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Abstract—A rooted labeled caterpillar is a rooted labeled tree
transformed to a path after removing all the leaves in it. In
this paper, we design the algorithm to compute the edit distance
between rooted labeled caterpillars in O(\*h?) time, where )
and h are the maximum number of leaves and the maximum
height in two caterpillars, respectively.

I. INTRODUCTION

OMPARING tree-structured data such as HTML and

XML data for web mining or RNA and glycan data for
bioinformatics is one of the important tasks for data mining.
The most famous distance measure [2] between rooted labeled
unordered trees (trees, for short) is the edit distance [9].
The edit distance is formulated as the minimum cost of edit
operations, consisting of a substitution, a deletion and an
insertion, applied to transform a tree to another tree. It is
known that the edit distance is always a metric and coincides
with the minimum cost of Tai mappings [9].

Unfortunately, the problem of computing the edit distance
between trees is MAX SNP-hard [13]. This statement also
holds even if trees are binary or the maximum height of trees
is at most 3 [1], [4].

Many variations of the edit distance have developed as more
structurally sensitive distances, by introducing the restriction
of Tai mappings (cf., [7], [11]). All the variations except those
of an alignment distance [5] are metrics and the problem of
computing them is tractable [10], [11], [12], [14]. In particular,
the isolated-subtree distance (or constrained distance) [12],
which is defined as the minimum cost of isolated-subtree
mappings, is the most general tractable variation of the edit
distance [11].

On the other hand, a caterpillar (cf. [3]) is a tree transformed
to a path after removing all the leaves in it. Whereas the
caterpillars are very restricted and simple, there are some cases
containing many caterpillars in real dataset, see Table II in
Appendix.

As a method to compare two caterpillars, we can adopt a
complete subtree histogram distance, which is an L-distance
between histograms consisting of complete subtrees in two
trees [1]. The complete subtree histogram is computable in
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linear time and always a metric but it is greater than the
edit distance in general [1]. In particular, as an extreme case,
there exists two caterpillars such that the edit distance between
them is one but the complete subtree histogram distance is the
number of nodes in two caterpillars, consider two paths with
the same length such that the labels of leaves are different.

As another method, we can also adopt a path histogram dis-
tance, which is an L;-distance between histograms consisting
of paths from the root to leaves in two trees [6]. The path
histogram distance is computable in linear time and always a
metric for caterpillars, which is not a metric for trees, but it
is incomparable with the edit distance [6].

Since a caterpillar is an unordered tree, it remains open
whether or not the problem of computing the edit distance be-
tween caterpillars is tractable. Hence, we discuss this problem.

First, we point out that there exists a Tai mapping between
two caterpillars that is not an isolated-subtree mapping. Then,
we cannot apply the algorithm to compute the isolated-subtree
distance or its variations [10], [11], [12], [14] that are tractable
variations of the edit distance, to compute the edit distance
between caterpillars.

On the other hand, a caterpillar has the structural property
that the children of a non-leaf node in a caterpillar consist of
at most one caterpillar and leaves (possibly empty). Then, by
deleting a non-leaf node in a caterpillar, we obtain at most
one caterpillar and the set of leaves as a forest. Furthermore,
once such leaves are obtained, then we can add them to the
previous set of leaves.

Based on this property, in this paper, we design the al-
gorithm to compute the edit distance between caterpillars in
O()X2h?) time, where A and h are the maximum number of
leaves and the maximum height in two caterpillars, respec-
tively. Furthermore, we point out that the structural restriction
of caterpillars provides the limitation of tractable computing
of the edit distance for unordered trees.

II. CATERPILLARS AND EDIT DISTANCE

A tree T is a connected graph (V, E) without cycles, where
V is the set of vertices and E is the set of edges. We denote V'
and E by V(T) and E(T). The size of T is |V| and denoted
by |T'|. We sometime denote v € V(T') by v € T. We denote
an empty tree (0,0) by 0. A rooted tree is a tree with one
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node r chosen as its root. We denote the root of a rooted tree
T by r(T).

Let T be a rooted tree such that r = 7(7") and u,v,w €
T. We denote the unique path from r to v, that is, the tree
(V',E") such that V' = {vy,...,v4}, v1 = r, v, = v and
(vi,viy1) € E' forevery i (1 <i < k—1), by UP,(v). The
parent of v(# r), which we denote by par(v), is its adjacent
node on UP,(v) and the ancestors of v(# r) are the nodes
on UP,(v) — {v}. We say that u is a child of v if v is the
parent of u and wu is a descendant of v if v is an ancestor of
u. We call a node with no children a leaf and denote the set
of all the leaves in T' by lv(T").

The degree of v, denoted by d(v), is the number of children
of v, and the degree of T, denoted by d(T), is max{d(v) |
v € T'}. The height of v, denoted by h(v), is max{| UP,(w)]| |
w € Ww(T[v])}, and the height of T, denoted by h(T), is
max{h(v) | v e T}.

We use the ancestor orders < and <, that is, u < v if v is
an ancestor of v and u < v if u < v or u = v. We say that w
is the least common ancestor of u and v, denoted by u U v,
if u < w, v < w and there exists no node w' € T such that
w <w,u<w and v <w'.

Let T be a rooted tree (V, E) and v anode in T'. A complete
subtree of T at v, denoted by T'[v], is a rooted tree 7' =
(V',E") such that 7(T") = v, V' = {u € V | u < v} and
E' = {(u,w) € E|u,we V'}.

We say that u is to the left of v in T if pre(u) < pre(v)
for the preorder number pre in T and post(u) < post(v)
for the postorder number post in T. We say that a rooted
tree is ordered if a left-to-right order among siblings is given;
unordered otherwise. We say that a rooted tree is labeled if
each node is assigned a symbol from a fixed finite alphabet X.
For a node v, we denote the label of v by I(v), and sometimes
identify v with /(v). In this paper, we call a rooted labeled
unordered tree a tree simply. Furthermore, we call a set of
trees a forest.

As the restricted form of trees, we introduce a rooted labeled
caterpillar (caterpillar, for short) as follows, which this paper
mainly deals with.

Definition 1 (Caterpillar (cf., [3])): We say that a tree is a
caterpillar if it is transformed to a path after removing all the
leaves in it. For a caterpillar C', we call the remained path a
backbone of C' and denote it by bb(C').

Next, we introduce an edit distance and a Tai mapping.

Definition 2 (Edit operations [9]): The edit operations of a
tree T' are defined as follows, see Figure 1.

1) Substitution: Change the label of the node v in T

2) Deletion: Delete a node v in T' with parent v', making

the children of v become the children of v'. The children
are inserted in the place of v as a subset of the children
of v'. In particular, if v is the root in T, then the
result applying the deletion is a forest consisting of the
children of the root.

3) Insertion: The complement of deletion. Insert a node v

as a child of v’ in T making v the parent of a subset of
the children of v'.
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Substitution (v +— w)

A

Deletion (v — €)
. AQ

Insertion (¢ — v)
: A
o S
A
Fig. 1.

Edit operations for trees.

H
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Let ¢ ¢ X denote a special blank symbol and define 3, =
Y U{e}. Then, we represent each edit operation by (I + I3),
where (I1,1s) € (¥. x . — {(¢,¢)}). The operation is a
substitution if I; # ¢ and Il # ¢, a deletion if I, = ¢, and
an insertion if [; = . For nodes v and w, we also denote
(l(v) = l(w)) by (v — w). We define a cost function - :
(8 x 2.\ {(¢,¢)}) = RT on pairs of labels. We often
constrain a cost function v to be a metric, that is, y(l1,15) > 0,
’y(ll,lg) =0 iff ll = lQ, ’Y(ll,lg) = ’}/(lg,ll) and ")/(ll,lg) S
~v(l1,12) +7(l2,13). In particular, we call the cost function that
v(ly,l2) = 1 if Iy # l> a unit cost function.

Definition 3 (Edit distance [9]): For a cost function v, the
cost of an edit operation e = [; — Iy is given by y(e) =
~(l1,12). The cost of a sequence E = ey,...,e, of edit
operations is given by y(E) = Zle v(e;). Then, an edit
distance Trp(T1,T3) between trees 77 and T is defined as

follows: ]
E is a sequence

of edit operations
transforming 77 to 15
Definition 4 (Tai mapping [9]): Let T} and T be trees. We
say that a triple (M, T}, Ts) is a Tai mapping (a mapping, for
short) from T to 15 if M C V(T1) x V(I3) and every pair
(v1,w;) and (ve,ws) in M satisfies the following conditions.

TTA1 (Tla T2) = min V(E)

1) v; = vy iff w; = wy (one-to-one condition).

2) vy < wy iff wy < wso (ancestor condition).

We will use M instead of (M,Ty,T>) when there is no
confusion denote it by M € M\ (T4, T3).

Let M be a mapping from Ty to Ts. Let Iy, and Jy; be
the sets of nodes in 77 and 75 but not in M, that is, Iy =
{veT | (v,w) € M} and Jyy = {w € Tr | (v,w) & M}.
Then, the cost v(M) of M is given as follows.

YM)= Y yww)+ Y yve)+ Y, v(Ew).
(v,w)eM vely weJp

Trees T7 and Ts are isomorphic, denoted by T} = T, if
there exists a mapping M € M (T1,T») such that Iy =
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Jyu =0 and v(M) = 0.

Theorem 1 (Tai [9]): Tra(Th,T>) = min{y(M) | M €
Mo (Th, T3) }.

Unfortunately, the following theorem is known for the
problem of computing 7ry;.

Theorem 2 ([1], [4], [13]): Let T and T, be trees. Then,
the problem of computing 7ra (71, 72) is MAX SNP-hard.
This statement also holds even if both T} and 75 are binary
or the maximum height of 7 and 75 is at most 3.

Finally, we introduce an isolated-subtree mapping and an
isolated-subtree distance as the variations of the Tai mapping
and the edit distance.

Definition 5 (Isolated-subtree mapping and distance [12]):
Let T3 and Ty be trees and M € My (T1,T2). We
say that M is an isolated-subtree mapping, denoted by
M € Mus(Th,Ts), if M satisfies the following condition
for every (vy,ws), (v2,ws), (v3, w3) € M:

v3 < v Uy <= w3 < w; Uws.
Furthermore, we define an isolated-subtree
Tisr (11, T) as follow.
Tlllsvlv(Tl,Tg) = mln{’y(M) | M c Mn,svy(Tl,Tg)}.

It is obvious that My (Th,T2) C Mra(Th,T2) and then
Trar(T1,T2) < Tose(T1,T2). In contrast to Theorem 2, the
following theorem also holds.

Theorem 3 (cf., [10]): Let Ty and T, be trees. Then, we
can compute Ty (7Th,T2) in O(n?d) time, where n =
max{|T1|,|T>|} and d = min{d(T}),d(T3)}.

It is known that 73,4, is the most general tractable variation
of 7y [11].

Example 1: Consider two caterpillars C; and Cs illustrated
in Figure 2. Then, M illustrated in Figure 2 is the optimum
mapping between C; and C,. Here, it holds that M ¢
Must(C1,Cs) and M is an alignable mapping corresponding
to an alignment distance [7], [11]. Note that the problem
of computing an alignment distance is MAX SNP-hard in
general [5].

distance

ORNO
(@ ® B
@ ® W @ @
Cl 02

Fig. 2. Two caterpillars C'; and Cy and their optimum mapping M in
Example 1.

Example 1 shows that there exists the minimum cost
mapping between caterpillars which is not an isolated-subtree

mapping. On the other hand, it remains open whether or not
Theorem 2 holds for caterpillars.

Hence, in the next section, we discuss the problem of
computing the edit distance between caterpillars and will solve
this problem affirmatively.

III. COMPUTING EDIT DISTANCE BETWEEN
CATERPILLARS

Example 1 also shows that we cannot apply the algorithm to
compute 7y ¢p and its variations [10], [11], [12], [14], which is
based on the maximum cost maximum flow algorithm or the
maximum weighted bipartite matching algorithm. On the other
hand, by using the structural property of caterpillars, in this
section, we design the algorithm to compute the edit distance
between caterpillars.

Since every forest occurring in a caterpillar C' is either
obtained by deleting the path from the root to some internal
node in bb(C) or the complete subtree of bb(C), a caterpillar
C is one of the forms of {C'}, {l1,...,l;} and {l1,...,l;,C},
where I; (1 <i < k) is a leaf and C' is a non-leaf caterpillar.
By letting L = {l,...,lx} and using a list representation of
Prolog (cf., [8]). we denote the above forests by (B|C), (L |0)
and (L | C), respectively. In particular, we denote an empty
forest (@|0) by ® simply.

Let C[v] be a caterpillar with the root v, where L(v) denotes
a (possibly empty) set of leaves as the children of v and B(v)
denotes at most one caterpillar of the child v. Then, C[v] is
one of the forms in Figure 3. Furthermore, by deleting v from
C'v], we obtain one of the forests of (| B(v)), (L(v)|0) and
(L(v)|B(v)), respectively.

crl Clol
B(U)é? oo RaY
o~ __ ~___ |
L(v)
Fig. 3. The representation of a caterpillar C[v].

Figure 4 illustrates the recurrences of computing the edit
distance 711 (C1 [v], C2[w]) between two caterpillars C' [v] and
Cow], as dra({D | Ci[v]), (D | Cslw])). Here, we denote
the string representation of the set L of leaves under the
alphabetical order on ¥ by s(L) and the string edit distance
between two strings s; and sy [2] by o (sy, s2).

Theorem 4: The recurrences in Figure 4 are correct to
compute the edit distance 7, (C1[v], C2[w]) between Cy[v]
and Cy[w] as ra ({0 C1[v]), (D] Co[w])).

Proof: Tt is obvious that the recurrences in (A) compute
the edit distance when at least one forest is empty and the
recurrence in (B) computes the edit distance between two
forests such that both of them consist of just leaves.

For the recurrence (C), let M be the minimum cost mapping
between (Ly | §) and (L, | C2|w]). By focusing on w, M
contains a pair of either (g, w) or (v,w) for some v € Ly.
See Figure 5.

251



252

PROCEEDINGS OF THE FEDCSIS. POZNAN, 2018

Fig. 5.

(A) drai((L1| Cr), @) =

Z ~v(v,€) + Z (v, €).

vELq veCy

Stai(®,(L2|C2) = ) ye,w)+ Y (e, w).

(B) 1a (L1 |0), (L |0)) = o(s(L1), s(Lo)).
© (s 0, (L] Cofu)
~v(e,w
L Sra((La|0), (L2 U Lo(w) | Ba(w))), (1)

= min min {7, w) + drar((La \ {v}[0), (L2 [0))}
+01a1 (P, (L2(w) | B2(w))) (2)
(D) d7ar((L1] ?1 [U])>7 (L2| 0))
v(v, e
] L UL )| B, (L]0, (3)

min {y(v, w) + 0t ((L1[0), (L2 \ {w}|0))}

+5TA1((L1(U)|Bl(v)> ) (4)
(B) d1a1 (L1 | Cr[0]), (L2 | C:[w]))
V(v w) + drar((L110), (L2|0))
+01a1((L1(v) [ B1(v)), (L2(w) | B2(w))),

€)
+5TA1((L1 U L1 (v)| B1(v)),{L2| Ca[w])),

v(g, w)
+orai((L1] Ci[v]), (L2 U La(w) | B2 (w))) (7)

v(v,

= min

Fig. 4. The recurrences of computing the edit distance 75, (C1[v
between C1[v] and Cow] as da((B] C1[v]), (0] Co[w])).

If (e,w) € M,
n (Ly U Ly(w) | B
). (L U Lo(uw) | B
the cost of M.
If (v,w) € M for some v € Ly, then M maps nodes in
(Ly \ {v} | 0) to those in (L | #), which is computed by
Orar({Ly1 \ {v}]0),(La|0)). Since M is the minimum cost,

hen M maps nodes in (L; | @) to those
( )), which is computed by dra((L1 |
2(w))). Hence, the formula (1) computes

(L1|0), (L2 | C2[w]) and the cases that (e,

w) € M and (v,w) € M.

it is necessary to minimize the value of v(v,&) + dra({L1 \
{v}|0),(L2]0)) for v € Ly. Furthermore, once M contains
(v,w) for some v € Ly, M touches no descendants of w,
that is, no nodes in (Lo(w) | B2(w)), which is computed by
0tar(®, (La(w) | B2(w))). Hence, the formula (2) computes
the cost of M.

The recurrence (D) is correct as same as the recurrence (C).

For the recurrence (E), let M be the minimum cost mapping
between (L; |Cy[v]) and (Ly | Ca[w]). By focusing on v and
w, M contains one of the pairs of (v,w), (v,e) and (g, w).
See Figure 6.

If (v,w) € M, then M maps no nodes in (L, | @) to nodes in
(L1(v)| B1(v)) and no nodes in (Ls| @) to nodes in (Ls(w)|
By (w)). Then, M maps nodes in (L; |(}) to those in (L | ),
which is computed by dra((L1 | @), (L2 | 0)). Also M maps
nodes in (L; (v) | By (v)) to those in (La(w) | B2 (w)), which is
computed by dra ((L1(v) | B1(v)), (La(w) | B2(w))). Hence,
the formula (5) computes the cost of M.

If (v,e) € M, then M maps nodes in (L;UL; (v) | B (v)) to
those in (Lo | C3[w]), which is computed by dra, ((L1 UL; (v) |
B (v)),{Ls | C2[w])). Hence, the formula (6) computes the
cost of M.

If (e,w) € M, then M maps nodes in (L; | Ci[v])
to those in (Ly U Ly(w) | B2(w)), which is computed by
Orar({L1 | C1[v]), (L2 U Lo(w) | Ba(w))). Hence, the formula
(7) computes the cost of M. [ |

Example 2: Consider two caterpillars C; and (5 in Fig-
ure 2 in Example 1. By applying the recurrences in Figure 4,
we obtain that the edit distance 7rs, (Cy,Cs) between C
and Cy is 3 as follows. Here, we represent a caterpillar
as a term-like representation, that is, C; = a(b,b,b) and
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Fig. 6.

Cy = a(b,a(b,b(a,a))).

TTAI(017 02)
= Ot ((0]a(b, b, b)), (D] a(b,a(b, b(a, a)))))

= 7(a,a) +ra(({b, b,0}[0), ({0} |a(b, b(a, a))))  (EXT)
=0
= 7(e,0) 3 (({,0,6}0), ({b, b}[b(a,a)))  (O)2)
=1
= 1475(5,0) +6uai ({0, 0}10), ({6, 0} [0))
=0
+o1ai(®, ({a, a}|0})) O
b (A),(B)

= 1+a(bb,bb) +7(e,a) +7(c, )
=0 =1 =1
= 3.

Hence, we can obtain the optimum mapping M between C}
and C- illustrated in Figure 2, by collecting the pairs (I1,12) €
Cl X 02 such that ll ;é e and lg 7é € in ’}/(ll,lg).

Let Ci[v] and CsJw] be caterpillars. Then, we denote
bb(Ci[v]) by a sequence vy, ...,v, such that v, = v and
par(v;) = viy1 (1 <4 <n—1)and bb(Ca[w]) by a sequence
Wi, . .., Wy, such that wy, = w and par(w;) = wj;1 1 <5 <
m—1). In this case, we denote by bb(C1[v]) = [v1,...,v,] and

(L1|C1[v]), (L2 | C2[w]) and the cases that (v, w) € M, (v,e) € M and (g,w) € M.

bb(Caw]) = [w, ..., wy]. Also we use the same notations
of Li(v;) and By (v;) for 1 <i <n and Ly(w;) and By (w;)
for1 <j<m.

Based on the recurrences in Figure 4, Algorithm 1 illus-
trates the algorithm to compute the edit distance 71, (C1, C2)
between caterpillars C'; and C5. Here, the recurrence (A), (B),
(C), (D) and (E) are corresponding to the lines 6 and 12, the
line 3, the line 9, the line 15 and the line 19, respectively, in
Algorithm 1.

Theorem 5: Let C7 and Cs be caterpillars. Then, we can
compute the edit distance 71y (Cp,C2) between Cy and Cy
in O(A\?h?) time, where A = max{|lv(C1)|,|lw(C2)|} and
h = max{h(C1), h(C2)}.

Proof: Let bb(Cy) = [v1,...,v,] and bb(C2) =
[wi,...,wy]. Then, it is obvious that A(C;) = n + 1 and
h(C2) =m + 1, so it holds that m < h—1andn < h—1.

The algorithm 74, (Cy, Cs) in Algorithm 1 calls every pair
(vi,wj) € bb(Cr) x bb(Cs) just once. When computing
dtar((L1 (vi—1) | Cilvi]), (La(wj—1) | Colwy])) for 2 <i <n
and 2 < j < m, it is necessary to construct the string
representations s; = s(Ly(v1) U--- U Ly (vi—1)) and so =
s(La(wy) U -+ U Ly(wj_1)) and compute the string edit
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procedure 711 (C1, C2)

/* Cp, Cy: caterpillars */

1 | 7ai(C1, C2) I1ar({0] Cr), (0] Cs));

rocedure oy, ((L1 |C1), (L2 | C2))

/* L1, Ly : set of leaves, C1, Co: caterpillars */

2 if C1 =0 and C> = () then

3 | dtar({L10),{L>|0)) - compute the recurrence (B);

4 else if C; = () and C> # () then
1% 0b(Cs) = [wi, ..., Wm], Wm = 1(C2) */

=]

5 if L1 = () then
6 d1a1(®, (L2 | C2)) + compute the recurrence (A);
s
7 else
8 for j =1 to m do
9 \; dtar({L1 | 0), (L2 | Ca[w;])) + compute the
recurrence (C);

10 else if C1 # 0 and C> = () then
/% bb(Ch) = [v1, ..., vn], v = 7(C1) ¥/

1 if L, = () then

12 Otar((L1]C1), @) < compute the recurrence (A);
5 (Ly| Cs) = & #/

13 else

14 for i =1 to n do

15 dtar({L1 | C1lvily, (L2 |0)) + compute the

recurrence (D);
16 else

[* bb(Cl) = [1)17 e ,Un], bb(CQ) =
vy, =1(C1), wm =1(C2) */

[wi, ..., wm],

17 fori =1 ton do

18 for j =1 to m do

19 St (L1 | Ca[vi)), (L2 | Cafuwy])) 4 compute
the recurrence (E);

Algorithm 1: 71,,(Cy, Cs)

distance o(s1,$2). The running time to construct the string
representations is O(Alog A) time (as same as that of sorting)
and to compute the string edit distance is O(\?) time [2].

Hence, the total running time of Algorithm 1 is described
as follows:

ii 20(Alog \) + O(A\?)) = O(\*)mn

=1
0( )( 1)? = O(\*h?).
|

Theorem 5 also claims that the structural restriction of
caterpillars provides the limitation of tractable computing the
edit distance for unordered trees. We say that a tree is a
generalized caterpillar if it is transformed to a caterpillar after
removing all the leaves in it. Then, the following theorem also
holds as corollaries in the proof of [1] or [4].

Theorem 6 (cf., [1], [4]): The problem of computing the
edit distance between generalized caterpillars is MAX SNP-
hard, even if the maximum height is at most 3.

Proof: 1t is straightforward from the proof of Corollary
4.3 in [1] or Theorem 1 in [4]. [ |
Finally, Table I illustrates the number of pairs (Ci,C>)
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of caterpillars such that 71 (C1,Cs) < mnsr(C1,C2) and
Tra1(C1, C2) = 7usr(Ch, Cs), respectively, for all the pairs
of 514 caterpillars in N-glycans (in Table II,

TABLE I
THE NUMBER OF PAIRS OF CATERPILLARS IN N-GLYCANS SUCH THAT
TTa1(C1,C2) < 151 (C1, C2) AND 714 (C1, C2) = 71157 (C1, C2).

TTAL < TILST total
TILST — TTal = 2 TiLst — TTar = 1

5 1,218

TTA1l = TILST

130,618 131,841

Concerned with the 5 pairs in Table I, Figure 7 illustrates
the caterpillars C'y = G04187, Cy = G00698, C5 = G00933,
Cy = G01221, C5 = GO1454 and Cg = G11051 in N-glycans
such that 75,5 (C1, C;) — 7rar(Ch, C;) = 2 for 2 < i < 6.

Cp = G04187 Cy =

Cy = G01221 = G01454 = G11051

Fig. 7. The caterpillars C1 = G04187, C> = G00698, C3 = G00933,
Cy = G01221, C5 = G01454 and Cs = G11051.

G00698 G0093 3

Here, the following statements hold:

TTAI(Cl,Cz) =6, Tist (Cl,cz) 8,
TTAI(01703) =7, Tusr (CI, 3) 9,
TTAI(01704) =8, Tusr (01, 4) 10,
TTA1(01,05) =17, TI[SI(ClaCS) 9,

TTAI(01; Cﬁ) =4, Tist (01,06) = 6.

Figure 8 illustrates the optimum mappings M; €
Mra(Ch,Cs) and My € My (Cr,Cy) for caterpillars Cy
and Cy in Figure 7, which is the reason that 71, (Cy,Cs) = 6
(5 deleted nodes and 1 substituted node) and 71,51 (Cy, Co) = 8
(6 deleted nodes, 1 inserted node and 1 substituted node).

IV. CONCLUSION AND FUTURE WORKS

In this paper, we have designed the algorithm to compute
the edit distance between caterpillars in O(A2h?) time, which
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My € Mt (Ch,Cs)

Ms € Musr (Cla C2)

Fig. 8. The optimum mappings M; € My (C1,C2) and My €
My g1 (C1,C2) for caterpillars C'y and C9 in Figure 7.

is the limitation of tractable computing the edit distance for
unordered trees.

Whereas we have given a small experimental result in the
last of Section III, it is necessary to implement Algorithm 1
more efficiently. Then, it is a future work to evaluate running
time from all the data of caterpillars in Appendix by comparing
that of the algorithm of computing 7y.¢r [10], [11], [12] and
to investigate the difference between 714, and 7y.4r. Also, it
is a future work to analyze the correlation for caterpillars in
real data between the edit distance and the complete subtree
histogram distance [1] or the path histogram distance [6].

Concerned with Theorem 6, it is a future work to give the
strict limitation of tractable computing of the edit distance.
In other words, it is a future work to investigate whether
or not the problem of computing the edit distance between
a caterpillar and a generalized caterpillar or a standard tree
is tractable. In particular, concerned with D~ for D €
{Auction, University, Protein, Nasa} in Table II in Appendix,
it is a future work to investigate whether or not the problem
of computing the edit distance between forests of caterpillars
is tractable.

As the extension of the edit distance for rooted trees to
that for unrooted trees, Zhang et al. [14] have extend the
degree-2 distance for rooted trees to that for unrooted trees.
In their algorithm, first we select a pair of nodes in unrooted
trees, compute the degree-2 distance between the rooted trees
whose pair of the roots is the selected pair and then select
the minimum value of the distances as the degree-2 distance.
It is a future work to investigate whether or not we can
apply this idea to the problem of computing the edit distance
between unrooted caterpillars and, if so, design the algorithm
to compute it.

APPENDIX: CATERPILLARS IN REAL DATA

In this appendix, we point out how large the number
of caterpillars in real data. Table II illustrates the number
of caterpillars in N-glycans and all glycans from KEGG!,
CSLOGS?, dblp?, and SwissProt, TPC-H, Auction, University,

IKyoto Encyclopedia of Genes and Genomes, http://www.kegg.jp/
Zhttp://www.cs.rpi.edu/ zaki/www-new/pmwiki.php/Software/Software
3http://dblp.uni-trier.de/

Protein and Nasa from UW XML Repository”,

TABLE II
THE NUMBER OF CATERPILLARS IN N-GLYCANS AND ALL GLYCANS FROM
KEGG, CSLOGS, DBLP, SWISSPROT, TPC-H, AUCTION, UNIVERSITY,
PROTEIN AND NASA.

dataset #cat #data %
N-glycans 514 2,142 23.996
all glycans 8,005 10,704  74.785
CSLOGS 41,592 59,691  69.679
dblp 5,154,295 5,154,530  99.995
SwissProt 6,804 50,000  13.608
TPC-H 86,805 86,805 100.000
Auction 0 37 0
University 0 6,738 0
Protein 0 262,625 0
Nasa 0 2,430 0
Auction™ 259 259 100.000
University ~ 74,638 79,213  94.224
Protein™ 1,874,703 2,204,068  85.057
Nasa™ 21,245 27,921  76.089

Here, #cat is the number of caterpillars and #data
is the total number of data. Furthermore, for D €
{Auction, University, Protein, Nasa}, D~ denotes the trees
obtained by deleting the root for every tree in D. Since one
tree in D produces some trees in D, the total number of
trees in D~ is greater than that of D.
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