
Abstract—A heterogeneous computing model with ontology

preserving functions are applied to present concept learning

across domains with structural agent morphisms. A computing

models based on a novel multi-agent competitive learning with

multiplayer game tree plans are applied. Agents are assigned to

transform the models to reach goal plans. Goals are satisfied

based on competitive game tree learning. Agent tree computing

models are example prototypes for modeling ontology algebras.

Specific agents are assigned to transform the models to reach

goal plans where goals are satisfied based on competitive game

tree learning. Cooperating agents, that have opened new av-

enues in modeling and implementing agent teams, are ingredi-

ents to specific application modeling. Applications to Formal

Concept Description are developed with new description logic

algebraic models. Novel Description algebras with concept de-

scription ontology algebras and description ontology preserva-

tion morphisms are presented.

Index Terms—Game Learning Ontology Algebras, Descrip-

tion Ontology, Ontology Preservation Morphisms, Competitive

Model Ontology, Agent Ontology Models, Game Tree Learn-

ing.

I. DESIRE MODELS

N OVERVIEW to a practical agent learning based on

new competitive modeling a technique applying what

the first author developed since 2004 is presented with aug-

mentation to standard agent modeling [11]. A specific agent

might have internal state set I, which the agent can distin-

guish its membership. The agent can transit from each inter-

nal state to another in a single step. With our multi-board

model agent actions are based on I and board observations.

Transfer learning is carried on with agent morphisms. Predic-

tive and competitive model learning is presented applying

agent game trees. Ontology preservation principles are intro-

duced for learning ontology. The preservation principles are

further applied to the knowledge bases that support the trans-

fer learning. Competitive game tree learning is the basis to

the authors’ application to business and economics game

modeling. Deduction models attain a new perspective with

the techniques here. Context abstraction and met-contextual

reasoning is introduced as a new field. Multi-agent visual

multi-board planning has been applied in the first author’s

A

projects to space navigation and spatial computing learning.

In a haptic computing logic [8] the learning process can be

seen as an emotional and personal, game based, and proac-

tive Game-based Learning, emotions and emotional agents,

henceforth abbreviated as the BID model [16].

The section overviews are as follows. Section two devel-

ops the stage for the agent computing models that are ap-

plied to characterize agent computations based on standard

Desire modeling augmented with newer agent module alge-

bras. Section 3 presents the competitive modeling tech-

niques with signatured trees. Tree computations to realize

goals for competitive models are the bases for model com-

patibility characterizations on realizing goals on computa-

tion trees. Generic model diagrams are applied to compare

models. Section 4 presents signatured tree morphisms and

module preservation techniques based on alternative agent

computing techniques. Agent algebras and morphisms ren-

der a basis for defining ontology preservation principles.

Section 5 applies the techniques to model-based concept

learning with preservation morphism mappings for transfer

learning across domains. Secion 6 develops the new basis

for ontology algebras on Concept Descriptions. A categori-

cal characterization encompasses a constructive description

logic with concept description algebra monads on agent sig-

nature trees. Based on that new concept ontology algebras

with description ontology algebra preservation theorem are

presented. Newer application areas that can be explored are

mutual robot learning – a robot introducing a structure to a

new robot. These areas have started being explored at Sin-

gularity university affiliate groups, for example. Robot

learning based on watching the task being performed by a

human or by a second robot are model-based learning but

troublesome due to a mismatch between the model structure

problems e.g. [21]. Newer examples are on learning topo-

logical spaces [20]. Our more functional approach to learn-

ing about the world can be applied to physical robots trans-

formed into an abstract model, and then converting it back

into a functional representation.

Concepts Ontology Algebras and Role Descriptions

Cyrus F Nourani*
Akdmkrd AI Research Affiliate

TU Berlin, Germany

Acdmkrd@gmail.com &

cyrusfn@alum.mit.edu

Patrik Eklund
Umeå University,

Department of Computing Science

Umeå, Sweden

peklund@cs.uum.se

Position papers of the Federated Conference on

Computer Science and Information Systems, pp. 25–32

DOI: 10.15439/2017F554

ISSN 2300-5963 ACSIS, Vol. 12

c©2017, PTI 25

II. DESIRE MODELS

Let us start with the popular agent computing model the

Beliefs, Desire, and Intentions, BID is a generic agent

computing model specified within the declarative

compositional modeling framework for multi-agent systems,

DESIRE. The model, a refinement of a generic agent model,

explicitly specifies motivational attitudes and the static and

dynamic relations between motivational attitudes. Desires,

goals, intentions, commitments, plans, and their relations are

modeled [6] . Different notions of strong and weak agency are

presented at [22]. To apply agent computing with intelligent

multimedia some specific roles and models have to be

presented for agents. Beliefs, intentions, and commitments play

a crucial role in determining how rational agents will act.

Beliefs, capabilities, choices, and commitments are the

parameters making component agents specific. DESIRE is the

framework for design, and the specification of interacting

reasoning components is a framework for modeling, specifying

and implementing multi-agent systems, see [6], [22]. The

interaction between components, and between components and

the external world is explicitly specified. Components can be

primitive reasoning components using a knowledge base, but

may also be subsystems that are capable of performing tasks

using methods as diverse as decision theory, neural networks,

and genetic algorithms.

A. Specifying BID Agents

The BID design specifications in our papers apply agent

signature trees. Information is encoded with a predicate logic

on a hierarchically ordered sort structure (order-sorted

predicate logic). Newer techniques with levels of signatures

[17], [8] can be applied to the encoding. Units of information

including sorts and operators of different arities are

represented on the signature on the first level. On the second

level, operators are type constructors, so that the set of

variable-free terms are shifted down to the sort set for the

signature on level three. In this way, different (meta)levels

may be distinguished and richer type constructions can be

obtained and used. Some specifics and a mathematical basis to

such models with agent signatures might be obtained from [1]

where the notion had been introduced since 1994. Meta-level

information contains information about object-level

information and reasoning processes; for example, for which

atoms the values are still unknown (epistemic information).

Similarly, tasks that include reasoning about other tasks are

modeled as meta-level tasks with respect to object-level tasks.

III. COMPETITIVE MODELS AND SIGNATURED TREES

Planning is based on goal satisfaction at models. Multi-agent

planning, in this paper is modeled as a competitive learning

problem where the agents compete on game trees as candidates

to satisfy goals hence realizing specific models where the plan

goals are satisfied. When a specific agent group “wins” to

satisfy a goal the group has presented a model to the specific

goal, presumably consistent with an intended world model. For

example, if there is a goal to put a spacecraft at a specific

planet’s orbit, there might be competing agents with alternate

micro-plans to accomplish the goal [4]. While the galaxy

model is the same, the specific virtual worlds where a plan is

carried out to accomplish a real goal at the galaxy via agents

are not. The plan goal selections and objectives are facilitated

with competitive agent learning. The intelligent languages [15]

are ways to encode plans with agents and compare models on

goal satisfaction to examine and predict via model diagrams

why one plan or model is better than another or to prevent

traversing unsuccesful routes.

B. Intelligent AND/OR Trees and Search

AND/OR trees Nilsson e.g. [23] are game trees defined to

solve a game from a player's stand point.

Formally a node problem is said to be solved if one of the

following conditions hold.

1. The node is the set of terminal nodes (primitive problem –

the node has no successor).

2. The node has AND nodes as successors and the successors

are solved.

3. The node has OR nodes as successors and any one of the

successors is solved.

A solution to the original problem is given by the subgraph of

AND/OR graph sufficient to show that the node is solved. A

program which can play a theoretically perfect game would

have task like searching and AND/OR tree for a solution to a

one-person problem to a two-person game. An agent AND/OR

tree [1] is and AND/OR tree where the tree branches are

intelligent trees. The branches compute a Boolean function via

agents. The Boolean function is what might satisfy a goal

formula on the tree. An intelligent AND/OR tree is solved iff

the corresponding Boolean functions solve the AND/OR trees

named by agent functions on the trees. Thus node m might be

f(a1,a2,a3) & g(b1,b2), where f and g are Boolean functions of

three and two variables, respectively, and ai's and bi's are

Boolean valued agents satisfying goal formulas for f and g. An

intelligent AND/OR tree is solved iff the corresponding

Boolean functions solve the AND/OR trees named by

intelligent functions on the trees. Thus node m might be

f(a1,a2,a3) & g(b1,b2), where f and g are Boolean functions of

three and two variables, respectively, and ai's and bi's are

Boolean valued agents satisfying goal formulas for f and g.

A tree game degree is the game state a tree is at with respect to

a model truth assignment, e.g. to the parameters to the

Boolean functions above. Let generic diagram or G-diagrams

be diagrams definable by specific functions. Intelligent

signatures [1] are signatures with designated multiplayer game

tree function symbols. A soundness and completeness theorem

is proved on the intelligent signature language by the first

author [7]. The techniques allowed us to present a novel

model-theoretic basis to game trees, and generally to the new

intelligent game trees.

26 POSITION PAPERS OF THE FEDCSIS. PRAGUE, 2017

Figure 1: Agent Logic Tree

C. Trees and Model Compatibility

Now let us examine the definition of situations from 1985

times and view it in the present formulation.

Definition 3.1 A situation consists of a nonempty set D, the

domain of the situation, and two mappings: g,h. g is a mapping

of function letters into functions over the domain as in standard

model theory. h maps each predicate letter, pn, to a function

from Dn to a subset of {t,f}, to determine the truth value of

atomic formulas as defined below. The logic has four truth

values: the set of subsets of {t,f}.{{t},{f},{t,f},0}. the latter

two is corresponding to inconsistency, and lack of knowledge

of whether it is true or false.

The above truth value assignments indicate that the number of

situations exceeds the number of possible worlds. The possible

worlds being those situations with no missing information and

no contradictions. From the above definitions the mapping of

terms and predicate models extend as in standard model theory.

Next, a compatible set of situations is a set of situations with

the same domain and the same mapping of function letters to

functions. In other worlds, the situations in a compatible set of

situations differ only on the truth conditions they assign to

predicate letters.

Definition 3.2 Let M be a structure for a language L, call a

subset X of M a generating set for M if no proper substructure

of M contains X, i.e. if M is the closure of X U {cM : for c, a

constant symbol of L}. An assignment of constants to M is a

pair <A,G>, where A is an infinite set of constant symbols in L

and G: A M, such that {G[a]: a in A} is a set of generators for

M. Interpreting a by g[a], every element of M is denoted by at

least one closed term of L[A]. For a fixed assignment <A,G>

of constants to M, the diagram of M, D<A,G>[M] is the set of

basic [atomic and negated atomic] sentences of L[A] true in M.

[Note that L[A] is L enriched with set A of constant symbols.]

Generic diagrams, denoted by G-diagrams, were what we

defined since 1980's to be diagrams for models defined by a

specific function set, for example Σ1 Skolem functions.

Remark: The functions above are those by which a standard

model could be defined by inductive definitions.

The frist author proved [5] that situations are compatible iff

their corresponding generalized diagrams are compatible with

respect to the Boolean structure of the set to which formulas

are mapped (by the function h above, defining situations). To

examine compatibility on model diagrams minimal prediction

was developed around 1994. The artificial intelligence

technique defined since the author’s model-theoretic planning

project, is a cumulative nonmontonic approximation attained

with completing model diagrams on what might be true in a

model or knowledge base. The predictive diagrams [9] are

applied to discover models to the intelligent game trees.

Prediction is applied to plan goal satisfiability and can be

combined with plausibility [5] probabilities, and fuzzy logic,

e.g. [13], [17] to obtain, for example, confidence intervals.

IV. SIGNATURED MORPHISMS AND MODULE PRESERVATION

From the software agent designer's viewpoint, however, there

is modularity with artificial structures. Artificial structures [7]

implemented by agent morphisms. Knowledge acquisition

requires either interviewing an expert, brainstorming with a

group of experts, or structuring one's thoughts if the specifier

is the expert. For multi-agent designs there are active learning

agents and automatic learning. The author first author had

presented the notion of Nondeterministic Knowledge

(Design_Agents) [7]. Design_Agents is formulated to deal

with the conceptualization stage and is being applied by the

present project to define active learning by agents.

Design_Agents requires the user to inform the specifier as to

the domains that are to be expected, i.e. what objects there are

and what the intended actions (operations) on the objects are,

while fully defining such actions and operations. The actions

could be in form of processes in a system. The relations

amongst the objects and the operations (actions) can be

expressed by algebras and clauses, which the specifier has to

present. The usual view of a multi-agent systems might

convey to an innocent AI designer that an agent has a local

view of the environment, interacts with others and has

generally partial beliefs (perhaps erroneous) about other

agents. On the surface the Design_Agents specification

techniques might appear as being rigid as to what the agents

expect form other agents. The Design_Agents specification

does not ask the agents be specified up to their learning and

interaction potential. Design_Agents only defines what objects

might be involved and what might start off an agent. It might

further define what agents are functioning together. Thus

specifications are triples <O,A,R> consisting of objects,

actions and relations. Actions are operations or processes.

A.The Formal Basis

Starting with what are called hysterectic agents [11]. A

hysterectic agent has an internal state set I, which the agent can

distinguish its membership. The agent can transit from each

internal state to another in a single step. Actions by agents are

CYRUS F. NOURANI, PATRIK EKLUND: CONCEPTS ONTOLOGY ALGEBRAS AND ROLE DESCRIPTIONS 27

based on I and board observations. There is an external state set

S, modulated to a set T of distinguishable subsets from the

observation viewpoint. An agent cannot distinguish states in

the same partition defined by a congruence relation. A sensory

function s :S → T maps each state to the partition it belongs.

Let A be a set of actions which can be performed by agents. A

function action can be defined to characterize an agent activity

action:T →A. There is also a memory update function mem: I

x T → I. To define agent at arbitrary level of activity

knowledge level agents are defined. All excess level detail is

eliminated. In this abstraction an agent’s internal state consists

entirely of a database of sentences and the agent’s actions are

viewed as inferences based on its database. The action

function for a knowledge level agent maps a database and a

state partition t into the action to be performed by an agent in a

state with database and observed state partition t. action: Dx

T→ A. The update function database maps a state and a state

partition t into a new internal database. database: D x T → D.

A knowledge-level agent is an environment is an 8-tuple

shown below. The set D in the tuple is an arbitrary set of

predicate calculus databases, S is a set of external states, T is

the set of partitions of S, A is a set of actions, see is a function

from S into T, do is a function from A S into S, database is a

function from D x T into D, and action is a function from D x T

into A.

Figure 2 Heterogenous Module Computing Model

B. Agent Model Morphisms

Let A be a set of actions which can be performed by agents. A

function action can be defined to characterize an agent activity

action:T → A. There is also a memory update function. A

hysterectic agent HA defined by a sextuple

<I,S,T,A,s,d,internal,action> where d is a function form A x S

→ S and internal I x T → I. Let HA be a set of sextuples

defining a hysterectic agents. Define HA morphims by a family

of functions defined component-wise on the sextuple above.

Definition 4.1 A HA morphism is a function F : HA → HA’

defined component-wise by F[i]: I→ I’; F[S]: S → S’, F[T]: T

→T’, F[A]: A →A’; F[s]: S→ T’; F[d]: A’ x S’ → S’ and

F[internal]: I’ x T’→ I’.

Definition 4.1 implies F defines a new hysterectic agents from

HA by a morphism. Component-wise definitions for a

morphism might be viewed as functions on a multi-sorted

signature carrying the sextuple. Similar morphisms can be

defined for knowledge level agents which we can refer to by

KD-morphisms.

C. Agents, Modules, and Algebras

The computing enterprise requires more general techniques of

model construction and extension, since it has to accommodate

dynamically changing world descriptions and theories. The

models to be defined are for complex computing phenomena,

for which we define generalized diagrams. They were designed

to build models with prespecified generalized Skolem

functions. The specific minimal set of function symbols is the

set with which a model fro a knowledge base can be defined.

The G-diagram techniques allowed us to formulate AI worlds,

KB’s in a minimal computable manner to be applied to agent

computation. The techniques in [5] for model building as

applied to the problem of AI reasoning allow us to build and

extend models through diagrams. A technical example of

algebraic models defined from syntax had appeared in defining

initial Σ algebras for equational theories of data types [2] and

our research in [1]. In such direction for computing models of

equational theories of computing problems are presented by a

pair (Σ,E), where is a signature (of many sorts, for a sort set S

and E a set of -equations.

Definition 4.2 An s-sorted signature Σ or operator domain is a

family <w,s> of sets, f or s S and w S* (where S* is the set of

all finite strings from S , including the empty string). call f

<w,s> and operation symbol of rank w,s; of arity w, and of sort

s.#

We apply multi-sorted algebras via Definition 2.3 to multi-

agent systems.

Definition 4.3 Let Σ be an S-sorted signatures. A Σ-algebra A

consists of a set As for each s S (called the carrier if A of sort

s) and a function <A>: As1 x As2 x....xAsn As for each

<w,s>, with w=s1s2...sn (called the operation named by). For

<,s>, A As, i,e the (set of names) of constants of sort s. #

Definition 4.4 If A and B are Σ algebras, a -homomorphism

h:A → B is a family of functions <hs:As Bs> s in S that

preserve the operations, i.e. that satisfy (h0) For <,s>, the

hs(A) = B; (h1) If , For <w,s>, with w=s1s2...sn and

<a1,...,an> As1 x As2 x....xAsn, then hs[A(a1,...,an)] =

B(hs(a1),...,hs(an)).

From [1], [7] we have the following notions:

Definition 4.5 A signature is intelligent iff it has intelligent

function symbols. We say that a language has intelligent syntax

if the syntax is defined on an intelligent signature.

Definition 4.6 A language L is said to be an intelligent

language iff L is defined from an intelligent syntax.

A practical example of intelligent languages was presented

composed from <O,A,R> triples as control structures, e.g.

SERF [15]. The functions in AF are the agent functions

28 POSITION PAPERS OF THE FEDCSIS. PRAGUE, 2017

capable of message passing. The O refers to the set of objects

and R the relations defining the effect of A's on objects.

Amongst the functions in AF only some interact by message

passing. The functions could affect objects in ways that affect

the information content of a tree. There you are: the tree

congruence definition thus is more complex for intelligent

languages than those of ordinary syntax trees. Let us define tree

information content for the present formulation. Hence there is

a new frontier for a theoretical development of the <O,A,R>

algebras and that of the AII theory. <O,A,R> is a pair of

algebras, <Alg[A],Alg[F]>, connected by message passing and

AII defines techniques for implementing such systems. To

define AII we define homorphisms on intelligent signature

algebras. For an intelligent signature IΣ, let TIΣ be the free tree

word algebra of signature IΣ. The quotient of TIΣ the word

algebra of signature , with respect to the I-congruence relation

generated by a set of equations E, will be denoted by T<IΣ,E>,

or T<P> for presentation Component-wise definitions for a

morphism might be viewed as functions on a multi-sorted

signature carrying the sextuple. Similar morphisms can be

defined for knowledge level agents which we can refer to by

KD-morphisms. The techniques in [5] for model building as

applied to the problem of AI reasoning allows us to build and

extend models through diagrams. The notion of an intelligent

signature [1] is simply a designation that there is a subsignature

with specific properties, for example all the functions are 1-1.

Definition 4.7 A IΣ-homomorphism is a I-homomorphism

defined on algebras with intelligent signature IΣ. To define

agent specific designs we apply HA-morphisms via the

following definition.

Definition 4.8 Let A and B be IΣ-algebras with signatures

containing an agent signature HA.

A HA-homomorphism from A to B is an IΣ-homorphism with

defined HA-morphism properties.

V. LEARNING , CONCEPTS, AND ONTOLOGY PRESERVATION

Our transfer learning model applies the BID model to specify

learning areans M1 and M2. Each arean’s BID is presented

with intelligent signatures IΣ1 and IΣ2. Predictive model

compatibility techniques are presented with agent signature

game trees where the above fomalizm can is applied to realize

competitive learning models. The following process is applied

to transfer game tree and competive model learning across

domains since modeling and realizability are based on

morphism preserved formulas.

 The term ATL here refers to the process of abstract transfer

leraning from an abstract characterization of a world, or

leraning domain to a second arena or world. Thus ATL express

the relationship between two forms of representations. The

notion of abstract transfer learning are either algebraic or

model-theoretic (algebraic logic) definitions. We refer to

specifications of the form <O,A,R> as presentations that

present an IM_BID system. We also expect a presentation of

the form <I[O],I[A],I[R]> [15] for the implementing abstract or

concrete machine. The former could be the designer's

conceptualization, and the latter the specification of the syntax

and semantics of a programming language. Informally the A

TL process is that of encoding the algebraic structure of the

conceptualization of a problem onto the algebra that specified

an learning machine, or a secondary BID specifed world. The

ATL process becomes that of defining specific agent and

structural morphisms on the above BID algebras. Each of the

functions defined by <O,A,R> are implemented by agents, that

characterize the implementation function

I:<O,A,R> → <I[O],I[A],I[R]> is to be defining a mapping I:

<Alg[A],Alg[F]> → <Alg[I(A)],Alg[I(F)]>. We refer to

Alg[A] and Alg [F] are what we call ontology algberas. The

implementation mapping I defines wrappers to resources in a

manner preserving the ontology algebra. Ontology algerbas are

multi-sorted algerbas defining multi-agent systems defined by

formal agents, e.g., hysterectic or knowledge level agents and

agent morphisms [14], [15].

Example 1: Data and Knowledge Bases: The ATL Ontology

Preservation Principle, following is the first author’s 1997

ontology preservation principles: The ATL is a valid transfer

only if it preserves the ontology algebras. Since the knowledge-

base is essential to learning designs, let us carry on the

ontology preservations to Widerhold’s domain knowledge base

algebra DKB [16] consists of matching rules linking domain

ontologies. There are three operations defined for DKB.

Example 2: Mutual Robot Learning

Based on that new concept ontology algebras with description

ontology algebra preservation theorem are presented. Newer

application areas that can be explored are mutual robot

learning – a robot introducing a structure to a new robot.

These areas have started being explored at Singularity

university affiliate groups, for example. Newer examples are

on learning topological spaces [20]. Our more functional

approach to learning about the world can be applied to

physical robots transformed into an abstract model, and then

converting it back into a functional representation.

The operations are: Intersection – creating subset ontology and

keeping sharable entries; Union – creating a joint ontology

merging entries; Difference – creating a distinct ontology and

removing shared entries. Mapping functions must be shown to

preserve ontologys. Structural morphism allow ontology

structures to be mapped from one robot ontology Knowledge

base to a new robot with alternate ontology descripptions and

structures, thereby transfer learning to a new robot with

alternate ontology with structure preserving morphisms.

Based on that new concept ontology algebras with description

ontology algebra preservation theorem are presented. Newer

application areas that can be explored are mutual robot

learning – a robot introducing a structure to a new robot.

These areas have started being explored at Singularity

university affiliate groups, for example. Robot learning based

on watching the task being performed by a human or by a

second robot are model-based learning but troublesome due to

CYRUS F. NOURANI, PATRIK EKLUND: CONCEPTS ONTOLOGY ALGEBRAS AND ROLE DESCRIPTIONS 29

a mismatch between the model structure problems e.g. [21].

Newer examples are on learning topological spaces [20]. Our

more functional approach to learning about the world can be

applied to physical robots transformed into an abstract model,

and then converting it back into a functional representation.

Let us apply the definition for HA agents and HA morphisms

to state a preservation theorem. Let A and B be IΣ-algebras

with the signature IΣ containing HA agents. Let Alg[B] be an

IΣ-algebra defined from B implementing, e.g. [15] a specified

functionality defined by A. An ATL is an implementation for

Alg[A] by Alg[B]. Theorems 5.1 and 5.2 are from the first

author’s 2001 times, c.f. [15].

Definition 5.1 Let A and B be IΣ-algebras with intelligent

signature IΣ containing agents. An I-ontology is an IΣ-algebra

with axioms for the agents and functions on the signature.

Theorem 5.1 Let A and B be IΣ -algebras with the signature IΣ

containing HA agents. The AII with HA morphisms defined

from A to B preserve IΣ-ontology algebras iff defined by HA-

homorphisms.

Proof definition for the ontologies, HA morphism, definition

4.7 and 4.8, IΣ-algebras and IΣ-homorphisms entail the IΣ-

ontology axioms are preserved iff agents are carried by HA-

homorphisms from A to B.

Theorem 5.2 Let A and B be IΣ-algebras with the signature I

containing KD agents. The AII with KD morphisms preserve

IΣ -ontology algebras iff defined by KD-homorphisms.

Proof Similar to 5.1. DKB mappings are specific ATL's were

the ontology algebra operations are the same at source and

target. We can prove based on the above that DKB mappings

are DKB preservation consistent.

VI. FORMAL CONCEPT DESCRIPTION ONTOLOGY ALGEBRA

FCA is abstracted on so called “context”, or “formal context”,

but is in the end just a relation on sets, I ⊆ G × M, often written

as and said to be a triple (G,M,I). G is called these to

f“objects”and M these to f“attributes”. However, neither

objects nor attributes are given any specific syntactic structure.

The call for intuitive meaning, but as such there is no syntactic

structure [24,25] whatsoever based on which objects and

attributes move beyond being just points in sets. This obviously

makes real-world applications difficult to develop, and

application content is all in that intuitive structure, and none of

it is embrace by the syntactic notion itself. Basically, in FCA,

G and M are indeed just plain sets, but in this starting point

they can be seen as objects in the category Set of sets and

functions. Further, even if in traditional FCA, the elements of

those sets have no structure whatsoever, these sets can be

provided with generalized structure [17], which formalizes

FCA categorically, thereby opening up possibilities to give

“object” and “attribute” more precise meanings given their

syntactic structure, also going beyond just using Set as the

underlying category for FCA, and, adopting a much more

generalized view on relations.

In traditional FCA (Wille 1982), a so called “formal concept”,

or just a “concept”, is a pair (A, B), with A ⊆ G and B ⊆ M,

such that A = {g ∈ G | gIm for all m ∈ B} and B = {m ∈ M |

gIm for all g ∈ A}. A lattice, the so called “formal concept

lattice”, is given for the set of all concepts by (A1,B1) ≤

(A2,B2) if and only if A1 ⊆ A2 (or, equivalently, B1 ⊇ B2).

Since there is no convention about how to use given names for

objects and attributes in “informally constructed” names for

formal concepts, combining names into names for concepts, or

simply inventing the names otherwise, has become tradition

within FCA. This, however, means that there is no

terminological or ontology basis for FCA, but concepts

themselves are seen as ontology objects. The ontology

preservation areas will be further developed to present concept

ontology mappings and preservations.

In the following subsection we show how constructive and

type-theoretic methodology can provide enriched structures for

FCA. The constructive approach Paive (2002) adapts classical

ALC to a constructive system using the two routes outlined

above. The syntax of such constructive system is the same in

both cases. Concept descriptions in this constructive

description logic CDL language obey the following syntax rule

C, D → A | T | ⊥ | C ⊓ D | C ⊔ D | C → D | ∀R.C |∃R.C

where C, D range over concepts, A is an atomic concept and R

ranges over names of roles, as before. As usual in constructive

logics, since ¬C is simply an abbreviation for C → ⊥ we do

not need to consider it. In compensation we must add in the

constructive implication of concepts, which in classical

description logic is a derived concept. Also it is just a

convenience to have the true concept T, as it could be defined

as ¬⊥. We are then within the realm of first order logic IFOL.

The type-theoretic approach shows how concepts as singleton

concepts correspond to "individual concept'', whereas

syntactic powers of concepts correspond to "concept''.

A. Categorical Characterizations

In this subsection we point out that ∃ in ∃R.C as a modality is

actually an informal symbol. Further, as typing comes into

play, we show how C is syntactically ambiguous in this context

as the underlying signature is not precisely described.

In the following we use notations from (Schmidt-

SchaussSmolka 1991). Note that D for the universe should not

be confused with D as used for concept descriptions, e.g., in

expressions like C⊔D, D is not to be understood as D in D
I
,

where I is the interpretation. With C as a "concept'', we have C
I

as a subset of D
I
, which in turn is an element PD

I
, where P is

the powerset functor. The "existential quantifier'' in ∃R.C is an

"R-modality'' applied to the powerconcept C.

30 POSITION PAPERS OF THE FEDCSIS. PRAGUE, 2017

The definition for the semantic expression (∃R.C)
 I
 uses the

existential quantifier that appears in the assumed underlying set

theory. Concerning the underlying signature and related

variables, in (Schmidt-SchaussSmolka1991) the situation is

unclear, given the assumption about the existence of two

further disjoint alphabets of symbols, which are called

individual and concept variables. Logically, variables are not

part of any alphabet. Variables are terms, and as such they are

terms of a certain type. We should therefore speak of

"individual concept'' rather than "individual variable''. Now

typing of "concept'' and "individual concept'' comes into play,

and we will need type constructors on level two of the so called

three-level arrangement of signatures [17]. As opposed to

(Schmidt-SchaussSmolka1991), we say "concept'' instead of

"individual concept'', and "powerconcept'' instead of

"concept''. The underlying signature must be formalized, where

concept is a sort in the given underlying signature on level one.

On level two, Pconcept becomes a constant operator, and a

type constructor P is then used to produce a new type Pconcept,

which in their `algebra' will be understood, respectively, as D
I

and PD
I
. Simply typed description logic can now be formally

defined in lambda-calculus [17]. A concept on level one

becomes a "singleton powerconcept'' on level three, and the

syntactic expression ∃R.C appP(Pconcept), Pconcept (m, appPconcept,

P(Pconcept) (R,C)) where m is the multiplication of the underlying

monad, and app is the function type constructor.

For transforming description logic into our categorical

framework, we use notations in [6]. Interpretations I = (D
I
, I),

where I maps every coFncept description to a subset of DI, use

D for that universe, which should not be confused with D as

used for concept descriptions, e.g., in expressions like C D,

where D is not to be understood as the “D in D
I
”. With C as a

“concept”, we have C
I
 ⊆ D

I
 ∈ P D

I
. This means that P D

I
 is the

actual ‘algebra’. Roles R are semantically described as

relations RI ⊆ D
I
 → D

I
 , i.e., we can equivalently write it as a

substitution R
I
 : D

I
 → D

I
 . The observation that relations R ⊆

X → X correspond precisely to functions (in form of

substitutions) R : X → PX, where P is the powerset functor

over the category of sets and functions, is the basis for viewing

generalized relations as morphisms (substitutions) in the Kleisli

category over generalized powerset monads. With C as a

“concept”, we have C
I
 ⊆ D

I
 →PD

I
. This means that PD

I
 is the

actual ‘algebra’.

Definition 6.1 A Description algebra morphism h: PD
I
 →PD

I’

where I and I’ are alternate interpretation functions such that h

preserves roles R on D.

Following definitions on HA morphims and the state space

agent model above, we have description algebras defined on an

agent signature Σ. Considering a sequence description

competitive model [10] a concept interpretation I corresponds

to a competitive model on an agent learning tree. Signatured

agent trees satisfy goals to complete a model diagram realizing

a role R. Concept descriptions are presented with an agent

signature tree TIΣ with a role R defined on the signature agents.

Proposition 6.1 A description algebra morphism on free

signature tree ℘(TIΣ)such that roles are preserved on TIΣ

algebra is definable by algebraic extension on an agent

signature algebra TIΣ.

Let us present the agent competitive instance for an algebraic

description model platform.

Definition 6.2 Let A and B be description algebras with

intelligent signature IΣ containing agents. An IΣ-ontology

description is an IΣ description algebra with a prescribed role

R: X → ℘(IΣ) for the agents and functions on the IΣ signature.

Remark: X ⊆ IΣ , so for a set monad, there is an assignment for

all IΣ well-formed trees. Example well-formed agent trees were

presented in the first auhtors publications around 2007 on ISL

algebras with 1-1 signature trees.

Theorem 6.1 Let A and B be IΣ description algebras with the

signature IΣ . Then the agent homomorphisms defined from A

to B preserve IΣ -ontology iff defined by a description algebra

homorphisms by algebraic extension on free signature tree

℘TIΣ such that roles are preserved on TIΣ.

Proof Theorems 5.1, 5.2, and Proposition 6.1.

Theorem 6.2 Let A and B be IΣ -description algebras with the

signature IΣ containing KD agents. The AII with KD

morphisms preserve IΣ-description ontoltogy algerbas iff

defined by KD-Description ontology homorphisms.

Proof Similar to 6.1. DKB mappings are specific ATL's were

the ontology algebra operations are the same at source and

target. We can prove based on the above that DKB mappings

are DKB preservation consistent.

VII. CONCLUDINGCOMMENTS

A sound computing basis for ontology structures descriptions,

and preservation theorems are accomplished with ontology

preserving functions and morphisms that are applied to

transform learning across domains. Competitive learing

models based on a novel multi-agent have increasing

important applications ranging from structural learning to

predictive data analytics based on goal plans. Roles and

description are developed with new algebraic models with

newer applications to concept description ontology algebras

and description ontology preservation. The areas are a basis to

future reseach on ontology structures with a comprehensive

mathematical basis. Newer areas to explore are ATL principle

for mutual robot learning based on ontology preservation

morphisms.

ACKNOWLEDEGMENTS

We thank our colleague Prof. Dominik Slezak, Warsaw

University for his comments on the presentation.

CYRUS F. NOURANI, PATRIK EKLUND: CONCEPTS ONTOLOGY ALGEBRAS AND ROLE DESCRIPTIONS 31

* Sequnent Description Logic computing was developed

at Computation logic Lab., Burnaby, Canada: Akdmkrd.tri-

pod.com

REFERENCES

[1] Nourani, C. F. 1996, Slalom Tree Computing – A Computing Theory
For Artificial Intelligence, June 1994 (Revised December 1994), A.I.

Communication Volume 9, Number 4, December 1996, IOS Press,
Amsterdam.

[2] ADJ-Goguen, J.A., J.W. Thatcher, E.G. Wagner and J.B. Wright, A
Junction Between Computer Science and Category Theory (parts I and

II), IBM T.J. Watson Research Center, Yorktown Heights, N.Y .
Research Report, 1975. 350.

[3] Nourani,C. F. 2009, A Descriptive Computing, Information Forum,
Liepzig, Germany, March 2009. SIWN2009 Program, 2009. The

Foresight Academy of Technology Press International Transactions on
Systems Science and Applications, Vol. 5, No. 1, June 2009, pp. 6069.

M. Wooldridge and N.R. Jennings, Intelligent Agents. (1993) 51- 92.
[4] Koehler, J. 1986, Planning From Second Principles, AI 87.

[5] Nourani, C. F. 1991, Planning and Plausible Reasoning in Artificial
Intelligence, Diagrams, Planning, and Reasoning, Proc. Scandinavian

Conference on Artificial Intelligence, Denmark, May 1991, IOS Press.
[6] Brazier, F.M.T. Dunin-Keplicz, B., Jennings, N.R. and Treur, J.

(1997) DESIRE: modelling multi-agent systems in a compositional
formal framework, International Journal of Cooperative Information

Systems, M. Huhns, M. Singh, (Eds.), special issue on Formal
Methods in Cooperative Information Systems, vol. 1. Knowledge-

based Systems workshop, KAW'95, Calgary: SRDG Publications,
Department of Computer Science.

[7] Nourani,C. F. 1995, Intelligent Languages - A Preliminary Syntactic
Theory, May 15, 1995, Mathematical Foundations of Computer

Science;1998, 23rd International Symposium, Brno, Czech Republic,
August The satellite workshop on Grammar systems. Silesian

University, Faculty of Philosophy and Sciences, Institute of Computer
Science, Science;1450, Springer, 1998, ISBN 3-540- 64827-5, 846

pages.
[8] Nourani, C. F. 2005, A Haptic Computing Logic – Agent Planning,

Models, and Virtual Trees, 286-311., Affective And Emotional
Aspects Of Human-Computer Interaction: Game-Based and

Innovative Learning Approaches, Edited by Maja PIVEC, IOS PRES,
2006, pp. 317, ISBN1-58603-572-X.

[9] Nourani, C. F. and T. Hoppe 1994, “GF-Diagrams for Models and
Free Proof Trees,” Proceedings the Berlin Logic Colloquium,

Universitat Potsdam, Organized by Humboldt Universtitat
Mathematics, Berlin. May 1994.

[10] Cyrus F. Nourani and Oliver Schulte, Multiagent Decision Trees,
Competitive Models, and Goal Satisfiability. DICTAP, Ostrava,

Czech Republic, July 2013.

[11] Genesereth, M. R. and N. J. Nilsson 1987, Logical Foundations

ofArtificial Intelligence, Morgan-Kaufmann,1987.
[12] Nourani, C. F. 2005, Agent-based Structures, Agent Ontology

Preservation and Enterprise Modeling Workshop on Ontologies in
Agent Systems 5th International Conference on Autonomous Agents

Montreal, Canada.
[13] U. Straccia, A fuzzy description logic, in: J. Mostow, C. Rich (Eds.),

AAAI/IAAI, AAAI Press / The MIT Press, 1998, 594-599.
[14] Nourani. C. F. “Design with Software Agents, Parallel Module

Coordination and Object Languages, February 3, 1997. TU Berlin,
Fachbereich 13 - Informatik, Sekretariat FR5-13, Berlin, Germany.

[15] Nourani, C. F. “Abstract Implementation Techniques for A. I. By
Computing Agents,: A Conceptual Overview,” Technical Report,

March 3, 1993, Proceedings SERF-93, Orlando, Florida, November
1993. Published by the University of West Florida Software

Engineering Research Forum, Melbourne, Florida.
[16] Gio Wiederhold: ``Interoperation, Mediation and Ontologies'';

Proc.Int.Symp. on Fifth Generation Comp Systems, ICOT, Tokyo,
Japan, V ol.W3, Dec.1994, pages 33-48.

[17] Eklund, P., Galán, M. A., Kortelainen, J., Ojeda-Aciego, M. (2014).
Monadic formal concept analysis, RSCTC 2014, (Eds. C. Cornelis et

al.), Lecture Notes in Artificial Intelligence 8536, 201-210. pp.
473-484.

[18] Eklund, P., Galán, M.A., Gahler, W.: Partially ordered monads for
monadic topologies, Kleene algebras and rough sets. Electronic Notes

in Theoretical Computer Science 225(5), 67–81 (2009).
[19] Rao, A. S. and Georgeff, M.P. (1991). Modeling rational agents within

a BID-architecture. In: R. Fikes and E. Sandewall (eds.), Proceedings
of the Second Conference on Knowledge Representation and

Reasoning, Morgan Kaufman.
[20] Sebastian Thrun - Artificial Intelligence, 1998 – Elsevier, Learning

metric-topological maps for indoor mobile robot navigation
Pittsburgh, PA 15213, USA Received June 1996; revised October

1997.
[21] R A Brooks, M J Mataric 1993- Robot learning, 1993 – Springer

[22] Dunin-Keplicz, B. and Treur, J. (1995). Compositional formal
specification of multi-agent systems. In: M. Wooldridge and N.R.

Jennings, Intelligent Agents, Lecture Notes in Artificial Intelligence,
Vol. 890, Springer Verlag, Berlin, pp. 102-117.

[23] Nilsson, N. J. 1969,"Searching, problem solving, and game-playing
trees for minimal cost solutions." In A.J. Morell (Ed.) IFIP 1968

Vol. 2, Amsterdam, North-Holland, 1556-1562, 1969.
[24] M. Schmidt-Schauß, G. Smolka, Attributive concept descriptions with

complements, Artificial Intelligence 48.
[25] Giancarlo Guizzardi , 2005, Ontological Foundations for Structural

Conceptual Models. CTIT, UTwenty, The Netherlands, PhD Thesis
Series, No. 05-74 Telematica Instituut No. 015 (TI/FRS/015).

32 POSITION PAPERS OF THE FEDCSIS. PRAGUE, 2017

