
Abstract—A  deep  evolving  stacking  convex  neo-fuzzy  net-

work is proposed. It is a feedforward cascade hybrid system,

the layers-stacks of which are formed by generalized neo-fuzzy

neurons that  implement  Wang–Mendel  fuzzy  reasoning.  The

optimal in the sense of speed algorithms are proposed for its

learning. Due to independent layer adjustment, parallelization

of  calculations  in  non-linear  synapses  and  optimization  of

learning processes, the proposed network has high speed that

allows to process information in online mode.

I. INTRODUCTION

EEP neural  networks (DNNs) are currently the most

intensively  developing  direction  of  Computational

Intelligence due to their universal  capabilities in solving a

variety of information processing tasks. At the same time,

DNNs are  not without  significant  drawbacks,  the main of

which is the low speed of training due to the need to use

error backpropagation across multiple layers. In this regard,

increasing of the training speed of DNNs is a topical task.

D

It  should  be  noted  here  that  historically  the  first  deep

networks [2] were information processing systems based on

the group method of data handling (GMDH) [5], [6], where

training was conducted sequentially from input to output, all

nodes  of  the  system  being  independently  tuned.  Another

advantage  of  the  GMDH-networks  is  the  possibility  of

increasing  the  number  of  layers  to  achieve  the  required

accuracy  of  the  resulting  solution.  Thus,  this  network

evolves over time [7], [8], increasing the number of layers.

It  is  important  that  the  previously  formed  layers  are  not

tuned anymore in the process of evolution, that significantly

reduces the total training time. Deep neural networks based

on  GMDH  were  proposed  in  [9],  [10]  that  exceeded  the

known  DNNs  in  learning  speed.  However,  in  situations

when data under processing are received online in the form

of an information stream [11], [12], this learning speed may

not be sufficient.

In such situations, it is more preferable to use the idea of

cascaded  neural  networks  [13],  where  each  cascade  is

formed by a pool of neurons, and the input signal of each

cascade is formed from the inputs of the network and the

outputs of the previous cascades.

The  usage  of  the  traditional  elementary  perceptrons  by

F. Rosenblatt in the cascades leads to a significant increase

in  the  number  of  these  cascades,  that  again  increases  the

learning time, although in principle the cascade network can

operate  in  online  mode.  In  connection  with  this,  it  was

suggested in [14], [15] to optimize the output signal in each

cascade, and instead of the usual neurons to use neo-fuzzy

neurons  (NFNs)  [16]-[18],  that  have  high  approximating

properties.

At the intersection of cascade neural networks and deep

stacking neural networks [2] deep stacking hybrid networks

have emerged [19], [20], where hybrid generalized additive

wavelet-neuro-neo-fuzzy systems (HGAWNNFS) were used

as  stacks-cascades  [21]-[25],  synthesized  on  the  basis  of

hybrid  systems  of  computational  intelligence  and

generalized  additive  models  [26].  These  systems  showed

high  quality  of  information  processing  and  high  enough

speed,  although  the  computational  bulkiness  of  stacks-

HGAWNNFS reduces the speed of the network learning.

In  this  regard,  it  is  interesting  to  introduce  a  deep

evolving  stacking  cascade  system,  that  has  high  learning

speed, good approximating properties and that is simple in

numerical implementation.

II.THE DEEP EVOLVING STACKING CASCADE NETWORK

ARCHITECTURE

In  Fig. 1  the  architecture  of  deep  stacking  cascade

network is presented. It contains  g  layers-cascades-stacks

[2],  [27],  [28],  each  of  them  is  a  hybrid  system  of

computational  intelligence  with  high  approximating

properties.

It can be seen that adding new stacks to the architecture

does  not  require  retraining  of  the  already  formed  layers.

Thus,  this architecture evolves  over time [7],  [8],  [15] by

adding new stacks to achieve the required accuracy.
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Fig. 1 Deep evolving stacking cascade network  

 

To the input of the network’s first layer 
1S  an input vector 

        T

1 ,..., ,..., n

i nx k x k x k x k R   is fed (here 

1,2,...k   is either the number of the observation in the 

training set, or the current discrete time index). On the output 

of this layer an output signal 

                T
1 1 1 1

1
ˆ ˆ ˆ ˆ,..., ,..., m

j m
y k y k y k y k R   is formed. In 

the situation when the signal 
   1

ŷ k  at the output of the 

trained 
1S  satisfies in accuracy all the requirements, i. e. the 

process of the network forming ends. Otherwise, the second 

layer 
2S  is formed, the input of which is an extended vector 

      T
1 TT ˆ, n m

x k y k R
  and the output of which is 

   2ˆ m
y k R . To the third stack 

3S  a signal 

          T
1 T 2 TT 2ˆ ˆ, , n m

x k y k y k R
  is fed. 

And, finally, the input of the g
S  is a vector 

          T
1 T 1 TT ( 1)ˆ ˆ, ,...,

g n g m
x k y k y k R

   , and the output 

of the whole network is 
   ˆ g m

y k R . 

Thus, the network provides a non-linear mapping 
n m

R R , and the number of layers is limited only by the 

maximal permissible dimension of the input signal of the 

g th stack. At the same time, when the learning process is 

paralleled, this restriction is not essential. 

It is important that the training of layers-stacks is realized 

practically independently of each other, and error 

backpropagation is not required in principle. 

III. GENERALIZED NEO-FUZZY-NEURON AS STACK OF 

PROPOSED NETWORK 

As a “building block”-stack of the system under 

consideration, we propose to use the generalized neo-fuzzy-

neuron (GNFN) [29], that is a generalization of the neo-

fuzzy neuron (NFN) [16-18] for the multidimensional case. 

In Fig. 2 the architecture of the first 
1S  GNFN-layer is 

presented. It contains n  inputs and m  outputs. All other 

GNFN-layers 2 ,...,
g

S S  coincide in architecture with 
1S  and 

differ only in the number of inputs. It should be also noted 

that GNFN has high approximating properties, simplicity of 

numerical implementation and parallelization of information 

processing. 

A sequence of input signals 

        T

1 ,..., ,..., n

i nx k x k x k x k R   is fed to the input 

of a GNFN that is formed by the first layer-stack 
1S . This 

stack consists of n  multidimensional parallel non-linear 

synapses  1
i

MNS , 1,2,...,i n , each of which has only one 

input, m  outputs, h  membership functions 
    1

li i
x k , 

1,2,...,l h  and mh  adjustable synaptic weights 
 1

jli
w , 

1,2,...,j m . 

30 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018



 

 

 

 

Fig. 2 Generalized neo-fuzzy neuron (GNFN) 

 

The output of the first layer is a vector 

                1 1 1 T
1

1
ˆ ˆ ˆ ˆ,..., ,...,

j m
y k y k y k y k , that further 

together with the vector  x k  is fed to the inputs of the layer 

2S  in the form of       T
1 TT ˆ,x k y k . Thus, 

1S  contains nh  

membership functions and nhm synaptic weights. 

Non-linear mapping, realized by this GNFN, in general 

case can be written in the form 

 
          1 1 1

1 1

ˆ
n h

j jli li i

i l

y k w x k
 

  1,2,...,j m   (1) 

and it significantly depends both on the type of membership 

functions used and the algorithm for synaptic weights 

learning. 

It should be also noted that multidimensional non-linear 

synapses  1
i

MNS  in general case are zero-order Takagi–
Sugeno–Kang (i.e. Wang–Mendel) neuro-fuzzy systems, that 

provide high approximating properties. 

As the membership functions in the simplest case we can 

use triangular ones: 

 
   

 

   
   

 

   
   

1

1 11,

1,1 1

1,

1 1

1 11,

1,1 1

1,

, ,

, ,

0 .

i l i

i l i li

li l i

li i l i i

i li l i

l i li

x x
if x x x

x x

x x x
if x x x

x x

otherwise













     
      



  

They satisfy the conditions of unity partition 

 

           

           

1 1 1 1

1, 1,

1 1 1 1

1, 1,

1 , ,

1 ,

l i i li i i l i li

li i l i i i li l i

x x if x x x

x x if x x x

 

 

 

 

      


     

  

where  1
li

x , 1,2,...,l h  are membership functions’ centers, 
that are in the simplest case evenly distributed on the 

i
x -

axis. 

The usage of triangular membership functions leads to the 

fact that at each instant of time k  only two neighboring 

functions fire. This allows to adjust not all nhm  synaptic 

weights on each iteration, but only 2nm  of them. It is clear 

that the learning speed can be increased in this case. 

IV. DEEP STACKING CONVEX NEO-FUZZY NETWORK 

LEARNING 

The learning process of the system under consideration is 

its synaptic weights’ adjustment. Due to the cascade 
architecture of the system, each stack can be trained 

independently of the others. It is clear that in online mode 

the learning algorithms used must provide the maximum 

possible speed, i.e. they have to be based on the Gauss-

Newton algorithms of second-order optimization for convex 

functions. In this case, the network itself is a convex one 

[30]. 

The learning process will be considered using the example 

of the first layer of the system 
1S . For this, let’s introduce a 

 1hn -vector of membership functions 

                   1 1 1 1

11 1 21 1 1 1, ,..., ,hx k x k x k x k   

              T
1 1 1

12 2 ,..., ,...,
li i hn n

x k x k x k    and  m hn -

matrix of synaptic weights 

  

     

     

     

1 1 1

111 121 1

1 1 1
1 211 221 2

1 1 1

11 21

hn

hn

m m mhn

w w w

w w w
W

w w w

 
 
 

  
 
 
 

. 
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Thus, the mapping, realized in the first layer, can be 

written as 

 
          1 1 1

ŷ k W x k . 

Next, let’s introduce the learning error of the j th 

component of    1ˆ
j

y k  of the output signal    1
ŷ k : 

 
                  1 1 1 1ˆ
j j j j j

e k y k y k y k w x k     

(here 
 1
j

w  is the j th row of the weights matrix  1
W ,  j

y k  

is the j th component of the reference signal 

        T

1 ,..., ,...,j my k y k y k y k  and the standard 

squared learning criterion of the j th output 

 
                  2 2
1 1 1 1

.
j j j j

k k

E k e k y k w x k     (2) 

The gradient procedure for minimizing the criterion (2) 

has a general form  

 

               
         

    
                
       
                

1

1

1 1 1

2
1 1 1

1 1 1 1 T

1 1

1 1 1 T

1

1

1

1

1

j

j

j j jw

j jw

j j

j

j j

w k w k k E k

w k k e k

w k k e k x k

w k k

y k w k x k x k





 



 

    

    

   

   

  

 (3) 

where 
   1

k  is learning rate parameter for 
1S . 

It is possible to increase the speed of the learning 

procedure (3) using either the standard recursive least-

squares method (RLSM), that is a second-order optimization 

procedure: 

       
            

            

       
             

            
   

1 1 T 1

1 1

1 T 1 1

1 1 1 T

1 1

1 T 1 1

1

1
1 ,

1 1

1
1

1 1

1 ,

j

j j

e k x k P k
w k w k

x k P k k

P k x k x k
P k P k

x k P k k

P k



 

 

 

 
   

 



   

 


 

(4) 

or the optimized algorithm with tracking and filtering 

properties [31,32]: 

 

                     
                 

1
1 1 1 1 1 T

1 1 1 T 1

1 ,

1

j j j
w k w k r k e k x k

r k r k x k x k



  

   

   

 (5) 

where 0 1   is smoothing parameter. 

The algorithm (5) can be rewritten in the matrix form 

 

                     
            

1
1 1 1 1 1 T

2
1 1 1

1 ,

1 ,

W k W k r k e k x k

r k r k x k



 

   

   

(6) 

that with 1   coincides with the multidimensional version 

[33] of the Kaczmarz – Widrow – Hoff learning algorithm: 

 

       
        

    
            

1 1 T

1 1

2
1

1 1 1

1

1 ,

e k x k
W k W k

x k

W k e k x k





 

   

  

 (7) 

where    is pseudo-inversion symbol. 

It should also be noted that the Kaczmarz algorithm is 

optimal by speed in the class of gradient adaptive learning 

procedures. 

All other layers 2 ,...,
g

S S  are adjusted in the same way, 

however with the increase in the dimensionality of the vector 

    g
x k  defined as    1 1h n g m   , the advantage 

should be given to the procedures (6), (7), since RLSM (4) 

can be numerically unstable at high dimensions of the input 

space. 

V. EXPERIMENTS 

To demonstrate the efficiency of the proposed system, we 

solved the classification task for the wine data set [34]. This 

data set has 13 attributes, 178 instances and 3 classes of 

wine. We used 80% of the data set to train the system and 

20% for testing. For training the Kaczmarz – Widrow – Hoff 

algorithm (7) was used. The results of the experiment are 

shown in Table I. Classes predicted by the trained system on 

the test set are shown in Fig. 3 as a scatter plot of the first 

two principal components calculated using PCA. 

 

 

Fig. 3 Classes of wine predicted by the proposed system 

 

VI. CONCLUSION 

In the paper a deep evolving stacking convex neo-fuzzy 

network is proposed. It is a multi-layered hybrid system of 

computational intelligence. This network has a feedforward 

cascade architecture, the layers-stacks of which are formed 
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by generalized neo-fuzzy neurons that implement Wang–
Mendel fuzzy reasoning. Since the output signals of the 

stacks depend linearly on the adjustable synaptic weights, the 

optimal in the sense of speed algorithms are used for their 

learning. Due to independent layer adjustment, 

parallelization of calculations in non-linear synapses and 

optimization of learning processes, the proposed network has 

high speed that allows to process information in online 

mode. 

TABLE I. 

RESULTS OF THE EXPERIMENTS 

Number 

of 

member-

ship 

functions 

Number 

of 

cascades 

Number 

of 

weights 

Train accuracy 

by cascade 

Test 

accuracy 

5 3 720 

1st 0.9648 

0.9722 2nd 0.9859 

3rd 1.0 

7 2 609 
1st 0.9859 

0.9722 
2nd 1.0 

10 3 1440 

1st 0.9859 

0.9444 2nd 0.9930 

3rd 1.0 

25 1 975 1st 1.0 0.9167 
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