
Abstract—Security has become an important concern with

the development of large scale distributed and heterogeneous

multi-agent systems (MAS). One of the main problems in

addressing security during the development of MAS is that

security is often an afterthought. The cost involved to patch

existing systems against vulnerabilities and attacks after

deployment is high. If developers and designers can spend some

quality time investigating security aspects before beginning to

code then this cost can be reduced significantly. Also, using

formal methods to specify the complex behavior of large scale

software systems has resulted in reliable software systems. This

research effort was focused on using formal methods early in

the development lifecycle to specify security requirements for

MAS. New solutions are emerging to fix security related issues,

but how much thought gets in during the early phases of

development in terms of security needs to be answered. In this

paper, analysis of security requirements for MAS, existing

solutions to secure MAS, and the use of formal methods to

specify security requirements has been studied. Descartes –

Agent, a formal specification language for specifying agent

systems has been taken into study to model the security

requirements of MAS early on in the development process.

Functional specifications of MAS are modelled along with the

non-functional security requirements using the Descartes –

Agent specification language. A case study example is used to

illustrate the specification of security requirements in MAS

using the Descartes – Agent.

Index Terms—multi-agent systems, security requirements,

formal methods, Descartes - Agent

I. INTRODUCTION

AS are a set of software agents that work together to

solve problems that are beyond the individual capac-

ity of a single software agent. MAS are a comparably new

software paradigm, which has been accepted widely in sev-

eral application sectors that involve large and complex tasks.

The autonomous, pro-active and dynamic problem solving

characteristics of MAS have recently caught the attention of

several application areas, such as: banking, transportation,

e-business, and healthcare. In all these mentioned services, it

is imperative that security must be assured. These services

M

will face serious deployment issues if the security require-

ments are not being enforced. This approach is possible by

considering the agent properties and the security aspects that

relate with those specific properties.

The use of MAS in open, distributed, and heterogeneous

applications, however may cause problems with security is-

sues which in turn may affect the success of the various ap-

plications. Security in MAS is an upcoming field in a well-

established field of study, such as security in networks, P2P,

and web services communication. Hence, this paper ana-

lyzes the basic security concepts required to be applied to

security of MAS.

This paper includes a review of the past and present work

related to the security issues of MAS. Also, the research ef-

fort has studied the existing security technologies used as

solutions to address the security issues of MAS. Mobile

agents, host security, agent communication, and delegation

are some of the current security technologies that are used to

address security issues [1].

The need for systematic and secure system development

has increased the use of formal methods. The following are

some of the specific characteristics of using formal methods

to specify secure software systems [5]:

• enable reasoning from logical/mathematical speci-

fications of the behaviors of computing devices

• offer accurate proofs, so that all system behaviors

meet desirable properties

• crucial for security goals

• rule out a range of attacks

• provide guidance for gapless construction and

• always use models.

Implementing formal methods in various areas such as

verification of hardware system, embedded systems, analy-

sis and testing of software has improved the quality of com-

puter systems. There is a forecast that formal methods can

bring similar improvement in the security of software sys-

tems. Formal methods have been associated with security

Applying Formal Methods to Specify Security Requirements in

Multi–Agent Systems

Vinitha Hannah Subburaj
School of Engineering, Computer

Science and Mathematics

WTAMU Box 60767

West Texas A&M University Canyon, TX 79016 USA

Email: vsubburaj@wtamu.edu

Joseph E. Urban
Arizona State University

Tempe, AZ 85281 USA

Email: urban@asu.edu

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 707–714

DOI: 10.15439/2018F262

ISSN 2300-5963 ACSIS, Vol. 15

IEEE Catalog Number: CFP1885N-ART c©2018, PTI 707

applications for a while [15], thereby offering new
techniques for security goals across a wider range of
components. Without the implementation of formal
methods, security will always remain weak. In this paper,
one such formal method has been used to specify the security
requirements of MAS.

Wing, in her paper, has stated that security always had
played a vital role in the development of formal methods in
the 70s and early 80s [7]. There are a few questions that
might arise regarding the formal methods. Has the scenario
changed? Are the formal methods now ready to have a
significant role in the production of more secure systems?
The answer is yes, formal methods now play an important
role in security systems. In this paper, limitations of formal
methods, summary of the results on how model checking and
theorem proving tools were discussed. Also, the challenges
and opportunities for formal methods in analyzing the
security of systems, beyond the protocol level are also
elaborated. Formal methods need integration with 1) other
methods that address issues on formalization (analysis must
include several factors such as risk, hazard, fault, and
intrusion detection) and 2) into the entire software
development lifecycle (such as during requirements analysis,
testing, and simulation). Finally, there is a necessity to
introduce the human factor (cannot be ignored), which in
principle is part of the system's environment. Research
conducted on modeling of human behavior, human-computer
interaction, and management of processes and organizations
can all aggregate the formal nature of research on formal
methods.

The remainder of this paper is structured as follows:
Section 2 discusses the existing work related to security
issues in MAS, security solutions to MAS, and the use of
formal specification to specify security requirements in
MAS. Section 3 discusses the earlier extensions done to the
Descartes specification language to specify agent systems.
Section 4 discusses the security framework developed in this
research effort to specify the security requirement of MAS
using Descartes – Agent. Section 5 provides a case study
example that illustrates the application of the developed
security framework with an e-commerce application. Section
6 discusses the lessons learnt and Section 7 summarizes the
paper with a brief discussion of future work.

II. RELATED WORK
Jung, et. al [2] surveyed existing research efforts that exist

related to security in MAS, with a special focus on access
control and trust/reputation. The paper concluded that
security of agent based environments is critical. In spite of
several efforts, many problems still remain and appear to be
challenging with the continuous development of new
technologies that are developed.

The research described in the research paper [3] identified
the various security issues encountered by MAS. In order to
assure MAS security, the paper examined the following: 1)

basic concepts of security in computing, 2) characteristics of
agents and MAS that introduce new threats, and 3) different
strategies to prevent attacks. However, despite the
similarities, security in MAS has specific requirements which
need the autonomy, mobility, and other agent features that
are not usually found in most conventional systems.

A model (based on the concepts and models regarding
agent’s role and communications) is presented [4] for
securing MAS. The model provides an adequate way to
ensure the security requirements and design are combined
with system functionalities during the development process.
The proposed model also incorporates the general security
requirements at the agent and system levels. The paper has
considered and addressed several system level threats, such
as 1) corrupted mobile agents attack the main system host, 2)
fake agent, 3) insecure communication among the platforms,
and 4) agent level threats. The research work has attempted
to extend the Gaia methodology with the security model.
Further research work is needed in order to provide
developers with security solutions for MAS based on the
Gaia methodology.

A secure-critical system is difficult to develop and there
are several known research issues regarding the security
weaknesses in many sectors. Hence, a good methodology to
support secure systems development is immediately needed.
The research paper [6] presents the aim to assist the difficult
task of developing security-critical systems using an
approach of the Unified Modeling Language. The extension
UMLsec of UML [6] (that allows expressing security
relevant information within the diagrams) in a system
specification is described in this paper. The UMLsec is
defined in the form of a UML profile using the standard
UML extension mechanisms. In particular, the related
constraints provide criteria to classify the security aspects of
a system design, by attributing to the formal semantics of a
simplified fragment of UML. Formal evaluation is possible
since the behavioral parts of UMLsec are considered with
formal semantics. Hence, even the security experts who
undertake a formal evaluation for certification purposes also
may benefit from the possibility of using a specification
language that may be more adaptable than some
conventional formal methods.

Even though security has a major role in the development
of MAS, security requirements are usually considered after
the design of a system. The main reason is because of the
fact that agent oriented software engineering methodologies
have not unified security concerns throughout their
developing stages. Mouratidis and Giorgini [12, 20] in their
paper, introduce extensions to the Tropos methodology to
enable them to model security concerns throughout the entire
development process. This paper also describes the new
concepts and modeling activities getting integrated to the
current stages of Tropos. Tropos is characterized by the
following three key aspects.

708 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

• deals with all the phases of a system development,
adopting a uniform and homogeneous way,

• attends to the early requirements (emphasizing the need
to understand organizational goals), and

• builds a model of the system that is refined and
extended from a conceptual level to executable level,
by a sequence of transformational steps.

The Tropos methodology includes five main software
development stages, such as early and late requirements
analysis, architectural design, detailed design, and
implementation. In order to extend Tropos with security
related concepts, factors such as security concepts and
security modeling activities are detailed in the paper. A real
life case study from the health and social care sector is used
to illustrate the approach using Single Assessment Process
(eSAP) system.

MAS have become a promising architectural approach for
constructing Internet-based applications. Recent research
work in software architecture have resulted in the necessity
to truly define languages for designing and formalizing agent
architectures and more specifically secure ones. This paper
describes the basic fundamentals for an architectural
description language (ADL) to specify secure MAS.
Mouratidis, et al. [13] in their paper introduce a set of system
design primitives that is conceptualized with the Z
specification language to build secure MAS architectures.
The main concepts of SKwyRL-ADL, including the security
aspects, are described in this paper. The Z specification
language is used to describe SKwyRLADL concepts. Z is
widely used as a formal specification language as it is clear,
concise and easy to learn. The three sub-models of
SKwyRLADL: agent model, security model, and
architectural model are detailed in this paper. The concept is
applied on an e-commerce example to illustrate the research
effort. The illustration involves the description of formally
specified architectural aspects, such as interfaces, knowledge
bases, security objectives, security mechanisms, and plans of
the e-Media system.

III. BACKGROUND
The Descartes specification language, developed by

Urban [10] was designed to be used throughout the software
life cycle. The relationship between the input and the output
of a system is functionally specified when using this
specification language. Descartes defines the input data and
output data and then relates them in such a way that output
data becomes a function of input data. The data structuring
methods used with this language are known as Hoare trees.
These Hoare trees use three structuring methods namely
direct product, discriminated union, and sequence.

Direct product provides for the concatenation of sets of
elements. Discriminated union provides for the selection of
one element out of a set of elements. A plus sign (+) is used
to denote discriminated union. Sequence represents zero or

more repetitions of a set of elements. Sequence is indicated
by an asterisk (*) suffixed to the node name.

By definition of Hoare trees, a sequence node is followed
by a sub node. A single node can accommodate a sequence
of direct product or a sequence of discriminated union. In the
Descartes specification language, a literal is any string that is
enclosed within single quotes. Consider the following
example,

 agent
 ‘autonomous_agent’ wherein autonomous_agent

is a literal.
The Descartes specification language was extended in

2013 by Subburaj [11] for specifying complex agent
systems. The extensions made to the Descartes specification
language follows a top-down modular development allowing
for the decomposition and incremental development of large
agent systems. Six new concepts were added to Descartes for
specifying and validating agent software systems. The added
concepts were: (1) agent construct; (2) agent goal; (3) agent
attributes; (4) agent roles; (5) agent plans; and (6)
communication protocol.

Agent systems consist of multiple autonomous agents.
Each of the agents has a specific goal to achieve and a set of
actions to perform in order to achieve a goal. The agent
construct in an agent system is used to define the behavior of
an agent, including the goal, different roles, type of events,
the plans, and the knowledge base. Each agent in an agent
system has a structure. The notion of declaring an agent can
be compared to the identification of objects in an object
oriented methodology. The declaration of an agent module is
pre-pended with a unary “agent” reserved word. Consider the
following example,

agent AGENT_MODLUE_NAME_(INPUT)
Every agent has a goal of achieving a certain state or task.

For example, imagine an agent that would start running with
a goal of cleaning a house. The initial goal of such an agent
is to clean the house and perform actions accordingly to
achieve the goal statement. In Descartes - Agent, the agent
goal is specified by using a new primitive, “goal”, added to
the Descartes syntax. An agent goal is an important attribute
to be specified in an agent system. The plans that are
executed by an agent solely depend upon the goal defined for
a specific agent.

The agent roles are used to identify the key roles in an
agent system. The notion and description of role models has
been adopted from the Gaia methodology [8].

One of the most important aspects of agents is that they
act autonomously to achieve their goals. This characteristic
of agents to act autonomously in an environment is realized
through the plans part in an agent system. The plans consist
of a sequence of actions that an agent will take when a
corresponding event occurs. The first part of the plan
specified the list of events that trigger the execution of a
specific plan by the agent. The second part context describes
the contexts when the plan is applicable. The context part is

VINITHA HANNAH SUBBURAJ, JOSEPH E. URBAN: APPLYING FORMAL METHODS TO SPECIFY SECURITY REQUIREMENTS 709

used to specify the current beliefs of the agent system. This
part consists of a set of rules that can be specified with
respect to specific agents. The context part also
communicates with the knowledge/belief component in the
agent framework to update and reads agent specific rules.
The next extension is the reserved keyword “plans” used to
specify the agent plans. The keyword triggered_events is
used to list the triggered events. The keyword context is used
to specify the agent specific rules and belief. The keyword
method is used to specify the list of actions to be taken. In
order to specify the context of the plan, new logical
primitives were added to Descartes - Agent.

The knowledge/belief base in an agent system contains the
knowledge that the agent has about itself and its
environment. An agent’s plan reads and modifies the
knowledge/beliefs base. The knowledge/belief base consists
of logical rules that are known initially before the agent starts
to execute the plans. Also, based upon the execution of plans
by the agents in the agent systems, the knowledge/belief base
gets updated according to a current belief. In the Descartes -
Agent processor, the knowledge/belief base was
implemented as a separate component. The processor before
executing the agent plans and also after executing the agent
plans will access the knowledge/belief component to take
appropriate decisions.

The last extension to Descartes - Agent for specifying
agent systems is the communication protocol. Agents interact
with other agents in the agent system and also with the
environment to realize agent goals. The communication

protocol in the extended Descartes is set up by the name tag
(in upper case letters) of the calling agent module within

parentheses followed by a period and the name of the
relevant message within parentheses followed by the “^”
symbol and then the name tag (in upper case letters) of the
called agent module within parentheses.

IV. SPECIFYING SECURITY REQUIREMENTS USING THE
DESCARTES – AGENT

A. MAS properties
Wooldridge and Jennings [15] software agents come with the
following properties:
Autonomy: An agent has its own goal and the ability to
operate without any human intervention; more importantly,
agent has control over its own state and can regulate its own
functioning without outside assistance.
Sociability: An agent is capable of interacting with other
agents and humans using an agent communication language.
This approach allows an agent to seek and provide services.
Reactivity: An agent is capable of perceiving and acting on
its close environment. The agent can respond to changes that
occur in its surroundings.
Pro-activeness: Agents are not only capable of responding to
the stimulus from their surroundings, but are also capable of
exhibiting a goal-oriented behavior by taking initiatives.

In addition, there are some other characteristics, such as
situadeness, mobility, rationality, veracity, and benevolence.
Situadeness means agents are capable of sensing a special
condition based on the inputs received from the environment.

The term software agents covers a wide range of more
specific agent types. Etzioni and Weld [16] and Franklin and

TABLE I.
AGENT PROPERTIES AND ASSOCIATED SECURITY CONCERNS

Agent
property

Description Security concerns

Situatedness If the agent gets to sense the input from its local host, then problems
are less. But, instead if the information is coming from the Internet

then there comes the problem of trust.

Trust, authentication, and integrity

Autonomy Malicious agents can intrude without any request from humans or
other agents.

Authorization

Social Ability Enabling secure communications among agents and between humans
and agents.

Confidentiality, integrity, availability,
accountability, and non-repudiation

Mobility By being able to self-migrate from one platform to other platforms,
agents are prone to a number of security attacks.

Authentication, confidentiality, integrity,
privacy, and faulty tolerance

Damage, DoS, breach of privacy or theft,
harassment, social engineering, event-

triggered attack, compound attacks,
masquerading, unauthorized access, copy-and-

reply, and repudiation

Cooperation Many agents cooperatively working together to access resources and
internal status of other agents. This leads to security concerns.

Authentication and authorization

710 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

Graesser [17] provide a list of attributes that each agent must
possess to a lesser or greater degree. The software agent
attributes are as follows:
“Reactivity: the ability to selectively sense and act
Autonomy: goal-directedness, proactive and self-starting
behavior
Collaborative behavior: can work in concert with other
agents to achieve a common goal
Communication ability: the ability to communicate with
persons and other agents with language more resembling
humanlike “speech acts” than typical symbol-level program-
to-program protocols
Inferential capability: can act on abstract task specification
using prior knowledge of general goals and preferred
methods to achieve flexibility;
Temporal continuity: persistence of identity and state over
long periods of time
Personality: the capability of manifesting the attributes of a
“believable” character such as emotion
Adaptivity: being able to learn and improve with experience
Mobility: being able to migrate in a self-directed way from
one host platform to another.”

B. Security requirements in MAS
The autonomous, pro-active, and dynamic nature of

software agents thought proven to solve challenging
problems, also comes with security concerns. Often, these
security aspects get unnoticed until the deployment of the
end-deliverables. Patching the security flaws after
deployment has always resulted in high costs.

From the above properties, it is evident that software
agents operate in an open environment and are free to
interact with their surroundings to achieve their goal. This
openness gives rise to a number of security and trust issues.
Some of the commonly occurring security problems with
agent based systems [2] are: confidentiality, integrity,
availability, accountability, and non-repudiation.

Based on agent characteristics, there [2, 12] have been
presented a list of security requirements of the MAS. Table I
associates agent characteristics with their associated security
problems.

C. Descartes – Agent Security Specifications
Among the list of security concerns listed above, in this

paper we focus on two concerns namely: access control and
confidentiality.

To provide access control there are two steps involved:
first is to provide authentication to a group of agents
enabling them to establish their true identity and then
authorization that allows us to define the type of access
privileges each agent obtains.

Every agent has a goal of achieving a certain state or task.
In the secure agent framework specified by using the
primitive, “goal” being prepended by a “!” symbol. With the

specification of the secure agents, the goal is enclosed within
a * symbol denoting the goal of secure agents.

Figures 1 and 2 illustrate the Descartes – Agent
framework for specifying MAS and the Descartes – Agent
secure framework for specifying MAS.

 Fig 1. The Descartes – Agent framework for MAS

Fig 2. The Descartes – Agent security framework for MAS

VINITHA HANNAH SUBBURAJ, JOSEPH E. URBAN: APPLYING FORMAL METHODS TO SPECIFY SECURITY REQUIREMENTS 711

1) Formally specifying authentication requirements for
software agents

The authentication block in the security framework

specified in the above Figure, is decomposed as user
authentication and resource authentication. Within the user
authentication, the node named public is a discriminated
union meaning the public attribute can either be true or false.
Resources in a secure agent system define the different types
of resources that the secure agent can access. The protected
attribute defines the method of authentication used by that
user. There can be unique credentials such as passwords,
encrypted passwords, and public-key-infrastructure schemes.
The resource block is the same as the user except that there
is a list of users that are given permission to access particular
resources. Figure 3 illustrates the specification of the
authentication requirement using Descartes – Agent.

 Fig 3. Authentication example using secure Descartes - Agent

2) Formally specifying authorization requirements for
software agents

The user authorization block specified in the secure agent
framework consists of three parts: registered, actions
authorized, and privileges. The first part of the user
authorization block specifies whether the user is a registered
user or not. The second part of the authorization block
allows one to specify all the actions that an authorized user
can perform. The third part allows for the specification of all
the privileges or access rights to specific resources. In order

to specify the access privileges of users, new logical
primitives were added to Descartes - Agent. Figure 5
illustrates the specification of an authorization requirement
using Descartes – Agent. Figure 4, lists the newly added
authorization primitives.

Fig 4. Authorization primitives

Fig 5. Authorization example using secure Descartes – Agent

3) Design and Implementation
The secure Descartes – Agent specifications discussed

in Section IV can be transferred into UML design and
then into implementation code. AGENT UML [22][23],
an extension of Unified Modeling Language (UML) was
proposed to facilitate developers with a smooth agent
development process. The extended Descartes has already
been specified using AUML in [21]. The extended
Descartes – Agent security requirements can be specified
using use case, sequence, and communication protocol
diagrams. For instance, a sequence diagram in AUML is a
diagram that describe sequence of messages between
agents that exchange messages through protocols. These
diagrams define the different agent roles, constraints, and
the messages that are ordered according to a time axis.
Sequence diagrams use the following basic components
along with other components to describe a communication
pattern between agents: agents and agent roles, agent
lifelines and thread of interaction, connectors, messages,
and conditions on messages. Authentication and

agent TRANSACTION_AGENT
goal
 *! To successfully complete a secure transaction *
user1
 public+
 true
 false
 users
 files
 ‘list of files that can accessed’
 servers
 ‘list of servers that user1 can talk to’
 protected
 password*
 alphanumericstring

resource1
 public+
 true
 false
 resources
 users
 ‘list of users that can this resource’
 protected
 password*
 alphanumericstring

user2
 registered+
 true
 false

 actions_authorized
 update_database
 ‘update_the_database’
 receive_payment_info_from_agenty
 ‘receive_payment_info’
 process_payment
 ‘process_payment_info’
 confirm_transaction
 ‘confirm_the_completion_of_a_transaction’

 privileges
 (USER2)_HAS_WRITE_PERMISSIONS_TO
 (TRASACTION_RECORD)
 (USER2)_HAS_EXECUTE_PERMISSIONS_
 TO_(COMMIT_QUERY)

712 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

authorization requirements can be enforced via protocols
every time a message transfer occurs between the agents.
Since the Descartes specifications are in an executable
form, with formal specification constructs close to that of
programming, implementation of these Descartes – agent
specifications can be done in any high-level programming
language. With Descartes – Agent specifications, the
transition from specification to design and then to
implementation happens seamlessly.

V. CASE STUDY EXAMPLE
MAS are used to provide efficient e-commerce solutions,

but different security related issues are associated with the
agent solutions of e-commerce applications. A case study
example of a real time MAS for e-commerce applications
[19] is described for illustrating the security framework
introduced in this research effort. The real time multi-agent
architecture for an e-commerce application consists of four
different types of agents namely: UserAgent, QuotingAgent,
TrendWatchingAgent, and BuySellAgent.

The main goal of the USER_AGENT is to determine the
user requirements such as the risk level, amount of money to
spend, and the market sector preferences. The
USER_AGENT specifies the quality threshold to ensure if
the actual stock price lies within the threshold value [9].
Security requirements associated with this user agent
requires authentication, authorization, and confidentiality.
The following Descartes – Agent specification adds the
security requirements discussed in Section IV.B to the
USER_AGENT. Figure 6 illustrates the specification of
USER_AGENT that includes authentication and
confidentially security requirements.

VI. LESSONS LEARNT
Following were the lessons learnt out of this research

effort. Security is a major issue when it comes to addressing
requirements for MAS. The existing Descartes - Agent
specification language constructs along with few newly
added ones were successfully used to specify the security
specifications of MAS. Case study examples similar to but
not limited to the one described in the paper can be used to
illustrate the extensions made to the Descartes - Agent
specification language. The formal executable specification
demonstrated the possibility of converting the security
specification into design and then into implementation.

Some of the drawbacks identified out of this research
effort are as follows: general framework for understanding
the security requirements of MAS is not available; automated
design and code generation techniques from the formal
specification languages used to specify secure MAS is also
scarce in the literature; efficient ways to rank and specify
security requirements according to importance is not
adequately discussed.

 Fig 6. Case study example using secure Descartes - Agent

VINITHA HANNAH SUBBURAJ, JOSEPH E. URBAN: APPLYING FORMAL METHODS TO SPECIFY SECURITY REQUIREMENTS 713

VII. SUMMARY AND FUTURE WORK

A security framework that allows developers to formally

specify the security requirements of MAS has been

discussed in this paper. The security framework has been

built as a part of the Descartes – Agent formal specification

language. The key point on the developed security

framework is that it can be applied early on in the

development process of MAS. The identification of these

security requirements early during the development of agent

systems reduces the security patching cost involved with

MAS development. One of the main benefits of using

Descartes – Agent is that it allows partial specifications to

be developed and executed. This feature allows one to

specify security requirements with a high-level of

abstraction.

Three important security issues with MAS, namely

authentication, authorization, and confidentiality, were taken

into study. The security framework built in this research

effort allows for the specifications of security requirements

that would implement these security solutions in MAS. The

challenging aspect of incorporating a formal executable

specification language to specify security requirements for

MAS has been accomplished in this research effort. A case

study example has also been discussed to illustrate the use of

the security framework built in this research effort. The case

study discussed in this paper serves as a basis for formally

specifying security requirements for MAS and can be

applied to different applications in similar fields.

As future work, the security framework developed will be

extended to provide solutions to other security issues, such

as trust, integrity, availability, accountability, and non-

repudiation. Extending the security framework to enforce

security with distributed MAS will be a future challenging

effort.

REFERENCES

[1] N. Borselius. "Security in multi-agent systems," Proceedings of the

International Conference on Security and Management (SAM’02).

2002.

[2] Y. Jung, M. Kim, A. Masoumzadeh, and J. B. D. Joshi, “A survey of

security issue in multi-agent systems,” Artificial Intelligence Review,

vol. 37, no. 3, pp. 239–260, Apr. 2011.

[3] R. C. Cavalcante, I. I. Bittencourt, A. P. D. Silva, M. Silva, E. Costa,

and R. Santos, “A survey of security in multi-agent systems,” Expert

Systems with Applications, vol. 39, no. 5, pp. 4835–4846, 2012.

[4] Y. Hedin and E. Moradian, “Security in Multi-Agent Systems,”

Procedia Computer Science, vol. 60, pp. 1604–1612, 2015.

[5] S. Chong, J. Guttman, A. Datta, A. C. Myers, B. Pierce, P. Schaumont,

T. Sherwood, N. Zeldovich, "Report on the NSF workshop on formal

methods for security,” CoRR, vol. abs/1608.00678, 2016.

[6] J. Jürjens, “UMLsec: Extending UML for Secure Systems

Development,” ≪UML≫ 2002 — The Unified Modeling Language

Lecture Notes in Computer Science, pp. 412–425, 2002.

[7] J. Wing, “A symbiotic relationship between formal methods and

security,” Proceedings Computer Security, Dependability, and

Assurance: From Needs to Solutions (Cat. No.98EX358).

[8] Cernuооi, L., et al., “The gaia methodology: basic concepts and

extensions,” in Multiagent systems, Artificial Societies and Simulated

Organizations. 2004. 11(2). P. 69-88.

[9] V. H. Subburaj and J. E. Urban, “Formal Specification Language and

Agent Applications,” Studies in Big Data Intelligent Agents in Data-

intensive Computing, pp. 99–122, 2015.

[10] Urban, J. E., “A Specification Language and its Processor,” Computer

Science Department. University of Southwestern Louisiana. 1977.

[11] V. H. Subburaj and J. E. Urban, “A formal specification language for

modeling agent systems,” 2013 Second International Conference on

Informatics & Applications (ICIA), 2013.

[12] H. Mouratidis and P. Giorgini, “Secure Tropos: A Security-Oriented

Extension Of The Tropos Methodology,” International Journal of

Software Engineering and Knowledge Engineering, vol. 17, no. 02,

pp. 285–309, 2007.

[13] S. Chen, B. Mulgrew, and P. M. Grant, “A clustering technique for

digital communications channel equalization using radial basis func-

tion networks,” IEEE Trans. Neural Networks, vol. 4, pp. 570–578,

July 1993.

[14] Hussain, Shafiq, Peter Dunne, and Ghulam Rasool. "Formal

Specification of Security Properties using Z Notation," Research

Journal of Applied Sciences, Engineering and Technology 5.19

(2013): 4664-4670

[15] Wooldridge, M., Jennings, N.R.: Intelligent agents: Theories,

Architectures and Languages, January 1995. Lecture Notes in

Artificial Intelligence, vol. 890, ISBN 3-540-58855-8

[16] O. Etzioni and D. Weld, “Intelligent agents on the Internet: Fact,

fiction, and forecast,” IEEE Expert, vol. 10, no. 4, pp. 44–49, 1995.

[17] S. Franklin and A. Graesser, “Is It an agent, or just a program?: A

taxonomy for autonomous agents,” Intelligent Agents III Agent

Theories, Architectures, and Languages Lecture Notes in Computer

Science, pp. 21–35, 1997.W. D. Doyle, “Magnetization reversal in

films with biaxial anisotropy,” in 1987 Proc. INTERMAG Conf., pp.

2.2-1–2.2-6.

[18] N. Borselius, “Mobile agent security,” Electronics & Communication

Engineering Journal, vol. 14, no. 5, pp. 211–218, Jan. 2002

[19] L. C. Dipippo, V. Fay-Wolfe, L. Nair, E. Hodys, and O. Uvarov, “A

Real-Time Multi-Agent System Architecture for E-Commerce

Applications,” Jan. 2000.

[20] H. Mouratidis, P. Giorgini, and G. Manson, “Modelling secure

multiagent systems,” Proceedings of the second international joint

conference on Autonomous agents and multiagent systems - AAMAS

03, 2003.

[21] V. H. Subburaj, J. E. Urban, "Intelligent Agent Software Development

Using AUML and the Descartes Specification Language,"

Proceedings of the 2nd IEEE International Workshop on Object /

component/service-oriented Real-time Networked Ultra-dependable

Systems (WORNUS 2011), pp. 297-305, March 28, 2011.

[22] B. Bauer, J. Muller, and J. Odell, “An extension of UML by protocols

for multi-agent interaction,” Proceedings Fourth International

Conference on Multi Agent Systems, pp. 207-214, 2000.

[23] M. P. Huget and J. Odell, “Representing Agent Interaction Protocols

with Agent UML,” Agent-Oriented Software Engineering V Lecture

Notes in Computer Science, pp. 16–30, 2005.

714 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

