
 
 

 

 
Abstract—In the paper a new grid (potentially linear, 

nonlinear and even semi-Markovian jump system) was 

presented. All transition and measurement functions were 

proposed. Moreover, the transition functions of two types were 

considered – dependent on one and many different state 

variables. Also 10 types of measurements were proposed for 

both nodal and branch cases. Based on the obtained results one 

can see, which measurement functions are “easy”, and which 

are “hard” for state estimation task. 

I. INTRODUCTION 

ARTICLE filter (PF) is potentially very good estimation 
method because is based on the optimal solution – Bayes 

filter. The biggest disadvantage of PFs is their need for 
computational power – number of calculations grows 
exponentially with a system variables number [1]. This is the 
reason why PF methods are usually used only for very small 
plants. 

Some solutions to this problem are hybrid filters, e.g. Rao-
Blackwellized PF (RBPF) [2]-[3], or Marginalized PF [4], in 
which state variables are divided into two groups – one 
group is estimated using PF method, and the second group – 
using Kalman Filter (KF) methods (linear, extended or 
unscented). 

Another solution was proposed in [5] – all state variables 
are divided into groups; however, the disadvantage of this 
method is loss of information contained in measurements, 
which uses state variables from two or more groups. 

Dispersed Particle Filter (DPF) was proposed by the 
authors in one of the previous works [6] – this method 
assumes that dependences between state variables and 
measurements are relatively sparse (transition and 
measurement models depend on relatively small number of 
different state variables). Unfortunately, previously used 
plants – the power systems – have number of state variables 
two times higher than number of nodes. Additionally, based 
on studies from [7], the reasonable number of particles 
should be about 4 to the power of plant variables number. 
This caused reduction of plant dimension and simultaneously 
increase the number of nodes is needed. 
                                                           

 This work was not supported by any organization 

For this reason the authors proposed a new grid for further 
research. In this network, one node is associated with one 
state variable – thanks to this, considerations on the network 
structure will be possible for systems with relatively small 
state vector length. Proposed grid is very general and one 
can model both linear and highly nonlinear models (for both 
transitions and measurements). 

In the second section particle filter algorithm is described. 
In Section III the proposed grid is presented. Prepared 
simulations and obtained results are shown in the fourth 
section. The last section contains drawn conclusions. 

II. PARTICLE FILTER 

An object in state space can be written as 
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where x(k) is a state vector, u(k) is input vector, z(k) is output 
vector, and vectors v(k) and n(k) are internal and measurement 
noises, respectively – all at k-th time step. The main task of 
particle filter is to estimate state vector based on the 
measurements and input signals. 

The particle filters operation principle is based on the 
recursive Bayesian filtering [8] 
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where Z(k) is a set of measurement vectors from the first to k-
th time step, p(x(k)|Z(k)) is a posterior Probability Density 
Function (PDF), p(x(k)|Z(k-1)) is a prior PDF, p(z(k)|x(k)) is a 
likelihood, and p(z(k)|Z(k-1)) is an evidence. 

The key idea in PF is to implement the posterior PDF as a 
set of particles. The i-th particle is represented by a pair 
{x

i,(k), qi,(k)} – value (state vector) and weight. Higher weight 
increases probability that the value x

i,(k) is close to the real 
state vector. If the number of particles, N, is high enough, the 
information about the posterior PDF contained in particles 
set is the same as in continuous function. 
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The first particle filter was proposed in 1993 by Gordon, 
Salmond and Smith [9] and was called Bootstrap Filter. 
Operation principle of this PF is presented in Algorithm 1. 

 
Algorithm 1 – Bootstrap Filter 

1. Initialization. Draw N initial values xi,(0) from initial 
PDF p(x(0)), set time step k=1. 

2. Prediction. Draw N new particles from the 
transition model xi,(k) ~ p(x(k)|xi,(k-1)). 

3. Update. Compute the particle weights based on the 
measurement model qi,(k) = p(z(k)|xi,(k)). 

4. Normalization. Normalize weights so that their sum 
be equal to 1. 

5. Resampling. Draw N new particles using the 
posterior PDF obtained in previous steps (the 
chance that particle will be drawn is equal to 
normalized weight). 

6. End of iteration. Calculate the estimated state 
vector, increase the time step k=k+1, go to the 
second step. 

 
PF can be used for both non-Gaussian distributions and 

complex transition models. Example of such complex system 
model can be semi-Markovian jump system [10], in which 
the whole system model can switch itself (with some 
probability) into other structures (other equations), and also 
can go back to the previous “system states”. 

For more information about PFs, references [11]-[15] are 
recommended. 

III. PROPOSED NETWORK 

The authors proposed grid, which on the one hand can be 
easily prepared, but on the other hand provides wide 
possibilities in creation of new plants. This is why there are 
many complex and maybe even illegible options presented 
below; however, the most common networks will be 
presented in a very simple way. Moreover, if one needs to 
add any dependence, which was not specified, still there is a 
possibility to present this on the scheme. 

The proposed network is composed of nodes and lines 
(branches). Two different nodes can be connected by line. 
With every i-th node exactly one state variable xi is 
associated with. Nodes can be represented in two ways – by 
circles or by squares. Transition function fi depends on the 
shape of i-th node. 

Filled figures are associated with measurements that when 
placed on lines (branches), refer to state variables that are 
associated to those lines (branch measurements), and when 
placed near the nodes (or on the nodal branches), refer to 
state variables in those specific nodes (nodal measurement). 

It was assumed that networks are autonomous and thus 
any designation for input signal is not presented.  

Expressions for different transition functions of the first 
type (circles) are presented below, and their connections 
with scheme designations are described in Table I. 
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For the second type of transition functions, connections 
between nodes matter. Branch between i-th and j-th nodes 
has a value µi,j=µj,i≠0, whereas if there is no connection 
between i-th and j-th nodes, branch value µi,j=µj,i=0. It is also 
assumed that µi,i=1. 

There are specified three types of lines, which differ in 
line functions fli,j (where i is the number of node from which 
line function “was called”). These functions are written 

TABLE I. 
EXPLANATION OF DESIGNATIONS – NODES, PART 1, FOR 

TRANSITION FUNCTIONS WHICH ARE BASED ONLY ON I-TH STATE 

VARIABLE 

Eqn. Designation of node Explanation 

(3)  

 

α and n should be given on the 
scheme.  

However, if one parameter is 
omitted, it is assumed that this 
value is equal to 1.  

Also both parameters can be 
omitted (α=1 and n=1). 

(4)-
(5) 

 

 

 

When all three values are given, one 
must take into account that α 
should be written before β (above or 
on the left side of β). 

If any parameter (α, β or n) is not 
presented, it is assumed that it is 
equal to 1; however, one should 
keep in mind that β can be omitted 
only if α is also omitted. 

Designations for equation (5) are 
the same, but triple lines (through 
circles) should be used. 

(6) 

 

pJ should be written outside of the 
circle as J’s sub- or super-script 
(also from the left). If pJ is omitted, 
it is assumed that pJ = 0.5. 

- 

 

To use another function (which 
must be explain in a text) a double 
circle should be used. 
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below, and their connections with scheme designations are 
described in Table II. 
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Line functions fli,j can be used in both, transition and 
measurement functions. Proposed types of transition 
functions, which use values of other state variables, are 
presented below, and their designations are described in 
Table III. 
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The type of internal noise one can describe in a text or 
mark on the scheme. PDF type with parameters should be 
connected with specific node by dashed line. Examples have 
been presented in Fig. 1. 

Measurements are marked by filled figures on the scheme. 
Measurement designations on branches have different 
meaning than designations associated with nodes. Moreover, 
one should keep in mind that measurement location matters 
(the first index indicates near which node the measurement is 
located), because measurement functions generally are not 
symmetric. Possible nodal measurements in i-th node (Pi, Qi, 
Ri, Si, Ti) are described by equations (14)-(18), whereas 
possible branch measurements between i-th (at this node 
measurement is placed) and j-th nodes (Pi,j, Qi,j, Ri,j, Si,j, Ti,j) 
are described by equations (19)-(23). Designations of 
specific measurements are presented in Table IV. To use 
another measurement function one can simply use new filled 
figure on the scheme (function should be explained in text). 
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Fig. 1 Examples of internal noise designation 
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TABLE II. 
EXPLANATION OF DESIGNATIONS – LINES 

Eqn. Line designation Explanation 

(7)-
(9) 

 

 

 

 

 

Values m and µ should be written 
on the scheme near to line center. 
Also information about branch 
type, in the form of diagonal lines 
(one for (7), two for (8) and three 
for (9)), should be presented there. 
If µi,j=1, one can omit this value. If 
m=1 it also can be omitted. 

If branches in whole grid are only 
of first type, diagonal lines can be 
omitted. 

-  
For another line function (must be 
explain in text), double line should 
be used between nodes. 

 

TABLE III. 
EXPLANATION OF DESIGNATIONS – NODES, PART 2, FOR 

TRANSITION FUNCTIONS WHICH ARE BASED ALSO ON OTHER STATE 

VARIABLES 

Eqn. Designation of node Explanation 

(10) 

 

n value should be written inside a 
square bracket. If  α is omitted, it is 
assumed that α=1. If value n is 
omitted, it is assumed that n=1. 

(11)-
(12) 

 

 

When all three values are given, one 
must take into account that α 
should be written before β (above or 
on the left side of β). 

If any parameter (α, β or n) is not 
presented, it is assumed that it is 
equal to 1; however, one should 
keep in mind that β can be omitted 
only if α is also omitted. 

(13) 

 

pJ should be written outside of the 
square as J’s sub- or super-script 
(can be also from the left side). 
Omitted pJ means that pJ = 0.5. 

- 

 

To use another function (which 
must be explain in a text) double 
square should be used. 
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The measurement noise should be marked in the same way 
as the internal noise – by description in text or using dashed 
line on the scheme. Examples of measurement noise 
designations are presented in Table IV. 

IV. SIMULATION RESULTS 

The simulations were performed for the networks 
presented in Fig. 2-4. Measurements were considered for 5 
different cases – P, Q, R, S, and T. In each case all possible 
measurements of specific type were taken into account (10 
branch measurements and 4 nodal measurements). However, 
one can see that differences between the second and third 
objects are only in line functions fli,j. hence only experiments 
for R and T cases were repeated for Ob403. 

The average Root Mean Square Error was used to 
describe estimation quality and it can be written as 

 ∑
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where Nx is the number of state variables, and 
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where value with plus is the real value of state variable and 
M is the length of the simulation (set on the 1000 time steps 
in experiments). 

All simulations were repeated 4000 times for Ob401, Q 
and T measurements, and 400 times for other cases. All 
results are presented in Fig. 5. 

 

Fig. 2 Scheme of the object Ob401 
 

 

Fig. 3 Scheme of the object Ob402 

V. CONCLUSIONS 

Based on the obtained results one can say (by comparison 
results of the same cases for objects Ob401 and Ob402) that 
linearly changed state variables can be better tracked than 
ones changed nonlinearly. Moreover, the best estimation 
quality was obtained for linear object (linear transition model 
and linear measurement functions).  

It is also visible (by comparison of results for R or T cases 
for all three objects) that complexity of measurements also 
impact on estimation quality (easier measurements provide 
better tracking). 

The increase of aRMSE with higher number of particles 
for object Ob401 and cases Q and T is probably caused by 
higher chance that specific set of drawn values, which are 

TABLE IV. 
EXPLANATION OF DESIGNATIONS – MEASUREMENTS (BRANCH AND 

NODAL) 

Eqn. Measur. designation Explanation 

(14), 
(19)  

 

(15), 
(20) 

 
(16), 
(21)  

(17), 
(22) 

 

(18), 
(23)  

Nodal measurements should be 
placed near the node or should be 
connected with node by the dashed 
line. The second case is needed if 
one want to add information about 
measurement noise or about 
measurement scaling.  

Branch measurements should be 
placed on the specific line. One 
should keep in mind that 
measurements are different at both 
ends of the branch, so the position 
of sign should be unambiguous. If 
one want to add information about 
measurement noise or its scale, also 
a dashed line should be used. 

Measurement designations can be 
marked in one orientation or if one 
wish – can be rotated; however, one 
should use one approach. 
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wrong, will match the measurements (index in one of dozens 
simulation had very high value). Simultaneously it is clearly 
visible that Q and T measurements are the hardest for 
estimation task. One can see also that for others 
measurement types even object with jump functions (Ob401) 
can be properly estimated. 

It is also interesting that estimation quality for case Q in 
object Ob402 is rather weak for small number of particles N, 
but is very good for high particles number, whereas for case 
Q in object Ob401 the results are worst of all examined cases 
and objects. This is probably caused by jump functions in 
Ob401. 

Proposed network will be widely used by the authors for 
further research. 

 

Fig. 4 Scheme of the object Ob403 
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Fig. 5 Obtained results 
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