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Abstract—In the paper, we propose to use rough sets to
express some properties (reachability of states) of systems whose
underlying models of behaviour are trees of executions. By
analogy with the modal operators of branching time temporal
logics, we define positive regions, boundary regions, and negative
regions of anticipations of distinguished states (states of interest)
in the modelled systems. Instead of a temporal logic approach,
we propose to use a set theoretic approach.

I. INTRODUCTION

R
OUGH sets [1] are an appropriate tool to deal with doubt-

ful concepts in the universe U of discourse. A general

idea of rough sets is to approximate a given set X of objects

(states) of interest by other sets of objects (states), which are

called the upper approximation Upp(X) and the lower ap-

proximation Low(X) of X , where Low(X) ⊆ X ⊆ Upp(X).
Approximation can be either exact (if Low(X) = Upp(X))
or rough (if Low(X) ⊂ Upp(X)). In terms of modal logics,

the lower approximation can be identified with the necessity

property, whereas the upper approximation can be identified

with the possibility property (cf. [2]). Based on approxima-

tions, Low(X) and Upp(X), of the set X , the whole universe

U of objects can be divided into three disjoint regions, the

positive region Pos(X), the negative region Neg(X), and

the boundary region Bnd(X), where Pos(X) = Low(X),
Neg(X) = U−Upp(X), and Bnd(X) = Upp(X)−Low(X).

In [3] and [4], we proposed to use rough sets to describe

some ambiguities in anticipation of states in systems whose

dynamics is modelled by transition or timed transition systems.

Analogously to rough approximation of sets, considered in

rough set theory, we defined rough anticipation of states over

transition (timed transition) systems. Anticipation of states

was made via direct predecessor states of the anticipated

ones. Therefore, this anticipation was called predecessor an-

ticipation. We distinguished two kinds of anticipations, called

the lower predecessor anticipation and the upper predecessor

anticipation. Let X be a distinguished set of states we are

interested to reach in a system whose behaviour is described

by a transition system TS. The lower predecessor anticipation

LowPredAnt(X) consists of all states from which TS surely

goes to the states in X as results of any events occurring at

these states. It is necessary that each next state of any state

from LowPredAnt(X) is one of the states belonging to X .

The upper predecessor anticipation consists of all states from

which TS possibly goes to the states in X as results of some

events occurring at these states. At least one next state of any

state from UppPredAnt(X) is the state belonging to X .

In this paper, we deal with a problem of identifying positive,

negative and boundary regions of states of systems whose

underlying models of behaviour are trees of executions. The

proposed approach is patterned upon the temporal logic of

branching time [5]. In this logic, the underlying model is

mainly a tree of all possible computations. However, the

presented approach is general and it can be applied to any

system with the underlying tree model of behaviour. Instead

of a temporal logic approach, we propose to use a set theoretic

approach. We do not need to consider descriptions of system

behaviours in terms of logical formulas. Therefore, we can

build a tree of all possible paths of computations, paths of

executions, paths of propagations, etc. Further, for simplicity,

we will use a notion of a tree of executions. However, as

it was mentioned earlier, any kind of dynamic actions can

be considered (e.g. computations, executions, propagations,

etc.). It is not necessary to identify nodes of trees with some

propositions which can hold at these nodes. We can distinguish

any states that should be reached, events that should happen,

etc. Further, for simplicity, we will use a notion of a state.

However, as it was mentioned earlier, any kind of entities can

be considered (states, events, etc.).

In our approach, three kinds of anticipations of states,

belonging to branches of a tree T of executions, are considered

(see Section III). Let x be a state anticipating another states

in a branch, we can distinguish:

• G-anticipation if x ∈ T begins a branch consisting of

states that are only the distinguished ones.

• F-anticipation if x ∈ T begins a branch consisting of at

least one state that is the distinguished one.

• X-anticipation if x ∈ T begins a branch such that the

next state in the branch is the distinguished one.

Because, a given state x can begin more than one branch,

according to rough set theory, each kind of anticipation can

be considered as either certain, possible, or impossible.

II. TEMPORAL LOGIC BACKGROUND

There is a variety of formal models of time. In instant-

based models of time, the primitive temporal entities are time

instants [6]. The flow of time is represented as a set of time

instants with a binary relation of precedence on it. Two main

types of instant-based models are usually considered:

1) Models with linear orderings of time instants, reflecting

the idea that the time flow is a succession of time

instants.
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2) Models with partial orderings of time instants, reflecting

the idea that the past is determined, while the future

can be undetermined, branching into many possible time

lines (there exist alternative futures).

With each time instant, a state (event, etc.) can be identified.

Fig. 1. AG and EG operators of branching time temporal logics

The term of temporal logic is broadly used to cover all

approaches to representation and reasoning about time and

temporal information within a logical framework [6]. In case

of models with linear orderings of time instants, temporal

logics are referred to as linear time temporal logics. Formulas

of linear time temporal logics are interpreted over sequences

of nodes corresponding to time instants. In case of models

with partial orderings of time instants, temporal logics are

referred to as branching time temporal logics. Formulas of

branching time temporal logics are interpreted over trees of

nodes corresponding to time instants.

Let T be a tree and s be a node in T . Let a be a proposition

which can hold at some nodes in T . The following main modal

operators are used in branching time temporal logics (cf. [5]):

• AGa holds at s if and only if a is true at all nodes of

the subtree rooted at s (including s).

• EGa holds at s if and only if there is a path starting with

s such that a is true at all nodes on this path.

• AFa holds at s if and only if on every path starting with

s, there is some node at which a is true.

• EFa holds at s if and only if there is a path starting with

s such that a is true at some node on this path.

• AXa holds at s if and only if a is true at every immediate

successor of s.

• EXa holds at s if and only if a is true at some of

immediate successor of s.

The meaning of the main operators of branching time temporal

logics can be graphically explained as it is shown in Figures 1,

2, and 3. Filled circles represent nodes at which the proposition

a is true. One can see that the first symbol (A or E) denotes

quantification over branches, whereas the second symbol (G,

F , or X) denotes quantification over states in the branches.

Temporal logics are used in various areas ranging from

computer science (e.g. specification and verification of con-

current programs and systems), artificial intelligence (e.g.

temporal representation and reasoning), and linguistics, to

natural, cognitive and social sciences. In case of branching

time temporal logics, the underlying model is a tree of all

possible paths of computations, paths of executions, paths of

propagations, etc.

III. DEFINITIONS AND EXAMPLE

In this section, the main idea of our approach is presented.

Theoretical description is supplemented with a simple example

illustrating the proposed approach.

A tree T is a partially ordered set (poset) T = (T,R<) such

that for each x ∈ T the set {y : (y, x) ∈ R<} is well-ordered

by the binary relation R<.

For a given tree T = (T,R<), we can consider its subtree

T
x rooted at x ∈ T , i.e., Tx = (T x, R<) such that T x =

{y ∈ T : (x, y) ∈ R< or y = x}.

Let T = (T,R<) be a tree. A segment ]a, b[, where a, b ∈
T , is a set ]a, b[= {x ∈ T : (a, x) ∈ R< and (x, b) ∈ R<}.

An element b is called a successor to an element a. An element

a is called a predecessor to an element b. If ]a, b[= ∅, then

an element b is called an immediate successor to an element

a and an element a is called an immediate predecessor to an

element b.
Let T = (T,R<) be a tree and x ∈ T . The set of all

immediate successors of x is denoted by Succ(x). The set of

all immediate predecessors of x is denoted by Pred(x). A

leaf of T is any element x ∈ T such that Succ(x) = ∅. A

chain of T is any linearly ordered subset of T . A branch of T

is any maximal (with respect to a number of elements) chain

of T. A set of all leaves of T is denoted by Leaves(T). A

set of all chains of T is denoted by Chains(T). A set of all

branches of T is denoted by Branches(T).
Further, to refer to trees of executions, each element of a

tree will be called a state.

Fig. 2. AF and EF operators of branching time temporal logics

Fig. 3. AX and EX operators of branching time temporal logics

Let T = (T,R<) be a tree and S ⊆ T be a set of

distinguished states in the tree T. We can identify, in the set

of states in the tree T, the following regions:

• PosAntG(S) - a positive region of G-anticipation of

states from S.

• BndAntG(S) - a boundary region of G-anticipation of

states from S.
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• NegAntG(S) - a negative region of G-anticipation of

states from S.

• PosAntF (S) - a positive region of F-anticipation of

states from S.

• BndAntF (S) - a boundary region of F-anticipation of

states from S.

• NegAntF (S) - a negative region of F-anticipation of

states from S.

• PosAntX(S) - a positive region of X-anticipation of

states from S.

• BndAntX(S) - a boundary region of X-anticipation of

states from S.

• NegAntX(S) - a negative region of X-anticipation of

states from S.

The division of regions given above corresponds to quantifi-

cation over branches in the temporal logic of branching time.

Formal definitions of regions mentioned above are as fol-

lows. Let T = (T,R<) be a tree and S ⊆ T . For each x ∈ T :

• x ∈ PosAntG(S) if and only if

∀
B∈Branches(Tx)

∀
y∈B

y ∈ S,

i.e., all branches started with x consist of only states

belonging to S.

• x ∈ BndAntG(S) if and only if

x /∈ PosAntG(S) and ∃
B∈Branches(Tx)

∀
y∈B

y ∈ S,

i.e., there is at least one branch started with x consisting

of only states belonging to S, however not all branches

started with x satisfy this condition.

• x ∈ NegAntG(S) if and only if

x /∈ PosAntG(S) and x /∈ BndAntG(S),

i.e., there is no branch started with x consisting of only

states belonging to S.

• x ∈ PosAntF (S) if and only if

∀
B∈Branches(Tx)

∃
y∈B

y ∈ S,

i.e., all branches started with x consist of at least one

state belonging to S.

• x ∈ BndAntF (S) if and only if

x /∈ PosAntF (S) and ∃
B∈Branches(Tx)

∃
y∈B

y ∈ S,

i.e., there is at least one branch started with x consisting

of at least one state belonging to S, however not all

branches started with x satisfy this condition.

• x ∈ NegAntF (S) if and only if

x /∈ PosAntF (S) and x /∈ BndAntF (S),

i.e., there is no branch started with x consisting of at least

one state belonging to S.

• x ∈ PosAntX(S) if and only if

∀
y∈Succ(x)

y ∈ S,

i.e., all branches started with x are such that an immediate

successor of x belongs to S.

• x ∈ BndAntX(S) if and only if

x /∈ PosAntX(S) and ∃
y∈Succ(x)

y ∈ S,

i.e., there is at least one branch started with x such that

an immediate successor of x belongs to S, however not

all branches started with x satisfy this condition.

• x ∈ NegAntX(S) if and only if

x /∈ PosAntX(S) and x /∈ BndAntX(S),

i.e., there is no branch started with x such that an

immediate successor of x belongs to S.

One can see that:

• if x ∈ Leaves(T) and x ∈ S, then x ∈ PosAntG(S)
and x ∈ PosAntF (S),

• if x ∈ Leaves(T) and x /∈ S, then x ∈ NegAntG(S)
and x ∈ NegAntF (S),

• if x ∈ Leaves(T), then x ∈ NegAntX(S),
• if x /∈ Leaves(T) and x ∈ PosAntG(S), then x ∈

PosAntF (S) and x ∈ PosAntX(S).

Let us consider a tree T shown in Figure 4. For the set

Fig. 4. A tree T modeling some executions.

S = {x3, x7, x8, x12, x13, x14}

of distinguished states of the tree T, we obtain:

• x1 ∈ NegAntG(S) and x1 ∈ BndAntF (S) and x1 ∈
BndAntX(S),

• x2 ∈ NegAntG(S) and x2 ∈ BndAntF (S) and x2 ∈
BndAntX(S),

• x3 ∈ BndAntG(S) and x3 ∈ PosAntF (S) and x3 ∈
BndAntX(S),

• x4 ∈ NegAntG(S) and x4 ∈ NegAntF (S) and x4 ∈
NegAntX(S),
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• x5 ∈ NegAntG(S) and x5 ∈ NegAntF (S) and x5 ∈
NegAntX(S),

• x6 ∈ NegAntG(S) and x6 ∈ NegAntF (S) and x6 ∈
NegAntX(S),

• x7 ∈ PosAntG(S) and x7 ∈ PosAntF (S) and x7 ∈
PosAntX(S),

• x8 ∈ PosAntG(S) and x8 ∈ PosAntF (S) and x8 ∈
PosAntX(S),

• x9 ∈ NegAntG(S) and x9 ∈ NegAntF (S) and x9 ∈
NegAntX(S),

• x10 ∈ NegAntG(S) and x10 ∈ NegAntF (S) and x10 ∈
NegAntX(S),

• x11 ∈ NegAntG(S) and x11 ∈ NegAntF (S) and x11 ∈
NegAntX(S),

• x12 ∈ PosAntG(S) and x12 ∈ PosAntF (S) and x12 ∈
NegAntX(S),

• x13 ∈ PosAntG(S) and x13 ∈ PosAntF (S) and x13 ∈
NegAntX(S),

• x14 ∈ PosAntG(S) and x14 ∈ PosAntF (S) and x14 ∈
NegAntX(S),

• x15 ∈ NegAntG(S) and x15 ∈ NegAntF (S) and x15 ∈
NegAntX(S).

We leave the reader with the proof of the assignments above.

IV. CONCLUSIONS

We have shown that rough sets can be used to express some

properties (reachability of states) of systems whose underlying

models of behaviour are trees of executions. The proposed

approach is patterned upon the temporal logic of branching

time, however a set theoretic approach causes that we do

not need to consider system behaviours in terms of logical

formulas. A challenging problem for further investigation is

to consider anticipations of states in terms of the Variable

Precision Rough Set Model [7] as well as fuzzy rough sets

and rough fuzzy sets [8].
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