
Static typing and dependency management for SOA

Nikita Gerasimov

Saint Petersburg University

Mathematics and Mechanics Faculty

Universitetsky prospekt, 28, Peterhof, St. Petersburg, Russia

Email: n.gerasimov@2015.spbu.ru

Abstract—Several problems related to work reliability appear
while building service-oriented systems. The first problem con-
sists in lack of static typing and lack of inter-service data type
checking. The second one consists in high services connectivity.
The article shows an example of strong and static polymorphic
type system and a type check algorithm. Type system syntax and
service-contract concept are described. Theoretic results were
realized in a service form and were applied in practice in a real
system, which improved its reliability. Also, technical realization
decreased services connectivity which promoted system quality
increase.

I. INTRODUCTION

A
DEVELOPMENT of convenient multi-logic systems

bases often on service or microservice oriented architec-

tures (SOA). SOA means that application logic is divided into

several self-sufficient components, providing separate tasks

realization [8]. Every component has the single responsibility.

The advantages of SOA are simplified maintenance, indepen-

dence of single technology or programming language. Every

logic change requires modifying only in-component realization

and implementation of the current external interface.

However, SOA has also disadvantages, an inequality of

providing and using interfaces and type checking in the whole

system [5]. Various frameworks and approaches suggest the

ways of system decomposition but don’t suggest any ways

of types consistency statically checking. Building analogy

from dynamic-typing language this fact leads to in-production

system instability increase.

RPC-frameworks like Google Protobuf or Apache Thrift

partially solve static type checking by providing client and

server code generation based on API definition. Mentioned

solutions allow ensuring at development stage that client

and server would use the identical protocol. However code

generation becomes less trivial while using JSON/XML-PRC,

REST or using event-driven architectures.

Next problem is less critical. Detection of outdated API

usage can be nontrivial in complex systems with various

components. Lack of automatized control over API usage leads

to possibility of important component disabling. The real case

is that an outdated service A provides statistics collecting once

per month by some mailing service. Logs analysis proves that

there were no API calls during last 3 weeks that’s why the

service can be disabled.

Finally, we have 2 main problems:

• the absence of strong type system with static checking

for SOA that leads to potential stability decrease

• the absence of dependency control for SOA leading

to possible breaking system in runtime after disabled

outdated APIs

Therefore the main goal of this research is to increase

stability of SOA-based systems and decrease runtime errors.

There are two stages to reach the goal:

• improve the existing approach to service API typification

to statically check types

• develop service that should control API dependencies in

the SOA system

Much of the work presented here is connected with the

description of a new tool providing the achievement of

formulated goals. New service purpose is close to service-

discovery systems purpose: to detect suitable components over

the network automatically [4]. The main objective of the new

service is checking of type consistency for providing and using

API definitions. We call it “contract discovery”.

The next section defines the proposed type system and type

checking algorithm to be realized in contract discovery service.

Section 3 surveys the concept of contract and how contract-

discovery service provides client to service linking. Section

4 describes our contract discovery service realization details.

Section 5 illustrates our experience of application such service

to the real microservice-oriented event-driven system.

II. TYPE SYSTEM

Data can be encoded with custom binary or text format: with

XML or JSON while interoperation. Encoded data satisfies

restrictions of communication protocol: SOAP, XML-RPC

(XML); REST, JSON-RPC (JSON); Protobuf, Thrift (binary)

and so on. APIs based on the communication protocols can

be described with formal specifications: WSDL for SOAP,

OpenAPI for REST, etc. Event-driven SOA usually uses JSON

as a data format and JSON Schema standard for validating and

describing data structures.

All mentioned protocols are limited by using simple (inte-

ger, boolean, etc.) or complex (arrays and records) types [7][9].

For example, simplified JSON Schema type system [1] can be

expressed as presented at the figure 1.

Described grammar is simplified because it does not cover

complex predicates containing boolean logic. Also, the gram-

mar does not cover specific type formats.

According to standardization and popularity we took JSON

Schema as a base for our type system. To improve compati-

bility of services we suppose the described type system to be

Position Papers of the Federated Conference on

Computer Science and Information Systems pp. 105–107

DOI: 10.15439/2018F240

ISSN 2300-5963 ACSIS, Vol. 16

c©2018, PTI 105

〈t〉 ::= 〈arr〉 | 〈obj〉 | 〈num〉 | 〈str〉 | boolean | 〈p〉 〈t〉

〈arr〉 ::= {〈t〉} | 〈ap〉 〈arr〉

〈ap〉 ::= additionalItems | maxItems | minItems

| uniqueItems | contains

〈obj〉 ::= 〈t〉 〈t〉 | 〈op〉 〈obj〉

〈op〉 ::= maxProperties | minProperties | required

| properties | patternProperties

| additionalProperties | dependencies

| propertyNames

〈num〉 ::= integer | real | 〈np〉 〈int〉

〈np〉 ::= multipleOf | maximum | minimum

〈str〉 ::= string | 〈sp〉 〈str〉

〈sp〉 ::= maxLength | minLength | pattern

〈p〉 ::= const | enum

Fig. 1. Simplified grammar of JSON Schema

structural one [2]. This statement allows us to assert that B is

a subtype of A in A <: B if for every future from A can be

found equal one from B (1). We assert that types predicates

are equal if their names and parameters conform. An induction

rule is used to specify the subtype with predicates relation (2).

Γ ⊢ A

Γ ⊢ B

Γ ⊢ A <: B (1)

Γ ⊢ AP1 Γ ⊢ BP2 Γ ⊢ P1 = P2

Γ ⊢ AP1 <: BP2

(2)

Finally, we did not change JSON Schema syntax for com-

patibility with existing software purposes.

A. Algorithm of subtype checking

Our type checking algorithm 1 verifies that every field

from the type A is equal to the same one from the type B.

Record type.p returns all predicates from the type type. Code

type2[field] takes from type2 subfield with the name field

and code type2.f takes all fields from type2. The algorithm

does not try to analyse predicates, it just checks identity of the

name and the parameter. Types of the JSON Schema object

are checking recursively. List of subtype required fields must

be equal to the parent type one.

III. DESCRIPTION OF CONTRACT CONCEPT

We introduce the concept of a contract to describe commu-

nication between services. Service contract is an analogue of

communication specification which describes one remote call

or one session of information transfer. List of contracts forms

Algorithm 1 Type checking

Require: type1, type2
subtype← true;

if type1 is scalar then

subtype← type1! = type2||type1.p! = type2.p;

else {type1 is object}

for all type1.f do

subtype← subtype&&self(type1.f, type2[type1.f]);
end for

end if

regular communication protocol (like OpenAPI or WSDL) if

every item of the list is provided by the same service or the

same endpoint.

Interoperation of services divides into two categories: a

synchronous and nonsynchronous one. The synchronous com-

munication (RPC, REST) requires a protocol to define the way

of call, the way of response and optionally an error definition.

Custom protocols can specify complex sequences of data

units passing to inter-service channel. The nonsynchronous

one (event-driven design) requires a protocol to define only

type of transmitting data.

In order to level differences between the methods we define

contract as a sequence of message types. Thus HTTP call

would be a chain of two messages while an event would be the

chain consisting of the one element. A contract also contains:

• an endpoint of service which provides contract realization

(provider)

• an address to check the contract provider urgency

• a direction of every chain unit - is the message incoming

or outgoing for provider

In opposite to provider of contract, the user one claims that

a service needs any provider to work correctly. User contract

has the same format as the provider one but does not specify

endpoint. User contracts ensure that the system’s services have

all dependencies and work correctly.

User contract is compatible to provider contract if the chains

of the first one occur to be subtypes of the second one. This

means that if A <: B is valid judgement than provider takes

type A at input when client can call it with type B. The

provider service must be ready for input data with type B

and must process it like data with type A.

A. Description of conceptual contract discovery service

Services must declare their requirements themselves be-

cause they contain all related API information. There are two

targets for pushing declarations:

• all other services (e.g. broadcast notification)

• central service delegated to manage contracts

Notification of all other services requires broadcast mes-

saging and storing information about the whole system in

each one. Moreover, broadcast notification would require

implementation of type and contract checking in every service.

Therefore central control is preferable.

106 POSITION PAPERS. POZNAŃ, 2018

Services which collect information about system compo-

nents, provide their addresses and watch for their state are

called “service discovery”. Since our tool manages contract

providers we call it “contract discovery” service. Prospective

realization must have following features:

1) register contract provider

2) register contract user

3) watch for providers and users to be alive

4) deliver on demand information about contract providers

for contract users

5) verify that all dependencies are resolved and show

dependency problems

6) warn after disabling all providers of the contract that is

still used

Providers send information to the service at their startup

moment or at their deploy moment. Users get their dependen-

cies also at the start by registering their dependencies or by

separate call.

IV. REALIZATION AND TESTING

We implemented the first version of the contract discovery

service as a proof-of-concept PHP daemon built on top of

ReactPHP [6]. The daemon was used within a test suite

containing stub services. After proving the idea we made

the second realization with Golang. Service implements all

requirements and all described functions. Daemon registers

contract providers and users, performs regular alive checks

and type checking.

We used described service for managing dependencies and

for type checking in existing event-driven system. Services in

this system register their contracts at their start. They also gain

their own requirements via contract discovery. While services

use message broker and do not expect any result of the call all

registered contracts consist of no more than one schema. Users

obtain routing keys for dispatching messages from matched

provider contracts.

Though the proposed approach does not suppose improve-

ment of some specific algorithm or data passing technique we

have no ability to present any numeric metrics. However, after

registering automatization had been made we noticed that the

process of adding new services to the system became easier.

Advances that we found are:

• inter-service integration became easier as the result of

inter-service strong typing - service would not start while

dependencies are not resolved

• contract-first development makes positive influence on

service building speed

• developers do not need to keep track of the service

dependencies in configuration

We also noticed several complicities:

• maintenance of all types consistency is complicated -

there is no one place to store all actual contracts. Contract

discovery stores only registered at present time items.

• lack of information about actual data routes

• all system depends on the central component
• since contract discovery checks only online services it

does not provide real static type system

V. CONCLUSION AND THE FUTURE WORK

As the result we have replaced direct static services linking

with detection of the most suitable contract provider. This kind

of interaction allows us to ensure that enabled service would

work correctly and have all required dependencies. Also usage

of strong polymorphic typing allows us to ensure that APIs of

interacting services are compatible. Contract discovery service

ensures that a system does not have any dependency problems

at the moment.

From the other side presented approach sophisticates control

over the current interaction of the system components. It also

does not provide real static type checking for the communi-

cation of the elements.

Finally we did not gain the main goal: we did not strongly

increase stability of the system.

Therefore we have new ideas on how to provide strong

control over the services interaction. We suggest to specify

all data types in a single file or project with a description of

whole services communication design. Moreover such defini-

tion is expected to resemble a source code on any functional

programming language and can also introduce instructions for

deploying services. We expect that such source code would be

assembled into container configuration files and the translator

would perform static type checking. The concept that we

are developing now recalls behavioural and session types [3].

Replacing dynamic contract discovery with service definition

compiler would save listed advantages and decrease described

disadvantages.

REFERENCES

[1] A. Wright, H. Andrews, G. Luff “JSON Schema Validation:
A Vocabulary for Structural Validation of JSON”, http://json-
schema.org/latest/json-schema-validation.html

[2] B. Pierce “Types and Programming Languages”, London: MIT Press,
2002, pp. 251-254.

[3] H. Kohei, V. T. Vasconcelos, M. Kubo “Language primitives and type
discipline for structured communication-based programming” Program-
ming Languages and Systems, Lecture Notes in Computer Science, vol
1381, Springer, Berlin, 1998

[4] L. Sun, H. Dong, F. Hussain, O. Hussain, E. Chang “Cloud service
selection: State-of-the-art and future research directions” Journal of
Network and Computer Applications, Austria, October 2014.

[5] N. Dragoni et al “Microservices: Yesterday, Today, and Tomorrow”
Present and Ulterior Software Engineering, pp. 195-216, Springer,
Cham, 2017

[6] Contract checker, http://github.com/tariel-x/cc
[7] OpenAPI Specification, https://github.com/OAI/OpenAPI-

Specification/blob/master/versions/3.0.1.md
[8] R. Rodger “The tao of microservices”, Manning publications, 2017,

unpublished, pp. 17-19.
[9] Web Services Description Language (WSDL),

https://www.w3.org/TR/wsdl

NIKITA GERASIMOV: STATIC TYPING AND DEPENDENCY MANAGEMENT FOR SOA 107

