
Abstract—A deep evolving stacking convex neo-fuzzy net-

work is proposed. It is a feedforward cascade hybrid system,

the layers-stacks of which are formed by generalized neo-fuzzy

neurons that implement Wang–Mendel fuzzy reasoning. The

optimal in the sense of speed algorithms are proposed for its

learning. Due to independent layer adjustment, parallelization

of calculations in non-linear synapses and optimization of

learning processes, the proposed network has high speed that

allows to process information in online mode.

I. INTRODUCTION

EEP neural networks (DNNs) are currently the most

intensively developing direction of Computational

Intelligence due to their universal capabilities in solving a

variety of information processing tasks. At the same time,

DNNs are not without significant drawbacks, the main of

which is the low speed of training due to the need to use

error backpropagation across multiple layers. In this regard,

increasing of the training speed of DNNs is a topical task.

D

It should be noted here that historically the first deep

networks [2] were information processing systems based on

the group method of data handling (GMDH) [5], [6], where

training was conducted sequentially from input to output, all

nodes of the system being independently tuned. Another

advantage of the GMDH-networks is the possibility of

increasing the number of layers to achieve the required

accuracy of the resulting solution. Thus, this network

evolves over time [7], [8], increasing the number of layers.

It is important that the previously formed layers are not

tuned anymore in the process of evolution, that significantly

reduces the total training time. Deep neural networks based

on GMDH were proposed in [9], [10] that exceeded the

known DNNs in learning speed. However, in situations

when data under processing are received online in the form

of an information stream [11], [12], this learning speed may

not be sufficient.

In such situations, it is more preferable to use the idea of

cascaded neural networks [13], where each cascade is

formed by a pool of neurons, and the input signal of each

cascade is formed from the inputs of the network and the

outputs of the previous cascades.

The usage of the traditional elementary perceptrons by

F. Rosenblatt in the cascades leads to a significant increase

in the number of these cascades, that again increases the

learning time, although in principle the cascade network can

operate in online mode. In connection with this, it was

suggested in [14], [15] to optimize the output signal in each

cascade, and instead of the usual neurons to use neo-fuzzy

neurons (NFNs) [16]-[18], that have high approximating

properties.

At the intersection of cascade neural networks and deep

stacking neural networks [2] deep stacking hybrid networks

have emerged [19], [20], where hybrid generalized additive

wavelet-neuro-neo-fuzzy systems (HGAWNNFS) were used

as stacks-cascades [21]-[25], synthesized on the basis of

hybrid systems of computational intelligence and

generalized additive models [26]. These systems showed

high quality of information processing and high enough

speed, although the computational bulkiness of stacks-

HGAWNNFS reduces the speed of the network learning.

In this regard, it is interesting to introduce a deep

evolving stacking cascade system, that has high learning

speed, good approximating properties and that is simple in

numerical implementation.

II.THE DEEP EVOLVING STACKING CASCADE NETWORK

ARCHITECTURE

In Fig. 1 the architecture of deep stacking cascade

network is presented. It contains g layers-cascades-stacks

[2], [27], [28], each of them is a hybrid system of

computational intelligence with high approximating

properties.

It can be seen that adding new stacks to the architecture

does not require retraining of the already formed layers.

Thus, this architecture evolves over time [7], [8], [15] by

adding new stacks to achieve the required accuracy.

Deep Evolving Stacking Convex Cascade Neo-Fuzzy Network and

its Rapid Learning

Galina Setlak
Rzeszow University of

Technology

12 Al. Powstancow Warszawy,

35-959, Rzeszow, Poland

Email: gsetlak@prz.edu.pl

Yevgeniy Bodyanskiy, Iryna Pliss,

Olena Boiko
Kharkiv National University of Radio

Electronics,

14 Nauky ave., Kharkiv, Ukraine

Email: yevgeniy.bodyanskiy@nure.ua,

iryna.pliss@nure.ua,

olena.boiko@nure.ua

Olena Vynokurova
Kharkiv National University of Radio

Electronics,

14 Nauky ave., Kharkiv, Ukraine

IT Step University,

83a Zamarstynivs'ka st., Lviv, Ukraine

Email: vynokurova@gmail.com,

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 29–33

DOI: 10.15439/2018F200

ISSN 2300-5963 ACSIS, Vol. 15

IEEE Catalog Number: CFP1885N-ART c©2018, PTI 29

Fig. 1 Deep evolving stacking cascade network

To the input of the network’s first layer
1S an input vector

        T

1 ,..., ,..., n

i nx k x k x k x k R  is fed (here

1,2,...k  is either the number of the observation in the

training set, or the current discrete time index). On the output

of this layer an output signal

                T
1 1 1 1

1
ˆ ˆ ˆ ˆ,..., ,..., m

j m
y k y k y k y k R  is formed. In

the situation when the signal
   1

ŷ k at the output of the

trained
1S satisfies in accuracy all the requirements, i. e. the

process of the network forming ends. Otherwise, the second

layer
2S is formed, the input of which is an extended vector

      T
1 TT ˆ, n m

x k y k R
 and the output of which is

   2ˆ m
y k R . To the third stack

3S a signal

          T
1 T 2 TT 2ˆ ˆ, , n m

x k y k y k R
 is fed.

And, finally, the input of the g
S is a vector

          T
1 T 1 TT (1)ˆ ˆ, ,...,

g n g m
x k y k y k R

   , and the output

of the whole network is
   ˆ g m

y k R .

Thus, the network provides a non-linear mapping
n m

R R , and the number of layers is limited only by the

maximal permissible dimension of the input signal of the

g th stack. At the same time, when the learning process is

paralleled, this restriction is not essential.

It is important that the training of layers-stacks is realized

practically independently of each other, and error

backpropagation is not required in principle.

III. GENERALIZED NEO-FUZZY-NEURON AS STACK OF

PROPOSED NETWORK

As a “building block”-stack of the system under

consideration, we propose to use the generalized neo-fuzzy-

neuron (GNFN) [29], that is a generalization of the neo-

fuzzy neuron (NFN) [16-18] for the multidimensional case.

In Fig. 2 the architecture of the first
1S GNFN-layer is

presented. It contains n inputs and m outputs. All other

GNFN-layers 2 ,...,
g

S S coincide in architecture with
1S and

differ only in the number of inputs. It should be also noted

that GNFN has high approximating properties, simplicity of

numerical implementation and parallelization of information

processing.

A sequence of input signals

        T

1 ,..., ,..., n

i nx k x k x k x k R  is fed to the input

of a GNFN that is formed by the first layer-stack
1S . This

stack consists of n multidimensional parallel non-linear

synapses  1
i

MNS , 1,2,...,i n , each of which has only one

input, m outputs, h membership functions
    1

li i
x k ,

1,2,...,l h and mh adjustable synaptic weights
 1

jli
w ,

1,2,...,j m .

30 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

Fig. 2 Generalized neo-fuzzy neuron (GNFN)

The output of the first layer is a vector

                1 1 1 T
1

1
ˆ ˆ ˆ ˆ,..., ,...,

j m
y k y k y k y k , that further

together with the vector  x k is fed to the inputs of the layer

2S in the form of       T
1 TT ˆ,x k y k . Thus,

1S contains nh

membership functions and nhm synaptic weights.

Non-linear mapping, realized by this GNFN, in general

case can be written in the form

          1 1 1

1 1

ˆ
n h

j jli li i

i l

y k w x k
 

 1,2,...,j m  (1)

and it significantly depends both on the type of membership

functions used and the algorithm for synaptic weights

learning.

It should be also noted that multidimensional non-linear

synapses  1
i

MNS in general case are zero-order Takagi–
Sugeno–Kang (i.e. Wang–Mendel) neuro-fuzzy systems, that

provide high approximating properties.

As the membership functions in the simplest case we can

use triangular ones:

   

 

   
   

 

   
   

1

1 11,

1,1 1

1,

1 1

1 11,

1,1 1

1,

, ,

, ,

0 .

i l i

i l i li

li l i

li i l i i

i li l i

l i li

x x
if x x x

x x

x x x
if x x x

x x

otherwise













     
      



They satisfy the conditions of unity partition

           

           

1 1 1 1

1, 1,

1 1 1 1

1, 1,

1 , ,

1 ,

l i i li i i l i li

li i l i i i li l i

x x if x x x

x x if x x x

 

 

 

 

      


     

where  1
li

x , 1,2,...,l h are membership functions’ centers,
that are in the simplest case evenly distributed on the

i
x -

axis.

The usage of triangular membership functions leads to the

fact that at each instant of time k only two neighboring

functions fire. This allows to adjust not all nhm synaptic

weights on each iteration, but only 2nm of them. It is clear

that the learning speed can be increased in this case.

IV. DEEP STACKING CONVEX NEO-FUZZY NETWORK

LEARNING

The learning process of the system under consideration is

its synaptic weights’ adjustment. Due to the cascade
architecture of the system, each stack can be trained

independently of the others. It is clear that in online mode

the learning algorithms used must provide the maximum

possible speed, i.e. they have to be based on the Gauss-

Newton algorithms of second-order optimization for convex

functions. In this case, the network itself is a convex one

[30].

The learning process will be considered using the example

of the first layer of the system
1S . For this, let’s introduce a

 1hn -vector of membership functions

                   1 1 1 1

11 1 21 1 1 1, ,..., ,hx k x k x k x k   

              T
1 1 1

12 2 ,..., ,...,
li i hn n

x k x k x k   and  m hn -

matrix of synaptic weights

  

     

     

     

1 1 1

111 121 1

1 1 1
1 211 221 2

1 1 1

11 21

hn

hn

m m mhn

w w w

w w w
W

w w w

 
 
 

  
 
 
 

.

YEVGENIY BODYANSKIY ET AL.: DEEP EVOLVING STACKING CONVEX CASCADE NEO-FUZZY NETWORK 31

Thus, the mapping, realized in the first layer, can be

written as

          1 1 1

ŷ k W x k .

Next, let’s introduce the learning error of the j th

component of    1ˆ
j

y k of the output signal    1
ŷ k :

                  1 1 1 1ˆ
j j j j j

e k y k y k y k w x k   

(here
 1
j

w is the j th row of the weights matrix  1
W ,  j

y k

is the j th component of the reference signal

        T

1 ,..., ,...,j my k y k y k y k and the standard

squared learning criterion of the j th output

                  2 2
1 1 1 1

.
j j j j

k k

E k e k y k w x k    (2)

The gradient procedure for minimizing the criterion (2)

has a general form

               
         

    
                
       
                

1

1

1 1 1

2
1 1 1

1 1 1 1 T

1 1

1 1 1 T

1

1

1

1

1

j

j

j j jw

j jw

j j

j

j j

w k w k k E k

w k k e k

w k k e k x k

w k k

y k w k x k x k





 



 

    

    

   

   

  

 (3)

where
   1

k is learning rate parameter for
1S .

It is possible to increase the speed of the learning

procedure (3) using either the standard recursive least-

squares method (RLSM), that is a second-order optimization

procedure:

       
            

            

       
             

            
   

1 1 T 1

1 1

1 T 1 1

1 1 1 T

1 1

1 T 1 1

1

1
1 ,

1 1

1
1

1 1

1 ,

j

j j

e k x k P k
w k w k

x k P k k

P k x k x k
P k P k

x k P k k

P k



 

 

 

 
   

 



   

 


 

(4)

or the optimized algorithm with tracking and filtering

properties [31,32]:

                     
                 

1
1 1 1 1 1 T

1 1 1 T 1

1 ,

1

j j j
w k w k r k e k x k

r k r k x k x k



  

   

   

 (5)

where 0 1  is smoothing parameter.

The algorithm (5) can be rewritten in the matrix form

                     
            

1
1 1 1 1 1 T

2
1 1 1

1 ,

1 ,

W k W k r k e k x k

r k r k x k



 

   

   

(6)

that with 1  coincides with the multidimensional version

[33] of the Kaczmarz – Widrow – Hoff learning algorithm:

       
        

    
            

1 1 T

1 1

2
1

1 1 1

1

1 ,

e k x k
W k W k

x k

W k e k x k





 

   

  

 (7)

where   is pseudo-inversion symbol.

It should also be noted that the Kaczmarz algorithm is

optimal by speed in the class of gradient adaptive learning

procedures.

All other layers 2 ,...,
g

S S are adjusted in the same way,

however with the increase in the dimensionality of the vector

    g
x k defined as    1 1h n g m   , the advantage

should be given to the procedures (6), (7), since RLSM (4)

can be numerically unstable at high dimensions of the input

space.

V. EXPERIMENTS

To demonstrate the efficiency of the proposed system, we

solved the classification task for the wine data set [34]. This

data set has 13 attributes, 178 instances and 3 classes of

wine. We used 80% of the data set to train the system and

20% for testing. For training the Kaczmarz – Widrow – Hoff

algorithm (7) was used. The results of the experiment are

shown in Table I. Classes predicted by the trained system on

the test set are shown in Fig. 3 as a scatter plot of the first

two principal components calculated using PCA.

Fig. 3 Classes of wine predicted by the proposed system

VI. CONCLUSION

In the paper a deep evolving stacking convex neo-fuzzy

network is proposed. It is a multi-layered hybrid system of

computational intelligence. This network has a feedforward

cascade architecture, the layers-stacks of which are formed

32 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

by generalized neo-fuzzy neurons that implement Wang–
Mendel fuzzy reasoning. Since the output signals of the

stacks depend linearly on the adjustable synaptic weights, the

optimal in the sense of speed algorithms are used for their

learning. Due to independent layer adjustment,

parallelization of calculations in non-linear synapses and

optimization of learning processes, the proposed network has

high speed that allows to process information in online

mode.

TABLE I.

RESULTS OF THE EXPERIMENTS

Number

of

member-

ship

functions

Number

of

cascades

Number

of

weights

Train accuracy

by cascade

Test

accuracy

5 3 720

1st 0.9648

0.9722 2nd 0.9859

3rd 1.0

7 2 609
1st 0.9859

0.9722
2nd 1.0

10 3 1440

1st 0.9859

0.9444 2nd 0.9930

3rd 1.0

25 1 975 1st 1.0 0.9167

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning,” Nature,

vol. 521, pp. 436-444, 2015.

[2] J. Schmidhuber, “Deep Learning in neural networks: An overview,”
Neural Networks, vol. 61, pp. 85-117, 2015.

[3] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT

Press, 2016.

[4] D. Graupe, Deep Learning Neural Networks. Design and Case

Studies. Singapore : World Scientific, 2016.

[5] A. Ivakhnenko, “The group method of data handling – a rival of the

method of stochastic approximation,” Soviet Automatic Control,

vol. 13, no. 3, pp. 43-55, 1968.

[6] A. Ivakhnenko, “The group method of data handling – a rival of the

method of stochastic approximation,” Automatica, vol. 6, no. 2,

pp. 207-219, 1970.

[7] N. Kasabov, Evolving Connectionist Systems. Springer-Verlag

London, 2007.

[8] E. Lughofer, Evolving Fuzzy Systems – Methodologies, Advanced

Concepts and Applications. Springer Berlin, 2011.

[9] G. Setlak, Ye. Bodyanskiy, O. Vynokurova, and I. Pliss, “Deep
evolving GMDH-SVM-neural network and its learning for Data

Mining tasks,” in Proc. 2016 Federated Conf. on Computer Science

and Information Systems (FedCSIS), Gdansk, Poland, pp. 141-145,

2016.

[10] Ye. Bodyanskiy, O. Vynokurova, I. Pliss, G. Setlak, and P. Mulesa,

“Fast learning algorithm for deep evolving GMDH-SVM neural

network in Data Stream Mining tasks,” in Proc. First IEEE Conf. on

Data Stream Mining & Processing, Lviv, Ukraine, pp. 318-321,

2016.

[11] A. Bifet, Adaptive Stream Mining: Pattern Learning and Mining

from Evolving Data Streams, Amsterdam: IOS Press, 2010.

[12] C. C. Aggarwal, Data Streams: Models and Algorithms (advances in

database systems), New York: Springer, 2007.

[13] S. E. Fahlman and C. Lebiere, “The cascade-correlation learning

architecture,” in Advances in Neural Information Processing Systems,

D. S. Touretzky Ed. San Mateo, CA : Morgan Kaufman, pp. 524–532,

1990.

[14] Y. Bodyanskiy, O. Tyshchenko, and D. Kopaliani, “A hybrid cascade
neural network with an optimized pool in each cascade,” Soft

Computing, 19, №12, pp. 3445-3454, 2015.

[15] Y. Bodyanskiy, O. Tyshchenko, and D. Kopaliani, “Adaptive learning
of an evolving cascade neo-fuzzy system in data stream mining

tasks,” Evolving Systems, 7, №2, pp. 107-116, 2016.

[16] T. Yamakawa, E. Uchino, T. Miki, and H. Kusanagi, “A neo-fuzzy

neuron and its applications to system identification and prediction of

the system behavior,” in Proc. 2nd Int. Conf. on Fuzzy Logic and

Neural Networks, pp. 477-483, 1992.

[17] E. Uchino and T. Yamakawa, “Soft computing based signal
prediction, restoration and filtering,” Intelligent Hybrid Systems:

Fuzzy Logic, Neural Networks and Genetic Algorithms, Boston:

Kluwer Academic Publisher, pp. 331-349, 1997.

[18] T. Miki and T. Yamakawa, “Analog implementation of neo-fuzzy

neuron and its on-board learning,” Computational Intelligence and

Applications, Piraeus: WSES Press, pp. 144-149, 1999.

[19] Ye. Bodyanskiy, I. Pliss, D. Peleshko, and O. Vynokurova, “Deep
hybrid system of computational intelligence for time series

prediction,” Int. J. “Information Theories and Applications”, 24, №1,

pp. 35-49, 2017.

[20] Ye. Bodyanskiy, O. Vynokurova, I. Pliss, D. Peleshko, and

Yu. Rashkevych, “Deep stacking convex neuro-fuzzy system and its

online learning,” Advances in “Intelligent Systems and Computing”,

vol. 582, Cham, Springer, pp. 49-59, 2018.

[21] Y. Bodyanskiy, G. Setlak, D. Peleshko, and O. Vynokurova, “Hybrid
generalized additive neuro-fuzzy system and its adaptive learning

algorithms,” in Proc. 2015 IEEE 8th Int. Conf. on Intelligent Data

Acquisition and Advanced Computing Systems: Technology and

Applications “IDAACS 2015”, pp. 328-333, 2015.

[22] Y. Bodyanskiy, O. Vynokurova, G. Setlak, and I. Pliss, “Hybrid
neuro-neo-fuzzy system and its adaptive learning algorithm,” in Proc.

Int. Conf. on Computer Sciences and Information Technologies

“CSIT 2015”, pp. 111-114, 2015.

[23] Y. Bodyanskiy, O. Vynokurova, I. Pliss, D. Peleshko, and

Y. Rashkevych, “Hybrid generalized additive wavelet-neuro-fuzzy-

system and its adaptive learning,” Advances in Intelligent Systems

and Computing, vol. 470, Cham, Springer, pp. 51-61, 2016.

[24] Y. Bodyanskiy, O. Vynokurova, G. Setlak, D. Peleshko, and

P. Mulesa, “Adaptive multivariate hybrid neuro-fuzzy system and its

on-board fast learning,” Neurocomputing, 230, pp. 409-416, 2017.

[25] Y. Bodyanskiy, O. Vynokurova, I. Pliss, and D. Peleshko, “Hybrid
adaptive systems of computational intelligence and their on-line

learning for green IT in energy management tasks,” Studies in

Systems, Decision and Control, vol. 74, pp. 229-244, 2017.

[26] T. Hastie and R. Tibshirani, Generalized Additive Models, Chapman

and Hall / CRC, 1990.

[27] D. Wolpert, “Stacked generalization,” Neural Networks, vol. 5, №2,
pp. 241-259, 1992.

[28] L. Deng, D. Yu, and J. Platt, “Scalable stacking and learning for
building deep architectures,” in 2012 IEEE Int. Conf. on Acoustics,

Speech and Signal Processing (ICASSP), pp. 2133-2136, 2012.

[29] R. P. Landim, B. Rodrigues, S. R. Silva, and W. M. Caminhas, “A

neo-fuzzy-neuron with real time training applied to flux observer for

an induction motor,” in Proc. Vth Brazilian Symposium on Neural

Networks, pp. 67-72, 1998.

[30] L. Deng and D. Yu, “Deep convex net: a scalable architecture for

speech pattern classification,” in Proc. of Annual Conference of the

International Speech Communication Association (Interspeech),

pp. 2285-2288, 2011.

[31] Ye. Bodyanskiy, V. Kolodyazhniy, and A. Stephan, “An adaptive
learning algorithm for a neuro-fuzzy network,” Lecture Notes in
Computer Science 2206, Berlin – Heidelberg – New York, Springer,

pp. 68-75, 2001.

[32] P. Otto, Ye. Bodyanskiy, and V. Kolodyazhniy, “A new learning
algorithm for a forecasting neuro-fuzzy network,” Integrated

Computer-Aided Engineering, vol. 10, №4, pp. 399-409, 2003.

[33] O. G. Rudenko, E. V. Bodyanskii, I. P. Pliss, “Adaptive algorithm for
prediction of random sequences,” Soviet automatic control, 12, №1,

pp. 46-48, 1979.

[34] https://archive.ics.uci.edu/ml/datasets/wine

YEVGENIY BODYANSKIY ET AL.: DEEP EVOLVING STACKING CONVEX CASCADE NEO-FUZZY NETWORK 33

