithm for the first-order case. Let:

s(0) =
{

s
(0)
j

}

j∈Z
=

(

. . . , s
(0)
−2, s

(0)
−1, s

(0)
0 , s

(0)
1 , s

(0)
2 , . . .

)

be an input signal. s(0) can be thought of as a complex function

defined on the set of integers, that is an element of the set of

sequences of complex numbers CZ. Let g denote the Gaussian

function with zero mean and standard deviation σ:

g(t) =
1

σ
√
2π

exp

(

− t2

2σ2

)

. (1)

Let δ =
{

δj
}

j∈Z
be the unit-sample:

δj =

{

1 if j = 0

0 if j 6= 0
(2)

The Gaussian filter is a filter whose response to the unit-sample

(i.e. the impulse response) is the restriction of the Gaussian
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function g on Z. Since the Gaussian filter is linear and time-

invariant, its response s(g) to the input s(0) can be simply

expressed by the discrete Gaussian convolution:

s
(g)
j =

(

g ∗ s(0)
)

j
=

∑

t∈Z

gj−ts
(0)
t , ∀ j ∈ Z, (3)

where gt ≡ g(t). Gaussian RFs and K-iterated Gaussian RFs

are efficient tools for approximating the entries s
(g)
j of s(g).

A K-iterated n-order Gaussian RF filter generates an output

signal s(K), the so-called K-iterate approximation of s(g),

whose entries solve the 2K recurrence relations:

p
(k)
j = βs

(k−1)
j +

n
∑

t=1

αtp
(k)
j−t, ∀ j ∈ Z, k = 1, 2, . . . ,K,

(4)

s
(k)
j = βp

(k)
j +

n
∑

t=1

αts
(k)
j+t, ∀ j ∈ Z, k = 1, 2, . . . ,K.

(5)

For K = 1, the filter merely becomes an n-order Gaussian

RF filter. As K → ∞ the filter converges to the Gaussian

filter[20]. Relations (4) and (5) are conveniently referred to as

the advancing and backing filters, respectively. The values αt

and β are called smoothing coefficients and verify:

β = 1−
n
∑

t=1

αt.

In a general setting they depend on σ, n and K. In the

following we consider only the first-order Gaussian RF, so

that relations (4) and (5) take the simplified form [9]

p
(k)
j = βs

(k−1)
j + αp

(k)
j−1, ∀ j ∈ Z, (6)

s
(k)
j = βp

(k)
j + αs

(k)
j+1, ∀ j ∈ Z. (7)

Now, the smoothing coefficients are:

α = 1 + Eσ −
√

Eσ(Eσ + 2), (8)

β =
√

Eσ(Eσ + 2)− Eσ, (9)

with Eσ = Kσ−2. If we consider an input signal s(0) with

support in the grid {0, 1, 2, . . . , N − 1} then, in order to

implement such a Gaussian RF as an algorithm, the index

j must be treated in increasing order in the advancing filter

(from 0 to N−1) and in decreasing order in the backing filter

(from N − 1 to 0) [9]. Such a scheme requires to set values

p
(k)
0 and s

(k)
N−1 for priming the advancing and backing filters,

respectively. A common choice is to set these values at zero

or introduce the so-called boundary conditions that simulate

the effect of the neglected filter equations in the algorithm.

For first-order filters, the boundary conditions are [9]:

p
(k)
0 =

1

1 + α
s
(k−1)
0 , s

(k)
N−1 =

1

1 + α
p
(k)
N−1.

Both approaches suffer from a well-known edge effect, that

is a large perturbation on the boundary entries of the finite

output signal. As shown in [9], provided that the input

support is in [0, N − 1], this effect can be mitigated with a

suitable extending-resizing strategy that allows an effective

implementation of the K-iterated first-order Gaussian RF.

This idea consists in three steps:

(i) extending the given input signal s(0), with support in

{0, 1, 2, . . . , N−1}, by adding artificial zero entries at the

left and right boundaries. More specifically, we introduce

the extended signal:

s(0),m =
(

0, . . . , 0, s
(0)
0 , . . . , s

(0)
N−1, 0, . . . , 0

)

, (10)

which is obtained by inserting m zeros before s
(0)
0 and

m zeros after s
(0)
N−1;

(ii) applying the K-iterated first-order Gaussian RF to

s(0),m, in order to obtain s(K),m;

(iii) resizing the signal s(K),m, by removing its first and last

m entries, so that the (approximated) output signal s(K)

is recovered.

The underlying idea of this scheme is to shift the edge effects

on the artificially added entries. Step (i)-(iii) are shown in

Figure 1.

s(0) s(0),m

s(K),ms(K)

extending

recursive filter

resizing

Fig. 1. extending-resizing strategy

Algorithm 1 implements this strategy, while Algorithm 2 is

a K-iterated first-order Gaussian RF straight implementation.

Algorithm 1 Extending-resizing strategy for the K-iterated

first-order recursive filter

Input: s(0), σ, m, K

Output: s(K)

1: extend s(0) to s(0),m as described in step (i)

2: apply Algorithm 2 to s(0),m with parameters σ, K as described

in step (ii), to obtain s(0),m

3: resize s(K),m as described in step (iii), to obtain

s(K)

III. THE PARALLEL ALGORITHM

In this section we describe the strategy underlying our

parallel algorithm for a K-iterated first-order Gaussian RF

and highlight the main feature of our parallel software for

multicore environment. A multicore processor is a single com-

puting component with two or more independent actual pro-

cessing units, called ”cores” (see Figure 2). The instructions

are ordinary CPU instructions (such as add, move data, and

branch), but the multiple cores can run multiple instructions
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Algorithm 2 K-iterated first-order RF with boundary condi-

tions

Input: s(0), σ, K

Output: s(K)

1: set β, α as in (8) and (9); M := 1/(1 + α)

2: set N := size(s(0))

3: for k = 1, 2, . . . ,K % filter loop

4: compute p
(k)
0 := Ms

(k−1)
0 % left end conditions

5: if k = 1 then

6: p
(k)
0 := βs

(k−1)
0

7: end

8: for j = 1, . . . , N − 1 % advancing filter

9: p
(k)
j

:= βs
(k−1)
j

+ αp
(k)
j−1

10: endfor

11: compute s
(k)
N−1 := Mp

(k)
N−1 % right end conditions

12: for j = N − 2, . . . , 0 % backing filter

13: s
(k)
j

:= βp
(k)
j

+ αs
(k)
j+1

14: endfor

15: endfor

Fig. 2. Multicore architecture scheme.

concurrently, the so-called concurrent threads, increasing the

overall efficiency.

Multicore processors are widely used across many applica-

tion domains, including general-purpose, embedded, network,

digital signal processing (DSP), and graphics (GPU).

Possible gains in efficiency are limited by the fraction of the

software that can run in parallel simultaneously on multiple

cores. In the best case, the so-called embarrassingly parallel

problems, one can reach a speedup factor close to the number

of cores, or even more, if problems’ data are decomposed so

that they fit within each core cache, thus avoiding the use of

the slower main memory.

To implement the algorithm in this environment, our starting

idea is to divide in local blocks the original signal and to apply

the strategy shown in previous section to each block. Finally,

after collecting local outputs, the output signal is recovered.

This is a typical domain decomposition approach in which the

starting signal s(0) is first partitioned in t signal blocks, with

t number of threads:

s
(0)
0 , s

(0)
1 , . . . , s

(0)
t−1. (11)

More in particular, denoting by d = ⌊N
t
⌋, r = mod(N, t), the

j-th block (j = 1, . . . , t) has components:

(

s
(0)
j

)

i
=

{

s
(0)
jd+j+i, i = 0, . . . , d if j < r

s
(0)
jd+r+i, i = 0, . . . , d− 1 if j ≥ r

(12)

We highlight that such a domain decomposition strategy relies

in a sort of new method in which the output pieces are an

approximation of the Gaussian convolution of the local inputs.

In other words, the global output, i.e. the approximation of

the Gaussian convolution of the global input, is obtained by

collecting approximated local Gaussian convolutions of the

local inputs that neglect the farthest entries.

A naive choice would be to apply the extending-resizing

strategy to each block s
(0)
j , so that each thread extends (with

2m zeros) its local input, computes the local output by means

of Algorithm 2, and resizes the local output. Finally the

global signal output can be restored by gathering all resized

outputs. However this strategy suffers a serious drawback,

that is a low accuracy in the output entries close to the cut

points of the domain decomposition. This can be explained

observing that each thread uses as extended local input a

block with support in [m+ 1,m+ d+ 1] (or [m+ 1,m+ d])
instead of the input entries of s(0). This can be seen as a

perturbation in the local input signal boundary entries which

causes a significant distortion in the output entries. In order to

overcome the above drawback we devised a more appropriate

extending-resizing strategy that, for extending the local inputs,

uses the known entries of the signal input instead of zero

values.

(i’) domain decomposition with overlapping. The starting

signal s(0) is partitioned in t input blocks s
(0)
j as in

(11), (12), and each block is assigned to a thread. Each

thread extends its block by adding m actual input entries

at the left boundary and m actual input entries at the

right boundary. When not available these entries are set

at zero. Formally, the extended input signal components

are:

(

s
(0),m
j

)

i
=

{

s
(0)
jd+j+i−m, i = 0, . . . , d+ 2m if j < r

s
(0)
jd+r+i−m, i = 0, . . . , d+ 2m− 1 if j ≥ r

where conventionally s
(0)
l = 0 for l < 0 and l ≥ N , so

that zeros are considered only when the input entries do

not exist. This kind of decomposition is illustrated in

Figure 3;

(ii’) each thread j applies the K-iterated first-order Gaussian

RF to s
(0),m
j , in order to obtain s

(K),m
j ;

(iii’) resizing with collecting. Each thread j resizes the signal

s
(K),m
j , by removing its first and last m entries and

generates the local output s
(K)
j . Finally, the local outputs

are collected in the global output signal.
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Fig. 3. Domain decomposition with overlapping scheme.

We observe that steps (i’)-(iii’) can be carried out by all

threads in a fully-parallel way. In other words, our strategy can

be considered embarrassingly parallel and can be summarized

in Algorithm 3.

Algorithm 3 Parallel K-iterated first-order Gaussian recursive

filter based on domain decomposition with overlapping

Input: s(0), σ, m, K, t

Output: s(K)

1: FOR ALL THREAD j

2: save in the private memory of thread the extended

input signal s
(0),m
j

as described in step (i’)

(domain decomposition with overlapping)

3: apply Algorithm 2 to s
(0),m
j

with parameters σ, K as

described in step (ii’), to obtain s
(K),m
j

4: resize s
(K),m
j

to recover s
(K)
j

and copy it in the

shared memory in order to obtain the global

output s(K) as described in step (iii’)

5: ENDFOR ALL THREAD j

IV. IMPLEMENTATION DETAILS AND NUMERICAL TESTS

Our parallel algorithm is developed and tested on a CPU

Intel Core i7 (2.8GHz), with 8 cores, 8GB of RAM memory,

4GB GDDR5 of memory size and 173 GB/s of memory

bandwidth. In order to take full advantage of the capabilities

provided by a multicore processor, a standardized interface is

needed for programming the threads. For UNIX systems, this

interface has been specified by the IEEE POSIX 1003.1c stan-

dard. Implementations adhering to this standard are referred

to as POSIX threads, or Pthreads1. The Pthreads library is

a set of C language programming types and procedures for

managing the synchronization and concurrency in a shared

memory environment. Most hardware vendors offer Pthreads

in addition to their proprietary API’s.

1https://computing.llnl.gov/tutorials/pthreads/

TABLE I
σ = 4, N = 2000

K m = σ m = 2σ m = 3σ m = 4σ m = 5σ

5 0.055592 0.056120 0.056124 0.056124 0.056124

15 0.021831 0.022343 0.022345 0.022345 0.022345

30 0.013884 0.013859 0.013861 0.013861 0.013861

50 0.011184 0.010460 0.010462 0.010462 0.010462

100 0.009679 0.007908 0.007909 0.007909 0.007909

TABLE II
σ = 4, N = 2000, NUMBER OF THREADS = 2

K m = σ m = 2σ m = 3σ m = 4σ m = 5σ

5 0.176246 0.062215 0.056333 0.056138 0.056126

15 0.197547 0.033730 0.022521 0.022351 0.022346

30 0.212070 0.029099 0.014043 0.013864 0.013861

50 0.220339 0.028026 0.010657 0.010465 0.010462

100 0.228025 0.027667 0.008127 0.007912 0.007909

A. Accuracy

Here we are interested in comparing, in terms of provided

accuracy, the sequential implementation (Algorithm 1) and

the parallel implementation (Algorithm 3) of the K-iterated

first-order Gaussian RF. The accuracy is measured by the

2-norm ‖s(g) − s(K)‖2, where s(g) is the output of the

standard Gaussian convolution, and s(K) is either the output

of Algorithm 1 or the output of Algorithm 3 depending on

the context.

In Table I we report the results obtained applying Algo-

rithm 1 to the random input signal used in [9], for several

values of K and m with fixed σ and N . Following [9] we

notice that the larger m the better the accuracy, but the choice

m = 2σ guarantees a good trade-off between accuracy and

size of the extended signal (N+2m). In Table II-IV we report

the results obtained applying Algorithm 3 to same input signal

of Table I, with t = 2, 4, 8 threads, respectively. We observe

that, regardless of the number of threads, the parallel algorithm

can obtain the same accuracy level of Algorithm 1 with a

slightly larger value of m (m = 4σ).

B. Performance analysis

Here we are interested in the performance of the parallel

algorithm (Algorithm 3). The performance are measured in

TABLE III
σ = 4, N = 2000, NUMBER OF THREADS = 4

K m = σ m = 2σ m = 3σ m = 4σ m = 5σ

5 0.279605 0.070410 0.056524 0.056145 0.056126

15 0.324447 0.046540 0.022704 0.022353 0.022346

30 0.349988 0.043858 0.014254 0.013866 0.013861

50 0.364236 0.043664 0.010899 0.010466 0.010462

100 0.377388 0.044023 0.008412 0.007913 0.007909
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TABLE IV
NUMBER OF THREADS = 8

K m = σ m = 2σ m = 3σ m = 4σ m = 5σ

5 0.418137 0.083128 0.056548 0.056123 0.056124

15 0.493410 0.064770 0.022829 0.022345 0.022345

30 0.533700 0.064082 0.014463 0.013860 0.013861

50 0.555979 0.064849 0.011178 0.010462 0.010462

100 0.576482 0.066054 0.008779 0.007909 0.007909

TABLE V
EXECUTION TIME IN SECONDS, FOR K = 100

t N = 2000 20 000 200 000

1 3.4e-03 2.3e-02 2.4e-01

2 3.1e-03 2.3e-02 2.3e-01

3 2.6e-03 1.7e-02 1.7e-01

4 2.5e-03 1.3e-02 1.3e-01

5 2.3e-03 1.2e-02 1.2e-01

6 2.2e-03 1.0e-02 1.0e-01

7 2.0e-03 9.5e-03 9.0e-02

8 2.0e-03 8.3e-03 8.0e-02

terms of execution time. In Table V we report the execution

times applying this algorithm to random input signals of

increasing size (N = 2000, N = 20 000, N = 200 000)

and varying the number of threads. The values of the other

parameters are fixed as follows: σ = 4, m = 4σ and

K = 100. Table V shows that execution times decrease as the

number of threads grows. In particular, an appreciable gain

in time, expressed in percentage, reached with 8 threads and

N = 200 000, is:

0.24− 0.08

0.24
· 100% = 66.7%.

V. CONCLUSIONS

In this work, we have presented a new parallel algorithm

for the approximation of the one-dimensional Gaussian con-

volution, based on K-iterated Gaussian recursive filters. The

algorithm has been implemented on a multicore architecture.

We also provided preliminary results that show the accuracy

and the efficiency of our algorithm. This is a first step

towards the development of algorithms and softwares, for

HPC many core environments, for an efficient computation

of multidimensional Gaussian convolutions that appear across

several technical and scientific fields as data assimilation [12],

reputation systems [13], [14], classical [15], [16] and multidi-

mensional interpolation [17], [18], [19], image processing and

data mining.
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